
Iterated Type Partitions

Gennaro Cordasco1(B), Luisa Gargano2, and Adele A. Rescigno2

1 University of Campania “L.Vanvitelli”, Caserta, Italy
gennaro.cordasco@unicampania.it

2 University of Salerno, Fisciano, Italy

Abstract. This paper introduces a novel parameter, called iterated
type partition, that can be computed in polynomial time and nicely
places between modular-width and neighborhood diversity. We prove
that the Equitable Coloring problem is W[1]-hard when parametrized
by the iterated type partition. This result extends to modular-width,
answering an open question on the complexity of Equitable Coloring
when parametrized by modular-width. On the contrary, we show that
the Equitable Coloring problem is FPT when parameterized by neigh-
borhood diversity. Furthermore, we present a scheme for devising FPT
algorithms parameterized by iterated type partition, which enables us to
find optimal solutions for several graph problems. While the considered
problems are already known to be FPT with respect to modular-width,
the novel algorithms are both simpler and more efficient. As an example,
in this paper, we give an algorithm for the Dominating Set problem that
outputs an optimal set in time O(2t + poly(n)), where n and t are the
size and the iterated type partition of the input graph, respectively.

Keywords: Parameterized complexity · Fixed-parameter tractable
algorithms · W[1]-hardness · Neighborhood diversity · Modular-width

1 Introduction

Some NP-hard problems can be solved by algorithms that are exponential only
in the size of a parameter while they are polynomial in the size of the input. Such
problems are called fixed-parameter tractable, because the problem can be solved
efficiently for small values of the parameter [10,33]. Formally, a parameterized
problem with input size n and parameter t is called fixed parameter tractable
(FPT) if it can be solved in time f(t) ·nc, where f is a computable function only
depending on t and c is a constant.

An important quality of a parameter is that it is easy to compute. Unfor-
tunately there are several parameters whose computation is an NP-hard prob-
lem. As an example computing treewidth, rankwidth, and vertex cover are all
NP-hard problems but they are computable in FPT time when their respective
parameters are bounded; moreover, the parameterized complexity of computing
the clique-width of a graph exactly is still an open problem [11].

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 195–210, 2020.
https://doi.org/10.1007/978-3-030-48966-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_15

196 G. Cordasco et al.

We start from two recently introduced parameters: modular-width [22]
and neighborhood diversity [31]. Both parameters received much attention
[1,2,5,7,12,17,18,21,24,25,29] also due to their property of being computable
in polynomial time [22,31].

As the main contribution of this paper we introduce a novel parameter called
Iterated Type Partition, which nicely places between the two above parameters
and allows to obtain new algorithms and hardness results.

1.1 Modular-Width

The notion of modular decomposition of graphs was introduced by Gallai in [23],
as a tool to define hierarchical decompositions of graphs. It has been recently
considered in [22] to define the modular-width parameter in the area of param-
eterized computation.

Consider graphs obtainable by an algebraic expression that uses the opera-
tions:

1) Creation of an isolated vertex.
2) Disjoint union of 2 graphs, i.e., the graph with vertex set V (G1) ∪ V (G2)

and edge set E(G1) ∪ E(G2).
3) Complete join of 2 graphs, i.e., the graph with vertex set V (G1)∪V (G2) and

edge set E(G1) ∪ E(G2) ∪ {(v, w) : v ∈ V (G1), w ∈ V (G2)}.
4) Substitution operation G(G1, . . . , Gm) of the vertices v1, . . . , vm of G by the

modules G1, . . . , Gm, i.e., the graph with vertex set
⋃

1≤�≤m V (G�) and edge
set

⋃

1≤�≤m

E(G�) ∪ {(u, v) : u ∈ V (Gi), v ∈ V (Gj), (vi, vj) ∈ E(G)}.

As defined in [22], the modular-width of a graph G, denoted mw(G), is the least
integer m such that G can be obtained by using only the operations 1)–4) (in
any number and order) and where each operation 4) has at most m modules.

1.2 Neighborhood Diversity

Given a graph G = (V,E), two nodes u, v ∈ V have the same type iff N(v)\{u} =
N(u) \ {v}. The neighborhood diversity of a graph G, introduced by Lampis in
[31] and denoted by nd(G), is the minimum number t of sets in a partition
V1, V2, . . . , Vt, of the node set V , such that all the nodes in Vi have the same
type, for i ∈ [t]1.
The family V = {V1, V2, . . . , Vt} is called the type partition of G.

Let G = (V,E) be a graph with type partition V = {V1, V2, . . . , Vt}. By
definition, each Vi induces either a clique or an independent set in G. We treat
singleton sets in the type partition as cliques. For each Vi, Vj ∈ V, we get that

1 For a positive integer n, we use [n] to denote the set of the first n integers, that is
[n] = {1, 2, . . . , n}.

Iterated Type Partitions 197

Fig. 1. A graph G with iterated type partition 5 and its corresponding type graph
sequence: G = H(0), H(1), H(2). Dashed circles group nodes having the same type.

either each node in Vi is a neighbor of each node in Vj or no node in Vi has a
neighbor in Vj . Hence, between each pair Vi, Vj ∈ V, there is either a complete
bipartite graph or no edges at all.

Starting from a graph G and its type partition V = {V1, . . . , Vt}, we can see
each element of V as a metavertex of a new graph H, called the type graph of G,
with

– V (H) = {1, 2, · · · , t}
– E(H) = {(x, y) | x �= y and for each u ∈ Vx, v ∈ Vy it holds that (u, v) ∈

E(G)}.

We say that G is a base graph if it matches its type graph, that is, the type
partition of G consists of singletons, each representing a node in V (G), and
nd(G) = |V (G)|.

We introduce a new graph parameter, which generalizes neighborhood diver-
sity. Given a graph G, the Iterated Type Partition of G is defined by iteratively
constructing type graphs until a base graph is obtained. It is worth mentioning
that our base graphs correspond to prime graphs for modular decomposition [1].

Definition 1. Given a graph G = (V,E), let H(0) = G and H(i) denote the
type graph of H(i−1), for i ≥ 1. Let d be the smallest integer such that H(d) is a
base graph. The iterated type partition of G, denoted by itp(G), is the number
of nodes of H(d). The sequence of graphs H(0) = G,H(1), · · · ,H(d) is called the
type graph sequence of G and H(d) is denoted as the base graph of G.

An example of a graph and its type graph sequence is given in Fig. 1. For each
type graph H(i) each vertex (henceforth metavertex) describes an element of the
type partition of H(i−1).

It is well-known that determining nd(G) and the corresponding type parti-
tion, can be done in polynomial time [31]. As an immediate consequence, we
have that

198 G. Cordasco et al.

Theorem 1. There exists a polynomial time algorithm which, for any input
graph G computes the type graphs sequence of G and, consequently, finds the
value itp(G).

1.3 Relation with Other Parameters

In this section we analyze the relations between the iterated type partition
parameter and some other well known parameters.

We notice that, as an iteration of neighborhood diversity, the new parameter
satisfies

itp(G) ≤ nd(G). (1)

Actually itp(G) can be much smaller than nd(G). Indeed consider the following:

– Choose a positive integer d and a connected base graph H(d) having k nodes;
– For i = d, d − 1, . . . , 1, a new graph H(i−1) is obtained as follows:

• replace each node of H(i), with an independent set of at least two nodes
(if d − i is even) or a clique of size at least two (if d − i is odd).

• for each edge of H(i), put a complete bipartite graph between the nodes
of the graphs that replace the endpoints of the edge.

The value nd(H(0)) is the number of nodes in H(1), that is at least k2d−1, while
itp(H(0)) is the size k of H(d).

We stress that iterated type partition is a “special case” of modular-width
in which the modules in operation 4) can only be independent sets or cliques.
Hence, it is not difficult to see that for every graph G

mw(G) ≤ itp(G). (2)

We know from [31] that nd(G) ≤ 2vc(G)+vc(G). Hence, by (1), we have itp(G) ≤
2vc(G) + vc(G). Moreover, using the same arguments as in [31] is it possible to
show that cw(G) ≤ itp(G)+1. Finally, as for the neighborhood diversity we can
easily show that the iterated type partition is incomparable to the treewidth by
comparing the values of such parameters on a complete graph Kn and a path on
n nodes. A summary of the relations holding between some popular parameters
is given in Fig. 2. We refer to [19] for the formal definitions of treewidth and
clique-width parameters.

1.4 Our Results and Related Work

We give both tractability and hardness results for the new parameter.

The Equitable Coloring (EQC) Problem. If the nodes of a graph G are
colored with k colors such that no adjacent nodes receive the same color (i.e.,
properly colored) and the sizes of any two color classes differ by at most one,
then G is called to be equitably k-colorable and the coloring is called an equitable
k-coloring. The goal is to minimize the number of used colors. The EQC problem

Iterated Type Partitions 199

Fig. 2. A summary of the relations holding among some popular parameters. In
addition to the previously defined parameters, we use tw(G), cw(G) and vc(G) to
denote treewidth, clique-width and minimum vertex cover of a graph G, respectively.
Solid arrows denote generalization, e.g., modular-width generalizes iterated type par-
tition. Dashed arrows denote that the generalization may exponentially increase the
parameter.

is a well-studied problem, which has been analyzed in terms of parameterized
positive or negative results with respect to many different parameters [26].

In particular, Fellows et al. [14] have shown that EQC problem parameterized
by treewidth and number of colors is W [1]-hard. A series of reductions proving
that Equitable Coloring is W [1]-hard for different subclasses of chordal graphs
are given in [26]: The problem is shown to be W[1]-hard if parameterized by
the number of colors for block graphs and for the disjoint union of split graphs;
moreover, it remains W[1]-hard for K1,4-free interval graphs even when param-
eterized by treewidth, number of colors and maximum degree. In [3] an XP
algorithm parameterized by treewidth is given. We notice that an XP algorithm
for Equitable Coloring parametrized by iterated type partition can be obtained
by using Theorem 17 in [28]. On the other side, Fiala et al. show that the Equi-
table Coloring problem is FPT when parameterized by the vertex cover number
[16]. However, it was an open problem to establish the parameterized complexity
of the Equitable Coloring problem parameterized by neighborhood diversity or
modular-width. In Sect. 2 we answer to these questions by proving the following
results.

Theorem 2. The Equitable Coloring problem is W [1]-hard parametrized by itp.

Recalling (2), Theorem 2 immediately gives that the Equitable Coloring
Problem is W [1]-hard w.r.t. modular-width.

Corollary 1. The EQC problem is W [1]-hard parametrized by modular-width.

We also show that the Equitable Coloring W [1]-hardness drops when param-
eterized by the neighborhood diversity.

Theorem 3. The EQC problem is FPT when parameterized by neighborhood
diversity.

FPT Algorithms w.r.t. itp. In the last section we deal with FPT algorithms
with respect to iterated type partition. Some of the considered problems are

200 G. Cordasco et al.

already known to be FPT w.r.t modular-width. Nonetheless, we think that the
new algorithms, parameterized by iterated type partition, are worthy to be con-
sidered, since they are much simpler, faster, and allow to easily determine not
only the value, but also the optimal solution. As an example, we consider here
the Dominating Set (DS).

Table 1 summarizes our contribution, in relation to known results. Due to
space constraints, some proofs are omitted or sketched; full proofs as well as
the algorithms for the Vertex Coloring (Coloring) and the Vertex Cover (VC)
problems appear in the extended version of this work [6].

Table 1. The table summarizes the results known in literature for several problems
parametrized by iterated type partition and related parameters. t denotes the value of
the considered parameter and [*] denotes the result obtained in this paper.

DS, VC Coloring EQC

cw FPT [9] W[1]-hard [19] W[1]-hard [20]

mw FPT [34] FPT [22] W[1]-hard [*]

itp FPT(O(2t + poly(n)))[*] FPT(O(t2.5t+o(t) logn+ poly(n)))[*] W[1]-hard [*]

nd FPT [31] FPT [31] FPT[*]

vc FPT [31] FPT [31] FPT [16]

2 Equitable Coloring (EQC)

In this section we prove Theorems 2 and 3.

Equitable Coloring
Instance: A graph G = (V,E) and an integer k.
Question: Is it possible to color the nodes of G with exactly k colors in
such a way that nodes connected by an edge receive different colors and
each color class has either size �|V |/k� or 	|V |/k
?

2.1 Hardness

In order to prove that Equitable Coloring problem is W [1]-hard if parameterized
by iterated type partition, we present a reduction from the following Bin packing
problem, which has been shown to be W[1]-hard when parameterized by the
number of bins [27].

Bin-Packing
Instance: A collection of � items having sizes a1, a2, · · · , a�, a number k of
bins, and a bin capacity B.
Question: ∃ a k-partition P1, · · · , Pk of A = {a1, a2, · · · , a�} such that∑

aj∈Pi
aj = B, ∀ i ∈ [k]?

Iterated Type Partitions 201

Fig. 3. (a) (4, 3)–flower; (b) (3, 5, 4)–chain.

In general the Bin-Packing problem asks for the sum of the items of each bin to
be at most B; however, the above version is equivalent to the general one (even
from the parameterized point of view) as it is sufficient to add kB − ∑�

j=1 aj

unitary items [26]. In order to describe our reduction, we introduce two useful
gadgets. The first one is the flower gadget also used in [26]. Let a and k be positive
integers. An (a, k)–flower Fa,k is a graph obtained by joining a+1 cliques of size
k to a central node y. Figure 3(a) shows the (4, 3)–flower. Formally, let Ki

k be a
copy of a cliques of size k, for each i ∈ [a + 1],

– V (Fa,k) = {y} ∪ ⋃
i∈[a+1] V (Ki

k), and
– E(Fa,k) = {(y, x) | x ∈ ⋃

i∈[a+1] V (Ki
k)} ∪ ⋃

i∈[a+1] E(Ki
k).

The second gadget is defined starting from three positive integers: k, � and B. It
is a sequence of independent sets S1, · · · , Sk, Sk+1 with |Si| = B, for i ∈ [k], and
|Sk+1| = � + 1 where between each pair of consecutive sets in the sequence Si,
Si+1 there is a complete bipartite graph. We call such a gadget a (k, �, B)–chain
Q. Figure 3(b) shows the (3, 5, 4)–chain. Formally,

– V (Q) =
⋃

i∈[k+1] Si, and
– E(Q) =

⋃
i∈[k]{(u, v) | u ∈ Si, v ∈ Si+1}.

We can now describe our reduction. Let 〈A = {a1, · · · , a�}, k, B〉 be an
instance of Bin-Packing. Define a graph G as follows: The set of nodes is com-
posed by the disjoint union of two (k, �, B)-chains, Q′ and Q′′ plus the flowers
Fa1,k, · · · , Fa�,k, FB,k. Then join each node in the flowers to each node in the
chains. In the following, whenever the number of bins k is clear by the context,
we use Fa instead of Fa,k. Formally,

– V (G) = V (Q′) ∪ V (Q′′) ∪ V (FB) ∪
(⋃

j∈[�] V (Faj
)
)
, and

– E(G) = E(Q′) ∪ E(Q′′) ∪ E(FB) ∪
(⋃

j∈[�] E(Faj
)
)

∪
{

(x, u)
∣
∣ x ∈ V (FB) ∪

(⋃
j∈[�] V (Faj

)
)

, u ∈ V (Q′) ∪ V (Q′′)
}

.

202 G. Cordasco et al.

Fig. 4. The type graph sequence of G when A = {2, 1, 2, 3}, B = 4, and k = 3. The
line connecting dashed circles indicates a complete bipartite graph between the nodes
in the circles.

Figure 4 shows the graph G when A = {2, 1, 2, 3}, B = 4 and k = 3. The number
of nodes in the resulting graph G is

|V (G)| = |V (Q′)|+ |V (Q′′)|+ |V (FB)|+
∑

j∈[�]

|V (Faj
)| = (k+3)(Bk+�+1). (3)

Lemma 1. 〈A = {a1, · · · , a�}, k, B〉 is a YES instance of Bin-Packing if and
only if G is equitably (k + 3)–colorable.

Proof. (Sketch.) We first show that, given a k-partition P1, · · · , Pk of A that
solves the given instance of Bin-Packing, i.e.,

∑
aj∈Pi

aj = B for each i ∈ [k], we
can construct an equitable (k+3)-coloring c of the nodes of G.

– Coloring of the nodes in Q′: For each i ∈ [k + 1] and u ∈ S′
i (where S′

i is the
i-th set of independent nodes in the (k, �, B)-chain Q′) assign

c(u) =

{
k + 3 if i is odd,
k + 2 if i is even.

(4)

– Coloring of the nodes in Q′′: For each i ∈ [k + 1] and u ∈ S′′
i , (where S′′

i is
the i-th set of independent nodes in the (k, �, B)-chain Q′′) assign

c(u) =

{
k + 3 if i is even,
k + 2 if i is odd.

(5)

Iterated Type Partitions 203

– Coloring of the nodes in FB : Let z be the central node in FB . Assign c(z) =
k + 1. Then, assign to each of the k nodes of the B + 1 cliques joined to z
the remaining k colors (e.g. 1, 2, · · · k), so that the nodes of the clique have
different colors.

– Coloring of the nodes in Faj
, for j ∈ [�]: Let yj be the central node in Faj

.
Assign c(yj) = i if aj ∈ Pi. Then, as before assign to each of the k nodes of the
aj +1 cliques joined to yj the remaining k colors, i.e., those in {1, 2, · · · k, k +
1} − {i}, so that the nodes of the clique have different colors.

The above coloring c can be proved to be proper and such that each class of
colors contains exactly Bk+�+1 nodes. By (3) this proves that c is an equitable
(k + 3)-coloring of G.

Now, let c be an equitable (k + 3)-coloring of G. We can prove that exactly
two colors among the k+3 are used by c to color only the nodes in the chains Q′

and Q′′. Furthermore, the color used by c to color the central node of the flower
FB is not used to color the central nodes of any other flowers Fa1 , · · · , Fa�

. By
using this result, we can prove that the k classes of colors involving the central
nodes of the Fa1 , · · · , Fa�

induce a k-partition of A that solves our instance of
Bin-Packing. ��
Lemma 2. The iterated type partition itp(G) of G is 2k + 3.

Proof. (Sketch.) The graph G has type graph sequence H(0) = G,H(1),H(2),
H(3),H(4). We derive the above graphs and show that the number of nodes of the
base H(4) is 2k+3. Figure 4 shows the type graph sequence when A = {2, 1, 2, 3},
B = 4 and k = 3. ��
Proof of Theorem 2. Given an instance 〈A = {a1, · · · , a�}, k, B〉 of Bin-Packing,
we use the above construction to create an instance 〈G = (V,E), itp(G)〉 of
Equitable Coloring parameterized by iterated type partition. Lemma 1 show the
correctness of our reduction and Lemma 2 provides the iterated type partition
of the constructed graph, showing that our new parameter itp(G) is linear in the
original parameter k. ��

2.2 Neighborhood Diversity: An FPT Algorithm

We prove here that the Equitable Coloring problem admits an FPT algorithm
with respect to neighborhood diversity. W.l.o.g. we assume that the number of
nodes in the input graph G = (V,E) is a multiple of the number of colors k (this
can be attained by adding an independent clique of k	|V |/k
−|V | nodes to G in
such a way the answer to the equitable k-coloring question remains unchanged).

Let then r = |V |/k. Any equitable k-coloring of G partitions V into k classes
of colors, say C1, . . . , Ck, s.t. C� is an independent set of G of size |C�| = r, for
� = 1, . . . , k.

If we consider now the type partition {V1, . . . , Vt} of G and the corresponding
type graph H = (V (H) = {1, . . . , t}, E(H)), we trivially have that: Two nodes
u, v ∈ V are independent in G iff v ∈ Vi and u ∈ Vj, with i, j ∈ V (H), such that

204 G. Cordasco et al.

either i and j are independent nodes of H or i = j and Vi induces an independent
set in G. This immediately implies that for each color class C� of the equitable
coloring of G there exists an independent set I� = {�1, . . . , �ρ} of H such that

∑ρ
s=1 |C� ∩ V�s

| = r and
|C� ∩ V�s

| = 1 for each s = 1, . . . , ρ such that V�s
induces a clique.

Let now I denote the family of all independent sets in H. From the above
reasoning, we have that, given any equitable k-coloring of G, we can associate
to each I ∈ I an independent set of zI ≥ 0 colors. We can then define, for each
I ∈ I and i ∈ I, an integer zI,i representing the number of nodes in Vi that (in
the coloring of G) are colored with one of the zI colors associated to I. Clearly,
the value of zI,i is at most zI if Vi induces a clique in G, but can be larger if Vi

induces an independent set. An equitable k-coloring of G satisfies the following
conditions:

1.
∑

I∈I zI = k.
2. For each i ∈ V (H) it holds that the sum of the values zI,i, over all I ∈ I such

that i ∈ I, is exactly |Vi|.
3. For each I ∈ I it holds that the sum over all i ∈ V (H) of the number of

nodes of Vi that are colored in G with one of the zI colors associated to I is
r · zI .

The above conditions can be expressed by the following linear program on
the variables zI for each I ∈ I and zI,i for each I ∈ I and for each i ∈ I.

1.
∑

I∈I zI = k;
2.

∑
I : i∈I zI,i = |Vi|, for each i ∈ V (H);

3.
∑

i∈I zI,i − r · zI = 0, for each I ∈ I;
4. zI − zI,i ≥ 0 for each I ∈ I and i ∈ I such that Vi is a clique;
5. zI,i ≥ 0 for each I ∈ I and i ∈ V (H).

From the above reasoning, it is clear that if the graph G admits an equitable
k-coloring, then there exists an assignation of values to the variables zI and zI,i,
for each I ∈ I and i ∈ I, that satisfies the above system.

We show now that from any assignation of values to the variables zI and zI,i

that satisfies the above system, we can obtain an equitable k-coloring of G.

• For each independent set I ∈ I, such that zI > 0, repeat the following
procedure:

– Select a set of zI new colors, say cI
1, . . . , c

I
zI

(to be used only for nodes
in I);
We notice that (by 3.) the total number of nodes to be colored is r · zI ;

– Consider the list of colors cI
1, c

I
2, . . . , c

I
zI

, cI
1, c

I
2, . . . , c

I
zI

, . . . , cI
1, c

I
2, . . . , c

I
zI

(obtained by repeating the sequence cI
1, . . . , c

I
zI

r times). Assign the colors
starting from the beginning of the list as follows: For each i ∈ V (H), select
zI,i uncolored nodes in Vi (it can be done by 2.) and assign to them the
next unassigned zI,i colors in the list.

Iterated Type Partitions 205

In this way each color is used exactly r times. Moreover, since each independent
set uses a separate set of colors, the total number of colors is

∑
I∈I zI = k (crf.

1.). Furthermore, in each Vi that induces a clique in G, we color zI,i ≤ zI nodes
(this holds by 4.). Such nodes get colors which are consecutive in the list, hence
they are different. Summarizing, the desired equitable k-coloring of G has been
obtained.

Finally, we evaluate the time to solve the above system. We use the well-
known result that Integer Linear Programming is FPT parameterized by the
number of variables.

�-Variable Integer Linear Programming Feasibility
Instance: A matrix A ∈ Zm×� and a vector b ∈ Zm.
Question: Is there a vector x ∈ Z� such that Ax ≥ b?

Proposition 1. [32] �-Variable Integer Linear Programming Feasibility can be
solved in time O(�2.5t+o(�) · L) where L is the number of bits in the input.

Since |V (H)| = nd(G), our system uses at most O(nd(G)2nd(G)) variables: zI

for I ∈ I and zI,i for I ∈ I and i ∈ I. We have O(nd(G)2nd(G)) constraints and
the coefficients are upper bounded by r = |V |/k. Therefore, Theorem 3 holds.

3 Algorithms

In this section, we deal with FPT algorithms with respect to iterated type parti-
tion. In order to solve a problem P on an input graph G, the general algorithm
scheme is:

1) Iterate by generating the whole type graph sequence of G.
2) On each graph G′ in the type graph sequence, a generalized version P ′ of

the original problem is defined (with P ′ in G′ being equivalent to P in G).
3) Optimally solve P ′ on the base graph and reconstruct the solution on the

reverse type graph sequence (hence solving P in G).

If the construction of the solution for P ′ (at step 2), can be done in polynomial
time and the time to solve P ′ on the base graph is f , then the whole algorithm
needs O(f + poly(n)) time.

Using the scheme above we are able to prove that the Dominating Set and
Vertex Cover problems can be solved in time O(2t + poly(n)), while the Vertex
Coloring problem is solvable in time O(t2.5t+o(t) log n + poly(n)), where n and t
are the size and the iterated type partition of the input graph, respectively. In
the following, we present the algorithm for the Dominating Set problem. Due to
space constraints the proofs for the remaining problems are given in the extended
version of this paper [6].

In the following, we assume that the input graph is connected and it is not a
clique. Indeed, the domination problem in disconnected graphs can be separately
solved on each connected component. Moreover, in the case of a complete graph,
the solution trivially consists of one vertex. Notice that the assumption of G

206 G. Cordasco et al.

being a non complete connected graph, implies that the base graph of G is
connected and itp(G) ≥ 2.

In order to present our FPT algorithm, we consider the following generalized
dominating set problem.

Definition 2. Given a graph G = (V,E) (connected and not complete) and a
set of nodes Q ⊆ V , a semi-total Dominating Set of G with respect to Q, called
Q-stds of G, is a set D ⊆ V such that every node in Q is adjacent to a node in
D, and every other node is either a node in D or is adjacent to a node in D.
The set D is called an optimal Q-stds of G, if its size is minimum among all
the Q-stds of G.

Clearly, when Q = V, the semi-total Dominating Set problem is the Total Dom-
ination problem [4]; if Q = ∅ it becomes the Dominating Set problem.

Lemma 3. Let G = (V,E) be a graph and let V = {V1, · · · , Vt} be the type
partition of G. Let Q ⊆ V . There exists an optimal Q-stds D of G such that

|Vx ∩ D| ≤ 1 for each x ∈ [t]. (6)

Proof. Let D be an optimal Q-stds of G. Assume there exists x ∈ [t] such that
|Vx ∩ D| ≥ 2. We distinguish two cases according to Vx being a clique or an
independent set.

Let Vx be a clique. Let u and v be two nodes in Vx ∩ D. Let u �∈ Q. Since u
is a neighbor of v and since u and v share the same neighborhood, we have that
the set D′ = D − {v} is a Q-stds of G. Furthermore, |D′| < |D| and this is not
possible since D is optimal. Assume now that u ∈ Q. If there exists a neighbor
w of u with w ∈ Vy ∩D, for some y �= x, then as above D′ = D −{v} is a Q-stds
of G and |D′| < |D|. If, otherwise, node u has no neighbor in D except for those
in Vx, then we can choose any neighbor w of u with w ∈ Vy ∩D, for some y �= x,
and D′ = D − {v} ∪ {w} is a Q-stds of G and |D′| = |D|.

Let Vx be an independent set. Let u be any node in Vx ∩ D. If there exists a
neighbor w of u with w ∈ Vy ∩D, for some y �= x, then the set D′ obtained from
D removing all the nodes in Vx except for u is again a Q-stds since the neighbors
of nodes in Vx are dominated by u and all the nodes in Vx are dominated by
w ∈ Vy. Furthermore, |D′| < |D|. Otherwise, we have that Vx ⊂ D and for each
neighbor w of u it holds w ∈ Vy, for y �= x, and w �∈ D. Hence, the set D′

obtained from D removing all the nodes in Vx except for u and adding to it a
node w ∈ Vy, where y is such that Vy ∩ D = ∅, is a Q-stds of G. Furthermore,
|D′| ≤ |D|.

Repeating the above argument for each x ∈ [t] such that |Vx ∩ D| ≥ 2, we
obtain an optimal solution satisfying (6). ��

The FPT algorithm Dom recursively constructs the graphs in the type graph
sequence of G, until the base graph is obtained. It is initially called with
Dom(G, ∅). At each recursive step, the algorithm Dom(H,Q), on a graph H
and a set Q ⊆ V (H) of nodes that need to have a neighbor in the solution set,
checks if H is a base graph or not. In case H is a base graph, then the algorithm
searches by brute force the Q-stds of H and returns it. If H is not a base graph

Iterated Type Partitions 207

Algorithm 1. Algorithm Dom(H,Q)
Input: A graph H = (V (H), E(H)), a set Q ⊆ V (H).

1 if H is a base graph then
2 D = V (H)
3 for each S ⊆ V (H) do if ((S is Q-stds of H) and (|S| < |D|)) then D = S

4 else
5 Let V1, · · · , Vt be the type partition of H and let H ′ be the type graph of H.
6 Q′ = {x ∈ V (H ′) | (Vx ∩ Q �= ∅ or Vx is an independent set)}
7 D′ = Dom(H ′, Q′)
8 D =

⋃
x∈D′{ux}, where ux is an arbitrarily chosen node in Vx

9 return D

Fig. 5. The recursive execution of the Algorithm 1 on the graph G depicted in Fig. 1:
((a) and (b)), since the input graph is not a base graph, their type partition as well as
the set Q′ are computed and passed to the next recursive level; (c), H is a base graph
and then an optimal solution is computed exploiting a brute force approach; ((d) and
(e)), an optimal solution D = {v1, v12} is reconstructed using the solution D′ obtained
on the reverse type graph sequence.

then the algorithm first constructs the type graph H ′ and selects nodes in V (H ′)
to assemble a set Q′ of nodes that need to have a neighbor in the solution set,
then it uses the set D′ of nodes in V (H ′) returned by Dom(H ′, Q′) to construct
the output set D ⊆ V (H). The nodes of the returned set D are chosen by select-
ing exactly one node from each metavertex Vx having x ∈ D′. Figure 5 gives an
example of the execution of Algorithm 1 on the graph G in Fig. 1.

Lemma 4. Let H be not a base graph and let Q ⊆ V (H). Let V1, · · · , Vt be the
type partition of H and let H ′ be its type graph. If Q′ = {x ∈ V (H ′) | Vx ∩ Q �=
∅ or Vx is an independent set} and D′ is an optimal Q′-stds of H ′ then the set
D returned by Dom(H,Q) is an optimal Q-stds of H.

Proof. We first prove that the set D returned by Dom(H,Q) is a Q-stds of H,
then we prove its optimality. We distinguish two cases according to that a node
v ∈ V (H) is a node in Q or not. W.l.o.g. assume that v ∈ Vx, for some x ∈ [t].

– If v ∈ Q then Vx ∩ Q �= ∅ and by the definition of Q′ we have x ∈ Q′. Hence,
since D′ is a Q′-stds of H ′, there exists y ∈ D′ that is a neighbor of x in H ′.
By Algorithm 1 (see line 8) there exists a node uy ∈ Vy ∩D. Considering that

208 G. Cordasco et al.

each node in Vy is a neighbor of each node in Vx (since (x, y) ∈ E(H ′)), we
have that v is dominated by u ∈ D.

– Let v ∈ V − Q. We know that D′ is a Q′-stds of H ′. Hence, if either x ∈ Q′

or x �∈ Q′ ∪ D′ we can prove, as in the previous case, that there exists u ∈ D
that dominates v. Assume now that x �∈ Q′ and x ∈ D′ (i.e., x can be not
dominated in H ′). By the definition of Q′ we have that Vx ∩ Q = ∅ and
Vx is a clique. Hence, since by Algorithm 1 (see line 8) there exists a node
ux ∈ Vx ∩ D, we have that v is a neighbor of ux ∈ D in the clique Vx.

Now, we prove that D is an optimal Q-stds of H whenever D′ is an optimal
Q′-stds of H ′. By contradiction, assume that D is not optimal and let D̃ be an
optimal Q-stds of H. By Lemma 3 we can assume that, for each x ∈ [t], at most
one node in Vx is a node in D̃. Let D̃′ = {x | Vx ∩ D̃ �= ∅}. We claim that D̃′ is
a Q′-stds of H ′. Finally, by Lemma 3 and the construction of D̃′, it is possible
to prove that |D̃′| < |D′| thus obtaining a contradiction since D′ is optimal. ��
Theorem 4. Dom(G, ∅) returns a minimum dominating set in time O(2itp(G)+
poly(n)).

Proof. Let H(0) = G,H(1), · · · ,H(d) be the type graph sequence of G. When
Dom(G, ∅) is called, Algorithm 1 proceeds recursively, and at the i-th recursive
step, for i = 0, · · · , d, the algorithm is called with input graph H(i) and input
node set Qi ⊆ V (H(i)), where Qi is constructed at line 3 of the previous step
i − 1, for i = 1, · · · , d, and it is the empty set when i = 0, i.e., Q0 = ∅. At step
d, the optimal Qd-stds of the base graph H(d) is established by brute force.

By Lemma 4, the set returned at the end of each recursive step i, for i =
d − 1, · · · , 0, is the optimal Qi-stds of H(i). Hence, at the end (when i = 0) the
returned set is the optimal ∅-stds of H(0), that by the definition is the minimum
dominating set of G.

Considering that |V (H(d))| = itp(G), the brute search of the solution set at
step d requires time O(2itp(G)). Furthermore, since the construction of the type
partition of H(i) and of its type graph can be done in polynomial time, and that
both the construction of Qi and the selection of the nodes in the solution set are
easily obtained in linear time, we have O(2itp(G) + poly(n)) time. ��

4 Conclusion

We introduced a novel parameter, named iterated type partition, and studied
some of its properties. We show that the Equitable Coloring problem is W[1]-
hard when parametrized by the iterated type partition. This result extends also
to the modular-width parameter. We also prove that the hardness drops for the
neighborhood diversity parameter, when the problem becomes FPT. Moreover,
we presented a general strategy that enables to find FPT algorithms for several
problems when parameterized by iterated type partition. The Algorithm for
the Dominating Set problems has been presented, while algorithms for Vertex
coloring and Vertex Cover problems appear in the extended version of the work.

It would be interesting to investigate whether the proposed strategy can be
applied on other problems and if some meta-algorithm an be devised. Moreover,

Iterated Type Partitions 209

it would be interesting to analyze the Edge Dominating Set problem, which has
been shown to be FPT with the neighborhood diversity parameter [31].

References

1. Abu-Khzam, F.N., Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.:
Modular-width: an auxiliary parameter for parameterized parallel complexity. In:
Xiao, M., Rosamond, F. (eds.) FAW 2017. LNCS, vol. 10336, pp. 139–150. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59605-1 13

2. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension
of bounded width graphs. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.)
MFCS 2015. LNCS, vol. 9235, pp. 115–126. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48054-0 10

3. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs.
Theoret. Comput. Sci. 349, 22–30 (2005). https://doi.org/10.1016/j.tcs.2005.09.
027

4. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Net-
works 10(3), 211–219 (1980)

5. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social net-
works: algorithms and complexity. Networks 71(4), 346–357 (2018)

6. Cordasco, G., Gargano, L., Rescigno, A.A.: Iterated Type Partitions. arXiv
2001.08122, https://arxiv.org/abs/2001.08122 (2020)

7. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some
classes of bounded clique-width graphs. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 2765–
2784 (2018)

8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(2012)

11. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32589-2 32

12. Dvorák, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. In:
Proceedings of 29th International Symposium on Algorithms and Computation
(ISAAC 2018) (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.18

13. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

14. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput. 209(2), 143–153 (2011)

15. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP- com-
plete. SIAM J. Discr. Math. 23(2), 909–939 (2009)

https://doi.org/10.1007/978-3-319-59605-1_13
https://doi.org/10.1007/978-3-662-48054-0_10
https://doi.org/10.1007/978-3-662-48054-0_10
https://doi.org/10.1016/j.tcs.2005.09.027
https://doi.org/10.1016/j.tcs.2005.09.027
https://arxiv.org/abs/2001.08122
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.4230/LIPIcs.ISAAC.2018.18
https://doi.org/10.1007/978-3-540-92182-0_28

210 G. Cordasco et al.

16. Fiala, J., Golovach, P.A., Kratochvil, J.: Parameterized complexity of coloring
problems: treewidth versus vertex cover. Theor. Comput. Sci. 412, 2513–2523
(2011)

17. Fiala, J., Gavenciak, T., Knop, D., Koutecky, M., Kratochv́ıl, J.: Fixed parame-
ter complexity of distance constrained labeling and uniform channel assignment
problems. http://arxiv.org/abs/1507.00640arXiv:1507.00640 (2015)

18. Gavenciak, T., Knop, D., Koutecký, M.: Integer programming in parameterized
complexity: three miniatures. In: Proceedings of 13th International Symposium
on Parameterized and Exact Computation, IPEC 2018 (2018). https://doi.org/10.
4230/LIPIcs.IPEC.2018.21

19. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: Proceedings of SODA (2009)

20. Fomin, F.V., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

21. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized
by vertex cover and modular width, through potential maximal cliques. In: Ravi,
R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08404-6 16

22. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

23. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung. 18, 26–66
(1967)

24. Ganian, R.: Using neighborhood diversity to solve hard problems. arXiv:1201.3091
(2012)

25. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. The-
oret. Comput. Sci. 566, 39–49 (2015)

26. de C. M. Gomes, G., Lima, C.V.G.C., dos Santos, V.F.: Parameterized complexity
of equitable coloring. Discrete Math. Theoret. Comput. Sci. 21(1) (2019)

27. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of
bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013)

28. Knop, D.: Partitioning graphs into induced subgraphs. Discrete Appl. Math. 272,
31–42 (2019)

29. Knop, D., Koutecký, M., Masaŕık, T., Toufar, T.: Simplified algorithmic metathe-
orems beyond MSO: treewidth and neighborhood diversity. Logical Methods Com-
put. Sci. 15(4) (2019)

30. Koutecký, M.: Solving hard problems on neighborhood diversity. Master thesis,
Charles University in Prague (2013)

31. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012). In: Proc. Eur. Sym. on Alg. (ESA), 549–560 (2010)

32. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

33. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

34. Románek, M.: Parameterized algorithms for modular-width. Bachelor thesis,
Masaryk University, Brno (2016). https://is.muni.cz/th/tobmd/Thesis.pdf

35. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

https://doi.org/10.4230/LIPIcs.IPEC.2018.21
https://doi.org/10.4230/LIPIcs.IPEC.2018.21
https://doi.org/10.1007/978-3-319-08404-6_16
https://doi.org/10.1007/978-3-319-03898-8_15
http://arxiv.org/abs/1201.3091
https://is.muni.cz/th/tobmd/Thesis.pdf
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

	Iterated Type Partitions
	1 Introduction
	1.1 Modular-Width
	1.2 Neighborhood Diversity
	1.3 Relation with Other Parameters
	1.4 Our Results and Related Work

	2 Equitable Coloring (EQC)
	2.1 Hardness
	2.2 Neighborhood Diversity: An FPT Algorithm

	3 Algorithms
	4 Conclusion
	References

