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Abstract. In a Stackelberg pricing problem a distinguished player, the
leader, chooses prices for a set of items, and one or several other players,
the followers, seeks to buy a feasible subset of the items with minimal
costs. The leader’s goal is to maximize her revenue, which is determined
by the sold items and their prices.

We are interested in cases where the followers’ feasible subsets are
given by a combinatorial optimization problem. For example, a pricing
problem based on the shortest path problem was used by Labbé et al. [15]
to model road-toll setting scenarios.

In this paper, we consider Stackelberg pricing problems that are based
on matroids. The followers seek to buy a subset that is a basis. More
specifically, we consider uniform, partition and laminar matroids.

We study the complexity of computing leader-optimal prices for a sin-
gle and multiple followers. We show that optimal prices can be computed
in polynomial time for all three matroids if there is one follower. In gen-
eral, such pricing problems based on matroids are APX-hard (see [11]).

For multiple followers, we show that computing optimal prices for uni-
form matroids can be done in polynomial time. However, for partition
and laminar matroids the pricing problem becomes NP-hard.

Keywords: Algorithmic pricing · Stackelberg games · Revenue
maximization · Matroids

1 Introduction

We study pricing problems in a game-theoretic model known as Stackelberg
games or Stackelberg pricing problems. In this model, one player, the leader,
chooses prices for a number of items and one or several other players, the fol-
lowers, are interested in buying subsets of the items. The followers buy subsets
that minimize their expenses subject to some constraints while the leader’s goal
is to maximize her revenue, which is determined by the sold items and their
prices. We are interested in the complexity of computing leader-optimal prices
depending on the constraints of the followers.
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One line of research studies Stackelberg pricing problems where the followers’
constraints are given by a combinatorial optimization problem. A well-motivated
example of such a pricing problem was introduced by Labbé et al. [15] to compute
optimal road-tolls: A road network is modeled by a graph where the edges have
costs that have to be paid when traveling along an edge. A subset of the roads or
edges belongs to the leader and she can charge a toll which increases their costs.
Each follower is given by two nodes s and t in the graph and chooses a minimal-
cost path connecting s and t. The leader gains revenue in the amount of paid tolls.
When deciding on the tolls, the leader has to make to following consideration:
On the one hand, low tolls might fail to produce maximum revenue. On the other
hand, a large toll might cause the followers to avoid a road entirely resulting in
zero revenue. Since the followers “buy” a shortest path, this variant is called
Stackelberg shortest path.

Stackelberg minimum spanning tree was analyzed by Cardinal et al. and Bilò
et al. [3,11,12]. The followers are again interested in subsets of a graph’s edges,
but the subsets have to form a spanning tree. This setting has applications, for
example, when an internet service provider wants to connect hubs in a network.
The leader charges additional costs for some of the edges and collects revenue
if they are used by a follower (internet service provider). Moreover, Stackelberg
interval scheduling models situations where the leader pays the follower to exe-
cute a set of jobs. The leader makes’make or buy’-type decisions (see [6]).

Intuitively, the complexity of the pricing problem depends on the complex-
ity of the followers’ optimization problem. Stackelberg shortest path is hard to
approximate within a factor of less than 2 (see Briest et al. [7]) and Stackel-
berg minimum spanning tree was shown to be APX-hard. However, Stackelberg
interval scheduling is solvable in polynomial time.

Our Results. We study Stackelberg pricing problems that are based on
matroids. A matroid is a family of subsets over a ground set that is subject
to a set of constraints. The constraints are a bit technical and we spare them
for the next section. As an example, for a matroid, we can think of the subsets
of a graph’s edges that are acyclic. This matroid is called the graphic matroid.
The inclusion-wise maximal subsets of a matroid are its bases. If the elements
of the ground set are associated with weights, then a minimal weight basis can
be computed by the greedy algorithm. The minimal weight bases of a graphic
matroid are the minimum weight spanning trees of the associated graph.

For a Stackelberg pricing problem based on a matroid, the ground set is par-
titioned into two blocks. One block contains items1 that have fixed-costs. Think
of these fixed-cost items as being offered by the leader’s competitors. The sec-
ond block contains the priceable items for which the leader chooses prices. Each
follower comes equipped with a matroid over the ground set and is interested
in buying a minimum weight basis. The weight of an item is either its fixed-
cost or its price. Given prices, the decision which subset a follower buys can be
computed by the greedy algorithm. If a follower buys a basis, the leader gains
1 We call the element of the ground set items.
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revenue for each contained priceable item in the amount of its price. The leader’s
goal is to maximize her revenue.

Finding a minimum weight basis of a matroid can be regarded as a rather
simple problem since it can be done with the greedy algorithm. Therefore, it
is surprising that the pricing problem based on the graphic matroid, Stackel-
berg minimum spanning tree, is APX-hard. To find cases that can be solved in
polynomial time, we have to resort to even simpler matroids.

We study three different classes of matroids in two scenarios. For the sim-
pler scenario, we assume that there is a single follower. Note that this scenario
was studied in most of the literature on Stackelberg pricing problems so far.
For the second scenario, there are multiple followers which implies a few ques-
tions regarding the availability of items and coordination between followers. We
assume that the items are available in unlimited supply which makes coordina-
tion between the followers unnecessary. The leader sets one price for each item
that is valid for all the followers.

The first class are uniform matroids. Here, followers are interested in buying
a set of items that has a given size. Different followers may come with different
sizes. There is no additional structure on the items and a follower buys a subset
of his given size with minimum total weight. We show that leader-optimal prices
can be computed in polynomial time for a single and the multiple followers.
While the single follower scenario is quite simple, the multiple followers scenario
requires a dynamic programming approach.

Second, we consider partition matroids which generalize uniform matroids.
A follower is associated with a partition of the ground set into blocks. For each
block, the follower buys a subset of a given size. Different followers may be
associated with different partitions and sizes. We show that computing leader-
optimal prices for a single follower can be done in polynomial time. For the
multiple followers, this computational task is NP-hard.

Table 1. Summary of our results on matroid based Stackelberg pricing problems. The
results on Stackelberg minimum spanning tree (MST) appear in [11].

Single follower Multiple followers

Uniform poly-time poly-time

Partition poly-time NP-hard

Laminar poly-time NP-hard

MST APX-hard APX-hard

The third class are laminar matroids which generalize partition matroids. A
laminar matroid is based on a hierarchical family of subsets of the ground set,
i.e., two subsets of the family are either disjoint or one is contained in the other.
Such a hierarchical family is also called a laminar family. For each of the subsets
of the laminar family, a follower has an upper bound on the number of items
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that he wants to buy from this subset. Finding leader-optimal prices has the
same complexity for laminar matroids as it has for partition matroids.

Table 1 summarizes our results. The organization of the paper is as follows.
In the next section, we give a more careful definition of matroids and Stackelberg
pricing problems. In Sects. 3 and 4, we show how to solve Stackelberg uniform
matroid with multiple followers and Stackelberg laminar matroid with one fol-
lower, respectively. Section 5 shows that Stackelberg partition matroid is hard
with multiple followers. For the missing proofs, we refer to the full version of the
paper. Finally, Sect. 6 discusses directions for future research.

Related Work. Additional literature includes surveys on Stackelberg shortest
path by van Hoesel [20] and Labbé and Violin [16]. Roche et al. [18] present an
algorithm with logarithmic approximation guarantee. The best lower bound is
due to Briest et al. [7] showing approximation hardness within a factor of less
than 2. This is an improvement over APX-hardness by Joret [13].

A Stackelberg shortest path tree game was studied by Bilo et al. [4] and
Cabello [10]. Briest et al. [9] give a polynomial time algorithm for Stackelberg
bipartite vertex cover game which was later improved by Bäıou and Barahona [1].

Briest et al. [9] give a log(k) approximation algorithm for Stackelberg pricing
games where k is the number of items. Independently, a slightly more general
result was obtained by Balcan et al. [2]. Their algorithms use a single price
strategy which was studied in a more general setting by Böhnlein et al. [5].

Briest et al. [8] study Stackelberg pricing games where the follower is based
on a NP-hard optimization problem and runs a known approximation algorithm.

2 Preliminaries

Stackelberg Pricing Problems. Let E = Ef ∪̇Ep be a finite set of items
which consists of two blocks Ef and Ep. Ef contains the fixed-cost items and
Ep contains the priceable items. Let

|Ef | = m and |Ep| = n.

The items in Ef have costs given by the function c : Ef → R.
We have one leader and � followers, for an integer � ≥ 1. The leader seeks

to sell the items in Ep to the followers. But the followers can also buy items in
Ef paying their costs c. The leader choose prices by specifying a price function
p : Ep → R. From the followers’ perspective, we do not distinguish between
priceable and fixed-cost items. Hence, given a price function p, we compose a
weight function w : E → R:

w(e) =

{
c(e), e ∈ Ef ,

p(e), e ∈ Ep.
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Each follower i is determined by a family of feasible subsets Si ⊆ 2E which
contains the subsets that he is interested in buying. Given a price function p,
the weight of a subset S ∈ Si is defined as

w(S, p) =
∑

e∈S w(e).

The objective of the follower is to buy a feasible subset with minimum total
weight which is w∗

i (p) = minS∈Si
w(S, p). A subset S ⊆ E (if bought by a

follower) yields revenue for the leader:

rev(S) =
∑

e∈S∩Ep
p(e).

In case there are several feasible subsets of weight w∗
i (p), we assume that followers

are optimistic and buy a subset that yields maximum revenue for the leader.
Hence, follower i buys the following feasible subset:

S∗
i (p) = arg maxS∈Si

{rev(S) : w(S, p) = w∗
i (p)}. (1)

The revenue from follower i is rev(S∗
i (p)) and the leader’s total revenue is

rev(p) =
∑�

i=1 rev(S∗
i (p)).

The leader’s objective is to determine a price function p that maximizes rev(p).
A follower’s decision is the solution to an optimization problem (given a price

function). When the leader decides on the prices, she is aware of the fixed-cost
items and their costs as well as the followers’ objective functions and feasible
subsets, i.e., we are in a full information setting. Moreover, we assume that
each follower has a feasible subset that does not contain any priceable items;
otherwise, the leader’s revenue is unbounded. If there are multiple followers, we
assume that items are available in unlimited supply.

stackelberg pricing
Input: A ground set E = Ef ∪ Ep, a cost function c : Ef → R, and �
followers given by families Si ⊆ 2E , for i ∈ [�].
Objective: Find prices p : Ep → R maximizing rev(p).

Note that stackelberg pricing captures the problems mentioned in the
introduction.

Matroids. Given a ground set E, a family of subsets S ⊂ 2E is a matroid if it
satisfies the following conditions:

(M1) ∅ ∈ S.
(M2) If X ⊆ Y ∈ S, then X ∈ S.
(M3) If X,Y ∈ S and |X| > |Y |, there exists x ∈ X \ Y such that Y ∪ x ∈ S.
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Matroids are a well-studied combinatorial structure (cf. [17]). The bases of
a matroid S are its inclusion-wise maximal elements. For example, the acyclic
subsets of the edges of a graph G form a matroid. It is called the graphic matroid
and its bases are the spanning forests of G.

Given weights w : E → R on the ground sets, a minimum weight basis B can
be computed using a greedy algorithm: To compute B, we (starting with B = ∅)
consider the elements of E sorted by their weights in non-decreasing order and
add an element e to B if B ∪ e ∈ S.

Stackelberg Matroid is an instance of stackelberg pricing where followers
are given by a matroid and buy a minimum weight basis. Cardinal et al. [11]
show that stackelberg pricing based on the graphic matroid is APX-hard.

Theorem 2.1 (Cardinal et al. [11]). stackelberg matroid with one fol-
lower is APX-hard.

Cardinal et al. observe that an optimal price function uses only values that
appear as fixed-costs in c. Given an instance of stackelberg matroid and a
price function p, then E = {e1, . . . , em+n} are the elements of E sorted non-
decreasingly by their weights w. If w(ej) = w(ei) where ej ∈ Ef and ei ∈ Ep,
then i < j. Hence, the optimistic follower computes his solution greedily based
on this order. If p assigns a price that is not a fixed-cost, increasing this price to
the next larger fixed-cost does not change the ordering but increases the leader’s
revenue. This observation also holds if there are multiple followers.

Lemma 2.1 (Cardinal et al. [11]). There is an optimal price function that
uses only values of the cost function c.

We close this section with some more notation. Let Ef = {g1, . . . , gm} be the
elements of Ef sorted non-decreasingly by their costs. Shorthand, we write
c(gi) = ci for the costs of gi ∈ Ef . Similarly, given a price function p, let
Ep = {h1, . . . , hn} be the elements of Ep sorted non-decreasingly by their price.
Usually, the price function is clear from the context and we write p(hi) = pi.

3 Uniform Matroid

In light of Theorem 2.1, we consider an arguably simple class of matroids, namely
uniform matroids. Given a ground set E and an integer s ≥ 1, the uniform
matroid S (of rank s) contains all subsets of E that have size at most s. Formally,

S = {U ⊆ E : |U | ≤ s}.

The bases of the uniform matroid are the subsets of size exactly s.
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Stackelberg Uniform Matroid with One Follower. Let the follower be
based on a uniform matroid of rank s. Since E has no structure, the follower
only cares about the weight of an element. Given a price function p, the follower
buys the set S∗(p) = {e1, . . . , es}.

With the next lemma we analyze the conditions when the follower buys a
fixed number a ∈ N of the priceable items, for a ≤ min{s, n}.

Lemma 3.1. Let a ≤ min{s, n}. Given a price function p, |S∗(p) ∩ Ep| = a if
and only if pa ≤ cs−a+1 and cs−a < pa+1.

Proof. First, assume that |S∗(p) ∩ Ep| = a. It follows that |S∗(p) ∩ Ef | = s − a,
gs−a+1 �∈ S∗(p), gs−a ∈ S∗(p), and that ha ∈ S∗(p). Hence, we must have that
pa ≤ cs−a+1 and cs−a < pa+1.

Now, assume that pa ≤ cs−a+1 and cs−a < pa+1. It follows that |S∗(p)∩Ep| ≥
a and that |S∗(p) ∩ Ef | ≥ s − a. Consequently, |S∗(p) ∩ Ep| = a. �

To gain maximum revenue when selling a items, the leader chooses the largest
prices that satisfy the conditions of Lemma 3.1. It follows that an optimal price
function assigns prices cs−a+1 for a many items while the prices of the remaining
items must be larger. The revenue of such a price function is a · cs−a+1, and the
maximum revenue rev∗ can be computed as follows:

rev∗ = maxa∈[min{s,n}] a · cs−a+1.

Böhnlein et al. [5] showed that constant functions are optimal for stackelberg
uniform matroid. The target values are the values of c.

Stackelberg Uniform Matroid with � ≥ 2 Followers. Each follower i is
determined by its ranks si ∈ N. Without loss of generality, s� ≤ . . . ≤ s1. For
a given price function p, follower i buys the set S∗

i (p) = {e1, . . . , esi
}. It follows

that S∗
� (p) ⊆ . . . ⊆ S∗

1 (p) and that an item e ∈ S∗
i (p) is bought by i many

followers.

Observation 1. If |S∗
i (p) ∩ Ef | = a, then the leader sells a items at least i

times. Moreover, |S∗
i (p) ∩ Ef | = a if and only if pa ≤ csi−a+1 and csi−a < pa+1.

The second part of Observation 1 follows from Lemma 3.1.
To convince ourselves that an optimal price function does not have to be

constant when there are more than one followers, we consider a small example.
Assume that there are 4 items with fixed-costs c1 = 3 and c2/3/4 = 5 as well as 4
priceable items. We have two followers of rank 1 and 4, respectively. Verify that
the constant price functions with values 3 and 5 each yield a revenue of 15. But
the price function that assigns prices (3, 5, 5, 5) yields a revenue of 16.

From the small example, we get the intuition that an optimal price function p
can have several steps (assuming a non-decreasing ordering of the function’s val-
ues). To determine these steps or equivalently the step-lengths, we use dynamic
programming. We construct an algorithm based on solving elementary cases, in
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which the leader sells a many priceable items i+1 times and a+b many priceable
items i times. The set of all price functions that satisfy these conditions is

Pi
a,b = {p : Ep → R : |S∗

i+1 ∩ Ep| = a and |S∗
i ∩ Ep| = a + b},

for a, b ∈ N. With the next lemma we characterize optimal price functions under
these conditions.

Lemma 3.2. Let i ∈ [�] and a, b ∈ N such that a + b ≤ n, a ≤ si+1 and
b ≤ si − si+1. A price function p ∈ Pi

a,b is optimal, if

pa+1 = . . . = pa+b = csi−(a+b)+1.

Proof. Let p ∈ Pi
a,b be an optimal price function. With Observation 1 we have

that pa+1 ≤ . . . ≤ pa+b ≤ csi−(a+b)+1. Suppose towards a contradiction that
pa+1 < csi−(a+b)+1. But this implies that pa+1 can be increased to csi−(a+b)+1

without changing the followers’ decision and increasing the leader’s revenue,
contradicting that p was optimal. �

For i ≤ � and a ≤ si+1, we compute recursively the maximum revenue that
the items ha+1, . . . , hn can yield under the conditions of Pi

a,b.

Definition 3.1. Let i ≤ � and a, b ∈ N such that a ≤ min{si+1, n} and b ≤
min{si − si+1, n − i}. The maximum revenue that items ha+1, . . . , hn can yield
under a price function p ∈ Pi

a,b is

λi
a,b = maxp∈Pi

a,b

∑i
k=1 rev(S

∗
k(p) \ S∗

i+1(p)).

Note that Pi
a,b can be empty, and for a sound definition max is replaced by sup.

For a practical algorithm, we define λi
a,b = −∞ in these cases. Moreover, we set

S∗
�+1 = ∅ and s�+1 = 0. The main technical feat of this section is the next lemma

which derives a recursive formula for λi
a,b.

Lemma 3.3. λi
a,b = maxθ∈[min{n−(a+b),si−1−si}] λ

i−1
a+b,θ + b · i · csi−(a+b)+1

Following Lemma 3.2, the base cases for the dynamic program (i = 1) can be
determined as follows: λ1

a,b = b · cs1−(a+b)+1. Lemma 3.3 allows us to compute
the values of λi

a,b (for i ≥ 2).

Lemma 3.4. The leader’s maximum revenue can be computed as follows:

maxp rev(p) = maxb≤min{s�,n} λ�
0,b.

The lemmas above imply an algorithm to compute the leader’s optimal rev-
enue for stackelberg uniform matroid when there are multiple followers.
The running time of the algorithm is of order O(� · n3). Hence, the main result
of this section is as follows.

Theorem 3.1. stackelberg uniform matroid with multiple followers can
be solved in polynomial time.
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4 Laminar Matroid

We continue with positive results showing that stackelberg matroid based on
laminar matroids can be solved in polynomial time if there is only one follower.

Let E be a ground set. Then, F ⊆ 2E is a laminar family if for all U, V ∈ F ,
either U ⊆ V , V ⊆ U or U ∩V = ∅. Each element of F has a capacity ϕ : F → N.
The laminar matroid S based on F and ϕ is defined as follows

S = {W ⊆ E : |W ∩ U | ≤ ϕ(U) for all U ∈ F}.

Without loss of generality, we assume that E ∈ F . In case E �∈ F , we add E to
F and set ϕ(E) = |E| without changing the matroid.

Let N,M ∈ F such that N ⊂ M . If there is no subset T ∈ F such that
N ⊂ T ⊂ M , N is a direct subset of M . Let D(M) be the set of M ’s direct
subsets. If D(M) = ∅, M is minimal. Observe that laminar families have a
hierarchical structure. We can associate a laminar family with a rooted tree
where we identify the nodes of the tree with the elements of the laminar family.
Set E is the root. The children of a node are its direct subsets and the minimal
subsets are leafs.

We say that F = {M1, . . . , Ms} is a topological order of F if for Mi ⊆ Mj it
follows that i > j. For i ∈ [s], let Fi = {Mj ∈ F : j ≥ i}. Observe that Fi is
again a laminar family on E. Moreover, we define Si to be the laminar matroid
based on Fi and ϕ|Fi

. It holds that S ⊆ Si.

Stackelberg Laminar Matroid with One Follower. We are given a ground
set E = Ef ∪ Ep. The follower is determined by a laminar matroid S based on
a laminar family F = {M1, . . . Ms} with a topological order.

To solve the pricing problem, we use a dynamic program whose structure is
based on the tree structure of F . First, we compute the optimal revenue for the
minimal elements for several configurations. For an inner node of the tree, the
optimal revenue is computed based on the configurations of its direct subsets.

Let P = {c(e) : e ∈ Ef} be the set of the fixed-costs and P∞ = P∪{−∞,∞}.
For a set M that contains priceable items, we define P[M ] = {p : M ∩ Ep → P}
to be the set of all functions that map a priceable item of M to a value of P.
According to Lemma 2.1 only the values in P are relevant prices.

Definition 4.1. Let Mi ∈ F , x ≤ ϕ(Mi) and Q−, Q+ ∈ P∞. Then ΘMi

x,Q−,Q+

is the set of all pairs (p, S) ∈ P[Mi] × 2Mi such that

T1 S ⊆ Mi and |S| = x.
T2 maxe∈S w(e) = Q−.
T3 min{w(e) : e ∈ Mi \ S and S ∪ e ∈ Si} = Q+.
T4 � ∃ e ∈ S, e′ ∈ Mi \ S such that (S \ e) ∪ e′ ∈ Si and w(e) < w(e′).

For a pair (p, S) ∈ ΘMi

x,Q−,Q+ , S is a minimal weight subset of Mi under price
function p. Set S has size x and satisfies the capacity constraint of ϕ(Mi). Q−
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is the weight of maximum weight element of S. Adding an element of Mi \ S to
S such that the capacity constraints are still met increases the weight of S by
at least Q+. Based on ΘMi

x,Q−,Q+ we define λMi

x,Q−,Q+ as follows:

Definition 4.2. Let Mi ∈ F , x ≤ ϕ(Mi) and Q−, Q+ ∈ P∞. Then

λMi

x,Q−,Q+ = max
{∑

e∈S∩Ep
p(e) : (p, S) ∈ ΘMi

x,Q−,Q+

}
.

Note that if Q+ < Q−, ΘMi

x,Q−,Q+ = ∅, and for a sound definition max is replaced
by sup. For a practical algorithm, we set λMi

x,Q−,Q+ = −∞ for these cases.
First, we show that if we indeed know all the values of λMi

x,Q−,Q+ , we can
compute the optimal revenue. Note that each basis of a matroid has the same size
and that we can compute this size by computing a basis for any price function.

Lemma 4.1. Let b be the size of a basis of S. The maximum revenue rev∗ of
the leader can be computed as follows:

rev∗ = maxQ−,Q+∈P∞ λE
b,Q−,Q+ .

Our dynamic program computes all values λMi

x,Q−,Q+ in reverse order of the
topological order. First, we derive a direct formula for the minimal elements of
F . Second, we derive a recursive formula for the non-minimal elements of F .

Minimal elements. Let Mi ∈ F be minimal, x ≤ ϕ(Mi) and p ∈ P[Mi]. We
define the set SMi

x,p to contain the x items of Mi with the smallest weight under
price function p. The priceable items are preferred in this selection.

Definition 4.3. Let Mi ∈ F be minimal, x ≤ ϕ(Mi) and p ∈ P[Mi]. Moreover,
let Q−, Q+ ∈ P∞ such that Q− < Q+. Then, JMi

x,Q−,Q+ is the set of indices
j ∈ [min{x, |Mi ∩ Ep|}] such that there is a p ∈ P[Mi] where

J1 |SMi
x,p ∩ Ep| = j.

J2 max
e∈S

Mi
x,p

w(e) = Q−.
J3 min{w(e) : e ∈ Mi \ SMi

x,p and SMi
x,p ∪ e ∈ Si} = Q+.

The set JMi

x,Q−,Q+ contains the numbers of possible priceable items among the x

minimum weight items in Mi if their maximum weight item has weight Q− and
the item in Mi with the x + 1 largest weight has weight Q+. The set JMi

x,Q−,Q+

is essential in determining λMi

x,Q−,Q+ for the minimal sets Mi.

Lemma 4.2. Let Mi ∈ F be minimal, x ≤ ϕ(Mi) and p ∈ P[Mi]. Moreover, let
Q−, Q+ ∈ P∞ such that Q− < Q+. Then,

λMi

x,Q−,Q+ =

{
max JMi

x,Q−,Q+ · Q−, JMi

x,Q−,Q+ �= ∅,

−∞, otherwise.

We show how to compute JMi

x,Q−,Q+ only in the full version of the paper. Basically,
this can be done by simple routines that inspect the fixed-cost items in Mi.
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Non-minimal elements. We show how to compute λMi

x,Q−,Q+ if Mi is not minimal.

Definition 4.4. Let Mi ∈ F such that D(M) = {N1, . . . , Ns}, x ≤ ϕ(Mi) and
Q−, Q+ ∈ P∞. Then, ΛMi

x,Q−,Q+ is the set of all tuples (x̄, Q̄−, Q̄+) ∈ [ϕ(Mi)]s ×
Ps

∞ × Ps
∞ such that

L1
∑s

j=1 x̄j = x

L2 Q− = maxj∈[s] Q̄
−
j

L3 Q+ =

{
minj∈[s] Q̄

+
j , x < ϕ(Mi),

∞, x = ϕ(Mi).
L4 maxj∈[s] Q̄

−
j ≤ minj∈[s] Q̄

+
j

Lemma 4.3. Let Mi ∈ F such that D(M) = {N1, . . . , Ns}, x ≤ ϕ(Mi) and
Q−, Q+ ∈ P∞ where Q− ≤ Q+. Then,

λMi

x,Q−,Q+ = max
{∑s

j=1 λNi

x̄j ,Q̄−
j ,Q̄+

j

: (x̄, Q̄−, Q̄+) ∈ ΛMi

x,Q−,Q+

}
.

With Lemma 4.3, we are able to compute all values of λMi

x,Q−,Q+ . First, we com-
pute the values λMi

x,Q−,Q+ for the minimal elements of F . The running time of
this step is in O(|F|(m + n)2n2). Applying the recursive formula of Lemma 4.3
involves checking all the configurations for the direct subsets. Observe that the
number of direct subsets in a laminar family can be bounded by 2: Assume
we have a laminar family F where an element M has more than 2 direct
subsets D(M) = {N1, N2, . . .}. In this case, we add N1 ∪ N2 to F and set
ϕ(N1 ∪ N2) = ϕ(N1) + ϕ(N2). Observe that F remains a laminar family. And
as such it holds that |F| ≤ 2|E| (cf. [19]). For a family where the direct subsets
of an element are at most 2, the running time of applying the recursion takes
times of order O((m + n)2 · n4). Finally, we can compute the maximum revenue
according to Lemma 4.1.

Theorem 4.1. stackelberg laminar matroid with one follower can be
solved in polynomial time.

It follows that stackelberg partition matroid with one follower can be
solved in polynomial time since laminar matroids generalize partition matroids.

5 Partition Matroid

For a ground set E, let A be a partition of E into blocks A1, . . . , As. Moreover,
there are capacities ϕ : A → N associated with each block of A. The partition
matroid S with respect to A and ϕ contains a subsets of E if its intersection
with each block is at most the block’s capacity. Formally,

S = {S ⊆ E : |Ai ∩ S| ≤ ϕ(Ai) for each i ∈ [s]}.
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In this section, we show that stackelberg partition matroid is compu-
tationally hard to solve if there are multiple followers. An instance on a ground
set E with � ≥ 2 followers is given by partition matroids S1, . . . S� (each with a
possibly different partition and capacities).

Theorem 5.1. stackelberg partition matroid with � followers is NP-hard,
for � ≥ 2.

It follows that stackelberg laminar matroid with multiple followers is also
NP-hard since partition matroids are a special case of laminar matroids.

Proof (incomplete). We consider the decision variant of stackelberg parti-
tion matroid where we need to decide if the leader can make more revenue
than a given threshold. Our reduction is from the hitting set problem which
is known to be NP-complete (cf. [14]). Here, we are given a set T , a value t ∈ N

and a family of subsets U = {U1, . . . Ur} of T . The question is if we can find a
hitting set H ⊂ T such that H ∩ U �= ∅ for all U ∈ U and |H| ≤ t.

Given an instance of hitting set, we construct an instance of stackelberg
partition matroid as follows:

– We have Ef = {g1, g2} with costs c(g1) = 1 and c(g2) = 2.
– The set of priceable items is Ep = T = {h1, . . . , hn}.

In total, there are 2 · r + n followers.

– For each i ∈ [r] there are two identical followers Fi,1 and Fi,2 with blocks
X = Ui ∪g1 and Y = E \X where the capacities are ϕ(X) = 1 and ϕ(Y ) = 0.

– For each h ∈ T there is one follower F̄h with blocks X = {h, g2} and Y = E\X
where the capacities are ϕ(X) = 1 and ϕ(Y ) = 0.

The idea of the construction is that the leader chooses a hitting set H by setting
p(h) = 1 if h ∈ H and p(h) = 2 if h �∈ H. We claim that H is indeed a hitting
set of size at most t if p yields revenue at least 2r − t+2n. The leader receives a
revenue of 1 from each of the two identical follower if for each Ui there exists an
priceable item h with p(h) = 1. To gain revenue 2 from a follower F̄h, the leader
has to set p(h) = 2.

To complete the proof, we show (in the full version of the paper) that our
stackelberg partition matroid instance admits revenue of at least 2r−t+2n
if and only if the hitting set instance has a hitting set of size at most t. �

The decision version of stackelberg partition matroid is NP-complete
since we can compute the leader’s revenue for a given price function and compare
it to a threshold. Moreover, our reduction covers several special cases. Note that
we used only two different fixed-cost values and that the partition of each follower
contains only 2 blocks.
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6 Conclusion and Future Work

We make progress towards the more general question of determining the com-
plexity of a Stackelberg pricing problem depending on the complexity of the
underlying (follower) optimization problem. With the uniform matroid we iden-
tified a case that is solvable in polynomial time if there are more than one fol-
lowers. We are not aware of another Stackelberg pricing problems of this kind.

A direction for further research is to consider the multiple followers scenario
where the items are available in limited supply. Intuitively, pricing problems
become harder in this setting (cf. [2]). Several models on how the followers
coordinate themselves can be considered. For example, there might be a fixed
order in which followers buy a subset of the available item.
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1. Bäıou, M., Barahona, F.: Stackelberg bipartite vertex cover and the preflow algo-
rithm. Algorithmica 74(3), 1174–1183 (2016)

2. Balcan, M.-F., Blum, A., Mansour, Y.: Item pricing for revenue maximization.
In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 50–59
(2008)
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