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Abstract. This work proposes the use of deep learning architectures,
and in particular Convolutional Autencoders (CAE’s), to incorporate an
explicit component of orthogonality to the computation of local image
descriptors. For this purpose we present a methodology based on the com-
putation of dot products among the hidden outputs of the center-most
layer of a convolutional autoencoder. This is, the dot product between
the responses of the different kernels of the central layer (sections of a
latent representation). We compare this dot product against an indicator
of orthogonality, which in the presence of non-orthogonal hidden repre-
sentations, back-propagates a gradient through the network, adjusting
its parameters to produce new representations which will be closer to
have orthogonality among them in future iterations. Our results show
that the proposed methodology is suitable for the estimation of local
image descriptors that are orthogonal to one another, which is often a
desirable feature in many patter recognition tasks.

Keywords: Local image descriptors · Orthogonal bases ·
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1 Introduction

The use of orthogonal bases in the estimation of local image descriptors was a
widely used paradigm in many computer vision scenarios before the deep learning
era [1], specially because this approach allows the definition of over-complete
dictionaries for robust image description [1,2]. However, recent developments of
deep architectures seem to disregard the potential of incorporating orthogonal
bases in their models, perhaps because of the indisputable success that these
deep models, and in particular Convolutional Neural Networks (CNN’s), have
already shown in solving several computer vision problems [3,4], even without
the explicit consideration of orthogonality.

Since CNN’s are often designed for end-to-end processing, the estimation of
local image descriptors also seems to be unnecessary lately, i.e., the focus is in
solving directly tasks like classification or localization [5,6]. Therefore, it has
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become common to overlook at intermediate representations during the image
description process, as long as they get the task solved. Nonetheless, looking
at intermediate representations of CNN’s [9] might still prove beneficial for the
estimation of local image descriptors, which might be desirable in at least two
scenarios. First, when fine local details are highly relevant for a given task, as
global descriptors risk overlooking at them. Second, when dealing with small
datasets that could limit the capacity for properly training a large set of param-
eters, as is often the case with many deep neural networks architectures [7].

In this work, we propose the re-consideration of orthogonality as a constraint
for the estimation of local image descriptors, which are computed using Con-
volutional Autoencoders (CAE’s) [8]. We develop a methodology that readily
inserts itself as another layer in a deep CAE architecture, and that allows to
impose orthogonality constraints to intermediate representation of the network.
We evaluate the impact of our model in the task of image reconstruction, and
our results show that this approach is suitable for obtaining orthogonal local
descriptors while still being able to reconstruct images at high precision rates.

The rest of this paper is organized as follows. Sect. 2, gives details about
our proposed approach for generation of orthogonal local descriptors. Sect. 3
describes the protocol followed to evaluate our method. Sect. 4 discusses our
results. Finally, Sect. 5, presents our conclusions.

2 Orthogonal Local Descriptors

This section explains the proposed deep learning architecture designed to com-
pute orthogonal local descriptors, which corresponds to a type of convolutional
autoencoder (CAE). This deep convolutional autoencoder simultaneously opti-
mizes two objective functions: the reconstruction error of the autoencoder itself
and an orthogonality constraint.

2.1 Architecture

An overview of our CAE-like architecture is shown in Fig. 1. As it happens with
standard autoencoders, ours is composed of two stages: encoding and decoding,
where the output of the central layer is considered an appropriate representation
of the input image, as long as it allows the model to reconstruct its own input.

Fig. 1. Model architecture. Orthogonal convolutional autoencoder.
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The encoding part of our model starts with a set of convolutional and max-
pooling layers packed into blocks, whose tasks is that of applying a cascade of
low-level filters that identify or enhance the visual information relevant for local
description. There are three such convolutional-pooling blocks, as suggested by
previous works [4], in which it has been observed that three blocks suffice for
learning to detect edges, corners and contours, and object parts, respectively [9].

Likewise, we also implement three blocks with convolution filters and up-
sampling operations for the decoder stage, i.e., the reconstruction section of the
model. This decoding section has the only task of recovering the initial visual
information from whatever representation had resulted after the initial encoding
process. There is an additional final convolutional layer whose purpose is to
smooth out the output of the last up-sampling operation, this is, it corrects for
the abrupt zero-order hold extrapolation produced by the up-sampling layer.

In this model, all convolutional operations in the encoding and decoding
stages are performed by filters of size 5×5, and are followed by ReLU activation
functions. Regarding the max-pooling layers, all of them operate over 2×2 pixels
neighborhoods. Similarly, the up-sampling steps correspond to zero-order hold
interpolation processes performed in localities of 2 × 2 pixels.

The central layer in our model, indicated by the name “Dot” in Fig. 1, is the
one where the orthogonality between convolutional filters is optimized. See Sect.
2.2, for further details about this process.

2.2 Orthogonality

For the purpose of measuring orthogonality, we consider individually, the output
of each convolutional filter in the central layer (latent representation). This is, we
optimize for each convolutional unit to produce outputs that are orthogonal to
one another. Concretely, we measure the orthogonality between pairs of outputs
of the layer maxpool3, and from there, we backpropagate a loss measurement
indicating a notion of lack of orthogonality.

More formally, the orthogonality between two convolutional outputs corre-
sponds to the dot product computed between their respective vectorized forms
vi and vj , i.e., the output of the convolutional filter is a matrix, however, vector-
izing it has no impact for the optimization process. Namely, the orthogonality
score ôi,j between vectors vi and vj is computed as,

ôi,j = 〈vi, vj〉 . (1)

Computing this dot product for each pair of the C convolutional outputs
from a given layer, results in a matrix Ô of [C × C] elements, which indicates the
degree of correlation between pairs of outputs, and thus some sort of similarity
between the convolutional filters that generated them themselves. Moreover,
having the off-diagonal elements of Ô all equal to zero, indicates that the operand
vectors that originated them are pair-wise orthogonal.

Using this notion of orthogonality, we compute the orthogonality loss Lo as,

Lo =
1
M

‖O − I‖1, (2)
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where, O is the orthogonal matrix normalized through,

oi,j =
ôi,j

maxi,j Ô
, (3)

and I is the identity matrix of size [C × C]. This is, Eq. (2) computes the element-
wise mean absolute error between O and I.

In practice, max-pooling layers contain no parameters that can be optimize
via gradient descent. Therefore, the orthogonality loss Lo is back-propagated
directly to the previous convolutional layer (i.e., conv3 ), whose parameters are
updated to maximize the orthogonality of future outputs.

2.3 Loss Function

The training of the proposed model consists in minimizing simultaneously a
reconstruction loss Lr and the orthogonality loss Lo defined in Eq. (2). This is,

L = Lr + λLo, (4)

where, λ is a coefficient that weights the contribution of the orthogonality loss
Lo to the total loss function, and,

Lr = Lr(X,X;Ω), (5)

indicates a notion of the error obtained when using X (an image patch) as input
to our model, and trying to reconstruct it using the set of parameters Ω. Note
that the specific form of Lr might vary depending on the nature of the data and
the problem that is being addressed.

3 Experiments

This section provides information regarding the evaluation of the proposed
orthogonal local descriptor. Concretely, it describes the dataset used for eval-
uation, provides several implementation details, and presents the two types of
experiments we performed to validate our methodology.

3.1 Data

We used a dataset of binary images [10] containing arrangements of hieroglyphs
from the ancient Maya culture. These arrangements of hieroglyphs are known
as glyph-blocks, or simply blocks. Figure 2 shows a few examples of them.

This glyph-blocks dataset is formed by 5000 images, each containing from 1 to
6 individual signs visually located at arbitrary positions. In turn, each individual
sign belongs to one of 255 semantic classes (a notion of word)1. It is indeed, the
1 Approximately, 1000 different Mayan glyph-signs have been identified thus far by

archaeologists, but our dataset only contains instances from 255 of them.
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Fig. 2. 16 examples of glyph-blocks in our dataset.

relative small size of this dataset that has motivated the investigation on the use
of convolutional autoencoders to generate local image descriptors.

During our experiments, we randomly chose 80 glyph-blocks for training and
20 for validation, leaving 4900 aside for testing. For the generation of the local
image descriptors, we input square image patches uniformly sampled from the
complete glyph-blocks. The size of these patches is 64 × 64 pixels, sampled at
strides of 16 pixels. Since glyph-blocks images are of varying size, this segmen-
tation resulted in 39,125 training and 10,251 validation patches.

3.2 Implementation Details

We implemented our proposed model using python 3.7 and the keras module of
the tensorflow 2.0 library.

Conceptually, our model is a branched network as depicted in Fig. 1. Its
main branch consists of 15 layers organized in three types of blocks: convolution
plus max-pooling, convolution plus up-sampling, and only convolution blocks.
Its purpose is to process input images extracting relevant information into a
compact latent representation, and then reconstruct the original image starting
from such latent representation.

With the exception of its last convolutional layer, which implements the
sigmoid activation function for recovering pixel values within the interval [0, 1],
all other convolutional layers use the ReLU activation function.

The three layers in the encoding stage consists of 32, 16, and C convolutional
filters, respectively. Note the parameter C (the number of filters in the third con-
volutional layer is an hyper-parameter, which determines the number of layers
that allow appropriate orthogonality rates). Similarly, the last four layers in the
decoding stage are formed by 8, 16, 32, and 1 convolutional filters. All convolu-
tional filters in all convolutional layers are of 5 × 5 pixels. Also, all max-pooling
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and up-sampling layers were fixed to pooling size equals 2 × 2, thus generating
outputs half, or double, the size of their inputs, accordingly.

The second branch of our model corresponds to the “Dot” layer, which is
connected after the third max-pooling layer. This layer receives as input a tensor
of size [W,H,C], where W and H indicates the width and height of the image
response after the previous convolution-pooling block, and C corresponds to the
number of responses (channels or filters) resulting from that previous stage. The
activation function of this layer is the dot product applied on its input tensor,
channel-wise, which produces matrix O as output (as explained in Sect. 2.2). The
reference data used to compare the output of this second branch, and therefore
to calculate the error function defined in Eq. (2), corresponds to the identity
matrix of size C × C, as we are using C filters in the third convolutional layer.

We trained our model during 64 epochs using batches of 32 local patches
and the adam optimizer with default parameters [11]. Since our data consists of
binary images, we optimize the binary cross entropy as reconstruction loss Lr.

3.3 Evaluation

We evaluated two aspects that the proposed orthogonality constraint could
induce in the estimation of local image descriptors via convolutional autoen-
coders. First, its impact in the reconstruction loss with respect to its contribution
to the whole optimization process, as dictated by the coefficient λ. And second,
its impact in the reconstruction loss in relation with the dimensionality of the
generated local descriptor, i.e., the impact that the number C of convolutional
units used to generate the local image descriptor.

4 Results

This section presents the results obtained during the evaluation of the proposed
orthogonal local descriptors. Our evaluation focuses on the impact induced in the
reconstruction loss of the CAE, by the addition of the orthogonality constraint
and by the length of the resulting local descriptor.

4.1 Orthogonality Impact

Table 1 shows the impact of enforcing the orthogonality constraint into the loss
function, evaluated on the validation set. These results correspond to the recon-
struction loss Lr (binary cross entropy, bce), the orthogonality loss Lo (mean
average error, mae), and the total loss L = Lr + λLo, as detailed in Sect. 2.3.
Moreover, this evaluation corresponds to the use of 512 elements in the real-
valued vectors used to compute orthogonality, which, given the fact that the
output of our model is of size 8 × 8 pixels after the third max-pooling layer,
implies that there are C = 8 filters in the third convolutional layer.

From Table 1, one can see a clear opposite tendency between the reconstruc-
tion and orthogonality losses. In general, all of our experiments showed that the
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Table 1. Comparison of different values of λ, used for enforcing the orthogonality
constraint into the loss function, evaluated on the validation set.

Lo contribution (λ) 3.00 0.90 0.60 0.30 0.09 0.06 0.03

Lr (bce) 0.126 0.115 0.108 0.108 0.102 0.102 0.098

Lo (mae) 0.071 0.080 0.091 0.104 0.118 0.129 0.138

L 0.169 0.163 0.163 0.162 0.173 0.179 0.181

more strict the orthogonality penalty λ, the higher the reconstruction loss (bce).
Since their combination attains its minimum when using λ = 0.6, we kept this
value fixed for subsequent evaluations.

To validate that, effectively this approach is able to generate local descriptors
that are orthogonal to one another, in Fig. 3 we show the visual representations
of the orthogonal matrix O (Eq. 3) for different values of λ. Although all three
matrices show a diagonal-like patter, it is clear that λ ≥ 0.6 enforces better
orthogonality between pairs of convolutional outputs.

Fig. 3. Visual representations of the orthogonal matrix O for different values of λ.
The more the off-diagonal elements are close to zero, the more orthogonal are the
corresponding vectors, which are nothing but the responses to the convolutional filters.

For better understanding the impact of the orthogonality penalty λ, Fig. 4
shows examples of patches that have been reconstructed using our methodology,
with C = 8 filters in the third convolutional layer and λ = 0.6 (as suggested by
the previous analysis). Images in the first row are input local patches segmented
from the glyph-blocks, while images in the second row correspond to their recon-
structed counterparts. All images in Fig. 4 are well defined in visual terms, and
highly similar to their original counterparts. Moreover, only a few pixels have
changed their real value. This indicates that allowing a reconstruction loss of
around 0.1 in terms of binary cross entropy (induced by λ = 0.6), brings no
serious damage to the reconstruction process.
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Fig. 4. Examples of local image patches reconstructed by our model, using C = 8 filters
in the third convolutional layer and λ = 0.6. First row corresponds to the original image
patches. Second row corresponds to the reconstructed patches.

Our results also showed that the proposed approach has good generalization
behavior, as the validation error is only slightly higher than the training error
for both types of losses, as shown in Fig. 5.

Fig. 5. Training an validation performance for the reconstruction and orthogonal losses.

4.2 Length Impact

The number of elements in the resulting local descriptor is also an important
parameter that must be evaluated. On one hand, we would like to obtain descrip-
tors that are large enough to facilitate distributing relevant visual information
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among their elements, thus favoring orthogonality and sparsity. On the other
hand, short descriptors could be desirable for further processing, e.g., indexing
or aggregation.

Given the architecture of our model, the output after the third convolution-
pooling block is fixed to 8 × 8 pixels. Therefore, the only varying parameter to
modify the total number of elements of this intermediate output is the number
C of filters (channels) located in the third convolutional layer. We evaluated the
impact on the different losses of our model when varying the number of filters
in the set C = {1, 2, 4, 8, 16, 32, 64}, which respectively correspond to having
64, 128, 256, 512, 1024, 2048, 4096 elements in the local descriptor.

Table 2 shows evidence of the relation that the length of the local descriptor
has with the reconstruction and orthogonality losses, using a fixed λ = 0.6 as
suggested by the results shown in Table 1.

Table 2. Reconstruction and orthogonal losses with respect to the length of the local
image descriptor, using fixed λ = 0.6.

Length 64 128 256 512 1024 2048 4096

Lr (bce) 0.121 0.109 0.162 0.108 0.112 0.117 0.171

Lo (mae) 0.148 0.132 0.130 0.091 0.129 0.131 0.162

This evidence shows that local patches are well described using 512 elements,
as this length provides the lowest reconstruction loss (bce). This, however, is but
a consequence of the design of the model, which we have set to receive inputs of
size 64 × 64 pixels, and process them through three convolution-pooling blocks,
which results in responses of 8×8 elements. Different combination of these hyper-
parameters might require different numbers of filters in the third convolution,
thus resulting in varying lengths for the local image descriptor.

5 Conclusions

We proposed the re-consideration of orthogonality as a constraint for the unsu-
pervised estimation of local image descriptors using Convolutional Autoencoders
(CAE). For this purpose we presented a methodology based on the use of a hid-
den layer that computes the dot product between intermediate outputs, and
uses it as a secondary model output, which is subject to a loss estimation, and
therefore allows to adjust the network parameters to induce orthogonality.

Our results show that the proposed methodology is suitable for the estima-
tion of local image descriptors that are orthogonal to one another, this without
hurting the reconstruction process of the CAE. We also investigated the impact
of the length of the resulting local descriptor in the process of reconstruct-
ing binary images, and noticed that reconstruction of high visual quality are
possible.
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Currently we are investigating whether the proposed method might also have
an impact in the degree of sparsity of the resulting local descriptors, or serve as
a new type of regularizer. Additionally, this approach can be tested in specific
tasks like image classification or image retrieval.
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