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Abstract. Suppose that two robots can move at unit speed on a line
and must visit certain points called stations infinitely often. Every station
allows some maximal waiting time between two visits. The problem is to
construct an optimal schedule for the robots. While the one-robot prob-
lem is easy to solve in linear time, already for two robots the complexity
is open. Chuangpishit, Czyzowicz, Gasieniec, Georgiou, Jurdzinski, and
Kranakis (SOFSEM 2018) found a

√
3-approximation algorithm. Here we

provide a PTAS, accomplished by rounding and (perhaps more surpris-
ingly) by using the well-quasi ordering of vectors of positive integers. The
result is not very practical in the present form, but further investigation
of the integer version may make it more usable.
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1 Introduction

Patrolling problems where mobile robots must visit certain points at least with
prescribed frequencies are interesting for monitoring and maintenance. Various
cases and aspects have been studied: environments with different topologies,
unreliable robots, with equal and different speeds, etc. [3–6]. See also a recent
survey in [2]. Pinwheel scheduling [8,10,12] is also a special case of patrolling
where all points have equal pairwise distances. More recently, patrolling problems
received new attention by observing that different individual frequencies make
them difficult, even on the simplest topologies [1,9].

The problem called PUF (patrolling with unbalanced frequencies) in [1] is
the following (with somewhat changed notation): n stations are deployed at fixed
points si (i = 1, . . . , n) on the real line L. For every station i, a duration ti > 0 is
also specified. Two identical robots move on L, at some given maximum speed.
We say that station i is visited at some moment if at least one robot is at si.
The problem is to construct a schedule, i.e., a pair of trajectories of two robots
such that, during an unlimited period of time, every station i gets repeatedly
visited, and the time between two consecutive visits never exceeds ti. (But it
does not matter which robots visit the station.) Of course, the same problem
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may be defined for any number of robots and for other topologies. Unless said
otherwise, in the present paper PUF refers to the case of two robots on a line.

For any number c ≥ 1, an instance of PUF is called c-feasible if it has a
c-feasible schedule, i.e., for every i, the time between two consecutive visits of
station i never exceeds cti. A 1-feasible instance or solution is simply called
feasible. One may also view PUF as an optimization problem with the goal
to find a schedule with minimum c. A c-approximation algorithm is one that
outputs a c-feasible schedule when a feasible schedule exists.

While PUF for one robot on a line is easy to solve in O(n) time, PUF becomes
surprisingly difficult already for two robots: Only a

√
3-approximation is achieved

in [1]. To our best knowledge, this is the state-of-the-art polynomial-time approx-
imation, and the complexity status of PUF is open (both for deciding existence
of feasible solutions and minimizing the times). It is far from obvious how one
should divide the visits of certain stations among the two robots.

Overview. In Sect. 2 we introduce the integer version called IntPUF, with m+1
stations at points 0, . . . , m, and the notion of instance vectors that encode the
instances. Since fixed-length vectors of positive integers are well-quasi ordered
(WQO), only finitely many minimal feasible vectors exist for any fixed m. Using
this fact plus some elementary graph theory, we can solve IntPUF in a time
depending on m only, but not on the ti. (However, the time as a function of m
remains open.) In Sect. 3 we switch from m to the parameter k := mini ti. The
reason is that IntPUF can be approximated with a ratio arbitrarily close to 1,
in a time depending on k only: If k/m is small, this is simple, and otherwise the
result of Sect. 2 is applied. This insight is used to construct a PTAS in Sect. 4,
where k is a discretization parameter. As far as we know, this might be the first
example of using WQO in a PTAS. Next, rounding of the si and ti to integers
causes yet another approximation error. (The issue is that a station shifted to
the next integer point can escape a turning point of a robot’s trajectory.) Larger
k yield better approximations but also higher time complexity. We remark that
several ideas on the way, especially the WQO argument, can be generalized to
more robots and to other topologies, but we keep the focus on two robots on a
line.

2 The Integer Version of PUF

We introduce a variant of PUF that we name IntPUF. We define it precisely as
PUF (see Sect. 1) but with the following additional demands:

– All si and ti are integer (and ti > 0).
– Every robot is, at any time, in one of two possible modes: either it stays at

some point with integer coordinate or it moves at unit speed.
– Every robot can change its speed or its moving direction only at integer times

and at integer points.

We remark that PUF allows real values, and this might lead to subtle effects
for irrational numbers. Thus, algorithms for IntPUF may not completely solve
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PUF. However, we have not further considered such questions. Note that, in
practice, input numbers are usually rational.

Lemma 1. Let r and s be real numbers and t an integer, with 0 ≤ s − r ≤ t.
Then 0 ≤ �s� − �r� ≤ t.

Proof. Non-negativity is obvious. To see �s� − �r� ≤ t, we write the numbers as
r = �r� + r′ and s = �s� + s′, Observe that �s� − �r� = (s − s′) − (r − r′) =
(s − r) + (r′ − s′). If r′ ≤ s′ then s − r ≤ t yields the assertion. If r′ > s′ then
(�s� + s′) − (�r� + r′) ≤ t implies that still (�s� + s′) − (�r� + s′) ≤ t, since t is
integer and r′ − s′ < 1. Again the assertion follows. ��
Theorem 1. Every feasible instance of PUF, where all si and ti are integers,
is also a feasible instance of IntPUF, and vice versa.

Proof. As the converse is trivial, we only need to consider a feasible solution
to an instance of PUF, and transform it into a feasible solution, for the same
numbers si and ti, that enjoys the additional properties of an IntPUF solution.

Whenever a robot leaves a station i and moves back to i without visiting
another station, it can just stay at station i. Whenever a robot moves from a
station i to a neighboring station j, it can just move first at unit speed and then
stay at station j for the remaining time.

Now we can partition the trajectory of each robot into 0-epochs and 1-epochs
where the robot has speed 0 and 1, respectively. During a 1-epoch, a robot may
change its moving direction at stations.

Let t be the start time of any 1-epoch. If t is not integer, we let the epoch
start already at time �t�. That is, we move the entire 1-epoch back in time by
t−�t� time units. Because of the unit speed, every arrival and departure time of
the robot at any station during the whole 1-epoch is rounded to the next smaller
integer, too. This modification is done for all 1-epochs independently.

Applying Lemma 1 to the arrival and departure times at any station i we
see that the solution remains valid (i.e., no robot departs before it arrives), and
some waiting times between consecutive visits may increase, but they does not
exceed the given integer bound ti. ��

For formal reasons we assume from now on that we have m + 1 stations,
at the integer points 0, 1, . . . ,m. That is, si simply becomes i. If there is no
station at point i, we formally set ti := ∞, however, t0 and tm are finite. Thus
an instance of IntPUF is characterized by an instance vector t = (t0, . . . , tm)
whose m + 1 entries are positive integers or ∞ symbols. We may use the terms
instance vector and instance interchangeably.

Two instance vectors x = (x0, . . . , xm) and y = (y0, . . . , ym) are in relation
x ≤ y if xi ≤ yi for all i. We then say that x is smaller than y, and y is
larger than x, in the non-strict sense. We call x strictly smaller than y, and
y strictly larger than x, if x ≤ y but x 
= y. Trivially, if x ≤ y and x is
feasible, then y is feasible, too. We call a feasible instance vector with only finite
entries a minimal feasible vector if no strictly smaller vector is feasible. These
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concepts can be defined in literally the same way for IntPUF with one robot.
The following theorem is merely the known solution to the one-robot case [1]
adapted to IntPUF. A zigzag route between two points i and j is a trajectory
that perpetually goes from i to j and back, at unit speed.

Theorem 2. [1] The only minimal feasible instance vector of IntPUF with one
robot is given by ti = max{2i, 2(m − i)} for all i. Moreover, if an instance is
feasible, then a zigzag route between 0 and m is a feasible (and optimal) solution.

Proof. The robot must sometimes visit point 0, say at time t. Then the last
visit of point i was at time t − i or earlier, and the next visit of point i will
be at time t + i time or later. Hence ti ≥ 2i is necessary for feasibility. By
symmetry we also get ti ≥ 2(m − i). Conversely, in the mentioned zigzag route,
the maximum waiting time between two consecutive visits of any point i equals
max{2i, 2(m − i)}. ��

We denote the vector in Theorem 2 by F (m). This means: F (1) = (2, 2),
F (2) = (4, 2, 4), F (3) = (6, 4, 4, 6), F (4) = (8, 6, 4, 6, 8), F (5) = (10, 8, 6, 6, 8, 10),
and so on. Characterizing the minimal feasible vectors for IntPUF with two
robots appears to be far more complicated. However, suppose for the moment
that, for some fixed size m, we know the list of all these minimal feasible vectors,
along with a feasible solution for each of them. In fact, this list is finite, as a
consequence of the famous Dickson’s lemma, as explained below.

Vectors x and y are incomparable if neither x ≤ y nor y ≤ x. Dickson’s lemma
(attributed to Dickson due to some result in [7]) states that every set of pairwise
incomparable vectors of some fixed length (an antichain), with positive integers
as entries, is finite. In other words, these vectors form a well-quasi ordering
(WQO). Dickson’s lemma has later been generalized, leading to a rich theory of
WQO; see [11] for a historical note.

We could now solve any instance of IntPUF of a fixed size m as follows. First
check whether there exists a solution where the two robots move in disjoint
intervals [0, v] and [u,m], where v < u. For every fixed u and v, these are just
two independent instances of the one-robot problem solved in Theorem 2. Even
a naive implementation takes only O(m3) time. In all other cases, the intervals
visited by the two robots intersect in some nonempty shared interval [u, v], u ≤ v.
Note that every solution with a shared interval visits all i ∈ [0,m]. Hence, every
instance vector t that admits a solution with a shared interval is larger than
some feasible instance vector t′ where all entries are finite, and trivially, t′ is
larger than some minimal feasible vector t′′. Thus it remains to check for the
given instance vector t and every minimal feasible vector t′′ whether t ≥ t′′, and
in the positive case, take a solution for t′′.

Not only the list of minimal partial solutions t = (t0, . . . , tm) is finite, but
each of them also has a solution with a finite description. The argument is as
follows. Let us describe the situation at any integer time by the state vector
p = (p0, . . . , pm), where pi < ti is the (integer) time that has passed since the
last visit of i. Note that there is some robot at i if and only if pi = 0. Since all
ti are finite, the number of state vectors is finite, too. Define the state graph of
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t as the directed graph where the vertices are the state vectors, and a directed
edge from p to q indicates that q is reachable from p in one time unit. The
possible solutions to t are exactly the infinite directed paths in the state graph.
But since the graph is finite, every solution contains some simple directed cycle
(i.e., without repeated vertices). Conversely, every simple directed cycle is a
solution. Thus we can choose any simple directed cycle, and such a solution is
periodic. (A remark is that these matters are not so clear for PUF, as irrational
numbers might have bizarre effects.) We have arrived at the following result,
where we presume that arithmetic operations with integers, e.g., comparisons,
cost constant time:

Lemma 2. For any fixed m, once we know all minimal feasible instance vectors,
we can solve every instance of IntPUF on [0,m] in constant time. Moreover,
every feasible instance admits a periodic solution, with a period bounded by some
constant. (That is, time and period length are bounded by functions of m only.)

We may effectively solve any instance t = (t0, . . . , tm) also in the following
way: Construct the state graph from t and find a simple directed cycle, or recog-
nize that t is not feasible otherwise. However, the size of the state graph depends
on t. Therefore, Lemma 2 that moves some work to a preprocessing phase is a
step of progress. (As a side remark, also in a logarithmic cost model, comparing
t against a fixed finite list is much faster than using the state graph.) It remains
the question whether we can construct the list of all minimal feasible instances
effectively. The WQO argument yields only its finiteness, but in fact, we can
provide an effective algorithm. However, we will not care about its running time
as a function of m, which is a separate (and apparently difficult) matter.

Lemma 3. There exists an algorithm that effectively constructs all minimal fea-
sible instance vectors for any given m, along with some periodic solution for each
of them, in a time that depends on m only.

Proof. Trivially, some minimal feasible vector exists, and since there are only
finitely many of them, there is some finite upper bound on all entries in them.
Thus, if we try all vectors (t, . . . , t) for t = 0, 1, 2, . . ., we will eventually find
some feasible vector t. Recall that every fixed vector can be tested for feasibility
via its state graph. We test all vectors being smaller than our t, thus identifying
at least one minimal feasible vector. But we cannot stop here, as there may exist
further minimal feasible vectors being incomparable to t.

Next, assume that we have some nonempty set M of minimal feasible vectors,
and we want to decide whether we have already found them all. Assume that
u = (u0, . . . , um) /∈ M is some further, yet unknown minimal feasible vector.
Then, for every t = (t0, . . . , tm) ∈ M there must exist some i with ui < ti. This
observation suggests the following procedure: For every t ∈ M we select some i
and set vi := ti − 1. If the same i is selected several times, we take the minimum
of these vi. If i is never selected, we set vi := ∞. There exist only finitely many
such selections, generating finitely many different vectors v = (v0, . . . , vm). Now,
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every minimal feasible vector u ∈ M has the following property: There exists
some v such that ui ≤ vi holds for all i.

It remains to test for every vector v whether it has a feasible solution such
that the waiting times of all stations i with finite vi are actually bounded by
these vi, and the waiting times of all stations i with infinite vi are bounded by
some finite (but unspecified) integers. (Note carefully that the latter condition
is also needed to obtain some minimal feasible vector smaller than v; it is not
enough to demand and test feasibility of v, because this entails no condition on
the points with vi = ∞.) More compactly, the property to be tested is that v is
larger than some feasible vector with only finite entries.

Therefore, we proceed similarly as earlier in the feasibility test for vectors
with only finite entries, but we must generalize our notion of state graph; see the
details below. If we find such a solution to some v, we also examine all smaller
vectors and obtain a new minimal feasible vector that we add to M . If no vector
v has such a solution, we know that M was already complete.

Now we give the details of testing a vector v. We define a state by the passed
times pi < vi for all i with finite vi, and by the positions of the two robots. (The
passed times for points i with vi = ∞ are not recorded, and the robots’ positions
are now given explicitly.) As earlier, a directed edge from one state to another
one indicates reachability in one time unit. As seen above, every instance that
admits a solution, with finite bounds on the waiting times of all stations i, also
has a solution with a finite period. In our generalized state graph, such periodic
solutions correspond exactly to directed cycles C (not necessarily simple!) such
that every i appears as a robot position on some vertex of C.

Let Vi denote the set of states where some robot is visiting i. Then, deciding
the existence of a periodic solution boils down to the following graph problem:
Given a directed graph and a family of subsets Vi of vertices, find some directed
cycle that intersects every Vi. However, this is an easy problem: Such a cycle
exists if and only if some strongly connected component of the graph intersects
all Vi. The “only if” direction holds because every directed cycle is entirely
in some strongly connected component, The “if” direction holds because we
can freely navigate in a strongly connected component, and thus connect some
vertices from every Vi to some directed cycle. In conclusion, we only need to
compute the strongly connected components of the generalized state graph and
check their intersections with all Vi. ��

From Lemma 2 and 3 it follows:

Theorem 3. There exists an algorithm solving IntPUF in a time that depends
on m only. Moreover, every feasible instance admits a periodic solution, with a
period bounded by some function of m.

3 Short Waiting Times

The presence of some station j with a small tj drastically restricts the robots’
possible movements, as we will discuss now. Fix some j and define h := �tj/2�,
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that is, tj = 2h or tj = 2h + 1. Also define the interval J := [j − h, j + h]. At
any integer time, some robot must be present in J . (Otherwise, the last visit of
j was more than h time units ago, and the next visit will be more than h time
units from now, such that j would have to wait at least 2h + 2 > tj time units
between two visits.) In other words, at any integer time, at most one robot can
be outside J . We call it the outer robot, whereas the robot in J is called the
inner robot. When both robots are in J , the assignment of these two roles is
arbitrary, and we can swap the roles of the two robots if we want or need.

Suppose furthermore that 0 /∈ J and m /∈ J . Since the outer robot must
repeatedly visit stations on both sides of J , it must repeatedly cross J in both
directions. In the best case, the outer robot needs one time unit to skip J . In
detail: At time t, the outer robot is at point j − h − 1, and at time t + 1, the
outer robot (actually now the other one) is at point j + h + 1, or vice versa.
It is equivalent to say that, even in this best case, the outer robot must solve
the one-robot instance (t0, . . . , tj−h−1, tj+h+1, . . . , tm) obtained by cutting out
J . Now Theorem 2 implies that this vector must be larger than F (m − 2h − 1).
If m ∈ J (or similarly, if 0 ∈ J), we have (t0, . . . , tj−h−1) ≥ F (j − h − 1) by a
simpler argument: only the outer robot can visit the stations to the left of J .

We are ready to solve another special case of IntPUF to optimality:

Theorem 4. For every m and j there exists exactly one minimal feasible vector
with tj = 1, which is F (m − 1) with a 1 inserted after the first j entries.

Proof. If t0 = 1 then the inner robot must stay at point 0 all the time, while
the outer robot must solve the one-robot instance (t1, . . . , tm), and the assertion
follows from Theorem 2. The argument for tm = 1 is similar. If tj = 1 for some j
with 0 < j < m, we have the lower bound (t0, . . . , tj−1, tj+1, . . . , tm) ≥ F (m−1)
for every feasible vector, as shown above. To show that the claimed vector is
feasible, note that the outer robot can zigzag between 0 and m and always skip
J = {j} in only one time unit. Now the maximal waiting time of every station
outside J is equal to the corresponding entry of F (m − 1). Hence, together with
tj = 1, these integers form a feasible vector matching the lower bound. ��

Similarly it should be possible to characterize the minimal feasible vectors
with some tj = k also for any fixed k > 1, but it turns out that we run into
many case distinctions regarding the times needed to skip J and the lengths of
the outer robot’s trajectories. However, the above observations still lead to the
approximation result below. (Note that we assume that the instance is already
given in “compact” form, as the list of all n finite values ti.)

Theorem 5. There exists an algorithm for IntPUF which, for every feasible
instance with n ≤ m + 1 stations (with finite ti) and with k = mini ti ≤ m/4,
outputs some (1 + O(k/m))-feasible solution in O(n) time.

Proof. Fix some j with tj = k, and define h := �k/2� and J := [j − h, j + h] as
before (even in the case when 0 ∈ J or m ∈ J). As we have seen, the instance
vector after cutting out J must be feasible for one robot. With Theorem 2 we
get ti ≥ m − k for all i /∈ J .
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Let m′ denote the distance between J and the farthest station (either 0 or
m), that means, m′ := max{j − h,m − (j + h)}. Note that m′ ≥ (m − k)/2.
Since the outer robot must visit this farthest station sometimes, the outer robot
cannot be in J during some time interval I of duration at least 2m′.

Next, let J ′ be the set of all i ∈ J with ti ≤ 2m′ − 2k. Since 4k ≤ m, we
have 3k ≤ m − k ≤ 2m′, hence tj = k ≤ 2m′ − 2k, thus j ∈ J ′, that is, J ′ 
= ∅.
Let u and v be the leftmost and rightmost point, respectively, in J ′. Finally, we
define I ′ to be the time interval I truncated by k time units at both ends.

Since the length of I ′ is at least 2m′ − 2k, the inner robot must visit every
station in J ′ at least once during I ′. In particular, it must visit u during I ′.
Now assume for some i ∈ J ′ that ti < 2(i − u). For the inner robot it is then
impossible to visit i before u and again after u, within ti time units. Since
i − u ≤ 2h ≤ k, the two mentioned visits of i must still happen during I. But
since the outer robot is not in J during I, it cannot do any of these visits either.
This contradiction to feasibility shows ti ≥ 2(i − u) for all i ∈ J ′. Similarly we
can prove ti ≥ 2(v − i) for all i ∈ J ′. Hence, if we simply let the inner robot
zigzag in [u, v], it visits all stations in J ′ frequently enough.

Our solution is now: Let the inner and outer robot zigzag in [u, v] and [0,m],
respectively. It remains to analyze the waiting times of stations outside J ′.

Consider any station i /∈ J . Since the instance vector after cutting out J is
feasible for one robot, the outer robot would always return to i within ti time
units if it could skip J . But in reality it may need 2k additional time units
to traverse J twice. Since ti ≥ m − k, the waiting time is at most ti + 2k =
(1 + 2k/ti)ti ≤ (1 + 2k/(m − k))ti.

Consider any station i ∈ J \ J ′. By definition we have ti > 2m′ − 2k. Also
remember that 2m′ ≥ m − k. The outer robot returns to i in a time at most
2m′ + 2k = (2m′ − 2k) + 4k < ti + 4k = (1 + 4k/ti)ti < (1 + 4k/(2m′ − 2k))ti <
(1 + 4k/(m − 3k))ti.

Altogether, the solution is (1 + O(k/m))-feasible. The time O(n) is obvious:
We must only find the smallest ti and construct J ′ for determining u and v. ��

For notational convenience we have formulated Theorem 5 for IntPUF, but
the proof does not really use integrality, hence we also have immediately:

Theorem 6. There exists an algorithm for PUF which, for every feasible
instance with n stations, distance m between the outermost stations, and k =
mini ti ≤ m/4, outputs some (1 + O(k/m))-feasible solution in O(n) time.

4 Rounding the Coordinates

A natural idea for solving PUF approximately is now to round all si and ti to
integers and apply the results for IntPUF. Given an instance P of PUF and
an integer parameter k, we scale the time axis such that k = mini ti. In other
words, mini ti/k becomes the unit of time. The length unit on the line L is chosen
such that the given maximum speed of robots is the unit speed. This setting is
assumed throughout this section.
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Before we discuss rounding, we study more generally what happens if the
stations are slightly shifted. Let Q be an instance of PUF, obtained from P by
moving every station by less than half the length unit. That is, n and the ti are
preserved, but the stations in Q are at points s′

i where |s′
i − si| ≤ 1/2 for all i.

Let S be any feasible solution to the instance P . In general, S is not feasible
for Q: Besides small delays we may even completely miss some visits, since a
robot’s trajectory may change its direction at some station, but the station may
have been moved away from the turning point. Therefore we would like to modify
S so as to construct a solution that is c-feasible for Q, with some “small” c > 1.
We will modify the two robot trajectories independently, that is, in the following
we only consider the trajectory of any single robot.

Lemma 4. Let I be any time interval of duration r, let J ⊂ L be any interval
of length at most r/2, and let a, b ∈ J be any points therein. Then a robot can
move during I such that its trajectory starts in a, ends in b, and visits all of J .

Proof. Assume that a ≤ b. (The other case is symmetric.) We simply travel from
a to the left end of J , then to the right end of J , and finally to b. Obviously, the
robot can manage this in at most 2(r/2) = r time units. ��

Some more special definitions will be needed; note that they refer to real (not
integer) intervals: For a given time interval I, let J(I) ⊂ L denote the interval of
points visited by the considered robot during I. For any interval J = [u, v] ⊂ L
we define J+ := [u − 1/2, v + 1/2]. In the following we temporarily allow robots
to be faster than the unit speed.

Lemma 5. Let I be a time interval of duration r, J ⊂ L an interval of length
at least (r − 2)/2, and a, b ∈ J . Assume that a robot can move such that its
trajectory during I starts in a, ends in b, and visits all of J . Then there also
exists a trajectory during I that starts in a, ends in b, visits all of J+, and has
a speed at most 1 + 4/(r − 4).

Proof. Let u and v be the ends of J , that is, J = [u, v], and let T be the assumed
trajectory. Since T visits all of J , it must contain a sub-trajectory T2 going from
u to v (or vice versa, but this case is symmetric). Hence we can partition T into
three sub-trajectories: T1 going from a to u, T2 going from u to v, and T3 going
from v to b. Note that T1 and T3 may be empty, if a = u and v = b, respectively.

We modify T as follows. Immediately after T1 we insert a piece going from u
to u − 1/2 in 1/2 time units, and immediately before T3 we insert a piece going
from v+1/2 to v in 1/2 time units. Finally we adjust T2 such that (i) it goes from
u − 1/2 to v + 1/2 (to connect to the extended T1 and T3) and (ii) it needs one
time unit less (to be used for the additional 1/2+1/2 time units). We achieve (i)
by stretching T2 parallel to L, and we achieve (ii) by shrinking T2 parallel to the
time axis. Since J has a length at least (r−2)/2, the robot following the original
T2 has to travel a distance at least (r − 2)/2, and it also needs at least (r − 2)/2
time units. Travelling one length unit more in one time unit less increases the
speed by a factor at most ((r − 2)/2 + 1)/((r − 2)/2 − 1) = 1 + 4/(r − 4). ��
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Lemma 6. Let P be an instance of PUF specified by si and ti (i = 1, . . . , n),
and let Q be an instance of PUF with the same size n and the same durations ti
but with station positions s′

i such that |s′
i − si| ≤ 1/2 for all i. If P is c-feasible,

then Q is (1 + 4
√

2/
√

k + O(1/k))c-feasible.

Proof. We partition the time axis into intervals of some length r that we fix
later. Consider any time interval I in this partitioning, and the trajectory T of
either one of the robots, in some feasible solution to P .

If the length of J(I) is at most (r −2)/2, then the length of J(I)+ is at most
r/2. In this case we apply Lemma 4 with J := J(I)+. If J(I) is longer than
(r − 2)/2, then we apply Lemma 5 with J := J(I). Due to the Lemmas, in both
cases we can replace the sub-path of the given trajectory T during I with a path
that begins and ends in the same points as in T , but visits all of J(I)+. However,
in the second case we increase the speed by a factor up to 1 + 4/(r − 4).

We do the described change independently in all intervals I of our partition-
ing, and we observe: (i) Since the robot’s positions at the start and end moments
of these time intervals have not changed, the modified trajectories form together
a new trajectory T ′ overall. (ii) If T visits a station i during some time interval
I of the partitioning, then si ∈ J(I), hence s′

i ∈ J(I)+, hence also T ′ visits the
station i during I. Moreover, since I has duration r, this visit is by at most r
time units earlier or later than in T .

The described changes are done independently for both robots. From the
above property (ii) it follows that the waiting time between two consecutive
visits of any station i increases by 2r time units in the worst case. Remembering
that k = mini ti and c ≥ 1, this implies that the waiting time is always at most
(1+2r/k)cti. In other words, the modified solution would have been (1+2r/k)c-
feasible if it had respected the speed limit.

In order to get unit speed again, we finally stretch the trajectories along the
time axis by a factor 1+4/(r −4). This yields a valid (1+2r/k)(1+4/(r −4))c-
feasible solution. Choosing r :=

√
2k + 4 gives the assertion. ��

Now we can describe an algorithm to solve any feasible instance P of PUF
approximately. Note that it is not known in advance whether P is feasible; we
must discuss this point later, as well as the choice of parameter k:

We decide on an integer k and choose time and length unit such that k =
mini ti and the robots have unit speed, as already explained. Recall that m
denotes the distance of the outermost stations.

In the following we distinguish two cases regarding k and m. The exact cut-off
point is not that important, but we must decide on some suitable one.

If m > 4k
√

k, then we run the algorithm from Theorem 6 to solve P
approximately. (Note that its prerequisites are satisfied here.) It yields some
(1 + O(k/m))-feasible solution, hence some (1 + O(1/

√
k))-feasible solution to

P , in O(n) time.
If m ≤ 4k

√
k, then we proceed as follows. We round every si to the closest

integer. Ties are broken arbitrarily if si is an integer plus 1/2. If several stations
i end up on the same point, we only keep one of these stations with the smallest
ti and “mask” the others.



Two Robots Patrolling on a Line: Integer Version and Approximability 221

Due to Lemma 6, the obtained instance Q is c-feasible, for some c = 1 +
O(1/

√
k). Next we replace every ti with t′i := �cti�. The obtained instance R

is feasible, and by Theorem 1, R is also a feasible instance of IntPUF. Defining
k′ := mini t′i we also note that k′ = Θ(k).

We run the algorithm from Theorem 3 to solve R exactly, in a time that
depends on m only, and thus on k only. The computed feasible solution to R,
which we denote S, is (1 + O(1/

√
k))-feasible for Q.

Finally we move all stations i (also the masked ones) back to their original
positions si and apply Lemma 6 again in the opposite direction, to translate S
into a solution to P . Since (1 + O(1/

√
k))2 = 1 + O(1/

√
k), this solution to P is

(1 + O(1/
√

k))-feasible, too.
It is crucial that this last step can be done effectively. By Theorem 3, we can

always take a periodic solution S, with a period bounded by some function of
m. Furthermore, the proof of Lemma 6 does not only show the existence of a
(1+O(1/

√
k))-feasible solution but also describes a construction of this solution

from the given one (here: from S). The approximation ratio 1+O(k/m) remains
true if we choose r := �√2k + 4� (to have an integer value r). Then it suffices
to modify the trajectories on some time interval of finite duration (the least
common multiple of r and the period of S) and then to repeat this solution
infinitely on the time axis. That is, our approximate solution to P is periodic,
too. For any desired ε > 0 we may choose k = Θ(1/ε2) with some suitable
constant factor. Altogether this shows:

Theorem 7. There exists an algorithm that outputs, for any feasible instance of
PUF with n stations and for any prescribed ε > 0, some (1+ε)-feasible solution,
in time O(max{n, g(ε)}), where g is some function that depends on ε only.

One can trivially check afterwards whether a solution is (1+ε)-feasible. If the
algorithm failed to find such a solution, we know that the given instance P was
not feasible. In that case we consider instances Pc obtained from P by replacing
all ti with cti. We may choose any factor c > 1 and apply the same algorithm
to Pc. Either we get a (1 + ε)-feasible solution to Pc, or c was too small. Once
our c is within a factor 1 + ε of the minimal c∗ that makes Pc∗ feasible, we get
a (1 + O(ε))-approximate solution to P .

It remains to find such a near-optimal c efficiently. Trivially, Pc is feasible
when c = 2m/k. Hence, if k/m = Ω(ε), then O(log(1/ε)) steps of binary search
are enough. The case of smaller k/m is more peculiar, but the concepts of Sect. 3
enable us to first find some c within a constant factor of c∗ without binary
search, in O(n) time: Let Jc be the interval of length ck, having some station
with minimum ti in the center. As we have seen in Sect. 3, Pc is feasible only
if the instance Pc after cutting out Jc is feasible for one robot. A necessary
condition is that cti ≥ m − ck for all i /∈ Jc. Hence we can pick any i /∈ Jc with
cti < m − ck and raise c until either cti ≥ m − ck or i ∈ Jc. (Calculation details
are straightforward.) As c only grows in this process, we successively get rid of
all stations i /∈ Jc with a too small cti. For the final value c′ we have that no
instance Pc′−δ, δ > 0, is feasible, hence c∗ ≥ c′. Assume that still c′k/m = O(ε);
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otherwise we have already reached the former case. Furthermore, ti ≥ k holds
for all i by definition. In particular, c′ti ≥ c′k holds for all i ∈ Jc′ . Hence, if we
generously set c := 3c′ and let the robots zigzag in [0,m] and Jc′ , respectively,
we obtain a feasible solution to our current Pc. It follows 1 ≤ c/c∗ ≤ 3. Now we
have also overcome the restriction that P must be feasible, and we arrive at:

Theorem 8. PUF admits a polynomial-time approximation scheme.

Concluding Remarks. Our PTAS is not yet practical. We have not bounded
the time as a function of 1/ε, and large k may be needed to beat the known√

3-approximation [1]. However, we believe that our approach paves the way.
To achieve practicality, we must efficiently solve IntPUF instances up to certain
values of k and m, using the structure of cycles in the state graph. That is, we
need an efficient version of the algorithm from Lemma 3.
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