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Abstract. We present linear time in-place algorithms for several fun-
damental graph problems including the well-known graph search meth-
ods (like depth-first search, breadth-first search, maximum cardinality
search), connectivity problems (like biconnectivity, 2-edge connectivity),
decomposition problem (like chain decomposition) among various others,
improving the running time (by polynomial multiplicative factor) of the
recent results of Chakraborty et al. [ESA, 2018] who designed O(n3 lg n)
time in-place algorithms for some of the above mentioned problems. The
running times of all our algorithms are essentially optimal as they run in
linear time. One of the main ideas behind obtaining these algorithms is
the detection and careful exploitation of sortedness present in the input
representation for any graph without loss of generality. This observation
alone is powerful enough to design some basic linear time in-place algo-
rithms, but more non-trivial graph problems require extra techniques
which, we believe, may find other applications while designing in-place
algorithms for different graph problems in future.

1 Introduction

Inspired by the rapid growth of humongous data set (“big data phenomenon”),
space efficient algorithms are becoming increasingly more crucial than ever
before. The dire need of such algorithms is also propelled by the pervasive
usage of small specialized handheld devices and embedded systems which come
equipped with tiny memory. To design such algorithms, a vast array of compu-
tational models have already been proposed in the literature. In what follows,
we briefly mention a few of them in the order they are historically developed.

In the read-only memory model (henceforth ROM) where the input is
read-only, output is write only, and a limited sized random access read/write
work space is available, researchers have designed space efficient algorithms
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for selection and sorting [18,26,33,39,40], problems in computational geome-
try [2,4,6,17,22], and graphs [3,5,10,12–14,25] among various others. In the
in-place model, it is assumed that the input elements are given in an array, and
the algorithm may use the input array as working space, hence the algorithm is
allowed to modify the array during its execution. However, at any point during
the execution, all the input elements should be present in the array (maybe in
a permuted order), and the output maybe put in the same array or sent to an
output stream. The extra space usage during the entire execution of the algo-
rithm is limited to O(lg n) bits only. A prime example of an in-place algorithm
is the classic heap-sort. Other than in-place sorting [32], searching [30,37] and
selection [36], many in-place algorithms were designed in areas such as compu-
tational geometry [8] and string algorithms [31]. A very recent addition to this
long list is the in-place algorithms for the graph problems [11]. Other than these,
researchers have also designed space efficient algorithms in (semi)-streaming
models [1,29,39] and recently introduced restore [19] and catalytic-space [9]
models.

Previous Work on Space Efficient Graph Algorithms. Inspired by the
pervasive practical applications of the fundamental graph algorithms, recently
there has been a surge of interest in improving the space complexity of graph
algorithms without paying too much penalty in the running time. Thus the
goal is to design space-efficient yet reasonably time-efficient graph algorithms
on the ROM. Generally most of the standard implementations of classical
graph algorithms take linear or near-linear running time and use O(n lg n) (or
sometimes O(m lg n) for graphs with n vertices and m edges) bits. A recent
series of papers [3,5,13,16,25] with this point of view showed such results for
a vast array of basic graph problems, namely depth-first search (henceforth
DFS), breadth-first search (henceforth BFS), minimum spanning tree (henceforth
MST), (strong) connectivity, topological sorting, recognizing chordal graphs, bi-
connectivity, st-numbering, shortest path and many others.

Even though these results are still both time and space efficient, they still
require Θ(n) bits for most of important graph algorithms, and this is a major
concern in places with severe space constraints. In order to break this inher-
ent space bound barrier and still obtain reasonable time efficiency, Chakraborty
et al. [11] initiated a systematic study of designing efficient in-place (i.e., using
O(lg n) bits of extra space other than the input space) algorithms for graph prob-
lems by defining a new framework which is a slight relaxation of the ROM. Using
this framework they designed in-place DFS, BFS, MST, reachability algorithms
taking time O(n3 lg n). Despite being optimal in space usage, observe that these
results still leave a polynomial gap in the running time from the optimal value.
In this work, we essentially obtain the best of the both worlds by closing this
gap. More specifically, we show how one can design optimal in-place algorithms
i.e., O(m+n) time and using O(lg n) bits of extra space, for several of these (and
a lot more) basic graph algorithms in this work. Recently Kammer et al. [34]
also considered a similar model where they showed efficient in-place algorithms
for DFS, unordered-BFS (will be defined shortly) only.
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In-place Model for Graph Algorithms and Input Representations.
Before explaining our in-place algorithms and stating main results, in this section
we first describe the input graph representation. Note that, as in the case of
the standard in-place model, we need to ensure that the graph (adjacency)
structure must remain intact throughout the entire execution of the algorithm.
Let G = (V,E) be the input graph with n = |V |, m = |E|, and as usual let
V = {1, 2, · · · , n} denote the vertex set of G. We assume that the input graph
is given in the standard adjacency array format, and throughout this paper, we
refer to this array as Z. More specifically, it is an array having size (n + m + 1)
((n+2m+1) resp.) words for directed (undirected resp.) graphs where Z[1] stores
the number of vertices in G, the next n entries (which we refer to as the offsets
part of Z) store n pointers (one per vertex) pointing to the location in Z of the
last neighbor for each vertex, and finally the last m (2m for undirected graphs)
entries are reserved for the edges of G. At this point, we should emphasize a
small, yet important, technical detail. The Z array can be thought of as a single
bit array as follows. For a directed graph G, the array Z is a concatenation of
Z[1] of length �lg n� bits, Z[2] . . . Z[n+1] of length �lg m� bits each1, and finally
Z[n+2] . . . Z[n+m+1] of length �lg n� bits each. For undirected graphs, only the
second part changes to size �lg m� + 1 bits (instead of �lg m�) each. Thus, if we
just remember the boundaries, we know exactly how many bits we need to read
in order to extract useful information from the relevant parts of Z. For the sake
of simplicity, we drop the ceiling notations from now on. Moreover, throughout
this paper, it should be clear from the context the word size depending on which
part of Z we are currently working on. See Fig. 1 for an example. Note that this
representation implicitly captures the degree information for every vertex in G.
Given this format, we say an algorithm A is an in-place algorithm if A (a) may
modify any part of Z during its execution, (b) retains all the initial elements
of Z (in any order) when it finishes execution; and (c) uses just O(lg n) bits of
extra space. Our goal is to design such algorithms in this paper for a vast array
of fundamental graph problems.

In this paper we assume the standard word RAM model of computation. We
count space in terms of number of extra bits used by the algorithm other than the
input, and this quantity is referred as “extra space” and “space” interchangeably
throughout the paper.

Graph Terminology and Notations. In general we will assume the knowledge
of basic graph theoretic terminology as given in [23] and basic graph algorithms
as given in [21]. Still here we collect all the necessary graph theoretic definitions
that will be used throughout the paper for quick reference and making the paper
self-contained. For BFS traversal that we study here, there are two versions
studied in the literature. In the ordered BFS (sometimes also known as queue
BFS [16]), vertices are extracted from the queue in the first in first out (FIFO)
order, whereas in the unordered BFS [5], vertices can be taken out from the

1 Note that it is enough to store the offset values starting from 0, since we can add
n + 1 to the offset value to find the corresponding location in Z; hence the offset
values can be stored using �lgm� bits.
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Fig. 1. (a) An undirected graph G with 5 vertices and 8 edges. (b) The standard
adjacency array representation of G. To avoid cluttering the diagram, we drop the
superscript v from the vertex labels while referring to them as neighbors.

queue in any order as long as no elements are extracted from a higher level of
the BFS tree before finishing all the vertices from a lower level of the tree. In this
paper, by a BFS/DFS traversal of the input graph G, as in [3,5,13,16] we refer to
reporting the vertices of G in the BFS/DFS ordering, i.e., in the order in which
the vertices are visited for the first time. Tarjan et al. [45] defined another method
called maximum cardinality search (MCS) and used this to give a recognition
algorithms for chordal graphs. MCS works as follows: assuming that every vertex
is unnumbered at the beginning, at each iteration of the execution of MCS, an
unnumbered vertex that is adjacent to the largest number of numbered vertices
is chosen (breaking the ties arbitrarily), and is numbered with the next available
label. Thus, the output of the MCS algorithm is a numbering of the vertices from
1 to n.

A cut vertex in an undirected graph G is a vertex v that when removed (along
with its incident edges) from a graph creates more components than previously
in the graph. A (connected) graph with at least three vertices is biconnected if
and only if it has no cut vertex. Similarly in an undirected graph G, a bridge
is an edge that when removed, creates more components than previously in the
graph. A connected graph with at least two vertices is 2-edge-connected if and
only if it has no bridge. Given a biconnected graph G, and two distinguished
vertices s and t in V such that s �= t, st-numbering is a numbering of the vertices
of the graph so that s gets the smallest number, t gets the largest and every other
vertex is adjacent both to a lower-numbered and to a higher-numbered vertex
i.e., a numbering s = v1, v2, · · · , vn = t of the vertices of G is called an st-
numbering, if for all vertices vj , 1 < j < n, there exist 1 ≤ i < j < k ≤ n
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such that {vi, vj}, {vj , vk} ∈ E. It is well-known that G is biconnected if and
only if, for every edge {s, t} ∈ E, it has an st-numbering. A topological sort of
a directed acyclic graph (DAG) gives a linear ordering of its vertices such that
for every directed edge (u, v) ∈ E from vertex u to vertex v, u comes before
v in the ordering. A minimum spanning tree (MST) is a subset of the edges
of a connected, edge-weighted undirected graph that connects all the vertices
together, without any cycles and with the minimum possible total edge weight.
That is, it is a spanning tree whose sum of edge weights is as small as possible.

Our Main Results and Organization of the Paper. In Sect. 2.1 we start
by designing a linear time in-place procedure to obtain linear bits of additional
free space inside the offsets part of the adjacency array. Using this, we can
already show an improved set of algorithms for (a strict superset of) problems
that Chakraborty et al. [16] considered (for example, DFS, unordered BFS and
MST), but this algorithms are still not optimal as they are at least polylog
multiplicative factor away from linear running time. Towards obtaining optimal
linear time in-place algorithms, we first provide an improved linear time in-place
routine to obtain almost n lg n additional free bits of space inside the offsets
part, which is what we use crucially along with other additional ideas to show
the following main result of this paper in Sect. 2.2.

Theorem 1. Using linear time in the in-place model, one can

1. traverse the vertices of any graph in (un)ordered BFS and DFS manner,
2. recognize bipartite graphs, and compute connected components,
3. report the vertices of a DAG in topologically sorted order,
4. obtain a maximum cardinality search ordering of any graph,
5. output an st-numbering of given biconnected graph, given two vertices s and t,
6. perform a chain decomposition of any undirected graph, and
7. determine whether any given undirected graph G is biconnected (and/or 2-

edge connected resp.) and if not, we can also compute and report all the cut
vertices (bridges resp.) of G.

Also, given an undirected edge-weighted (where weights are bounded by some
polynomial in n) graph G, we can find a minimum spanning tree (MST) of G in
O(m lg n) time in-place.

Techniques. All the results of our paper stem from the following very simple yet
absolutely crucial observation: numbers in sorted order have less entropy than
in any arbitrary order. More specifically, assuming we have n numbers from a
universe of size m, when these numbers are in any arbitrary order their binary
entropy is n lg m but when they are in sorted order, binary entropy becomes
n lg m−Θ(n lg n). This clearly indicates that we can exploit the sorted structure
assumption to gain some additional space. Now, note that, without loss of any
generality, by construction, the offsets part of the adjacency array Z for any given
graph G is sorted. Thus, we can use the above mentioned idea in the offsets part
of Z to gain some free space which is what we use finally to design our optimal
in-place graph algorithms. Towards this, we also have to handle several other
key technical issues which we describe in respective sections in detail.
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2 Exploiting Input Redundancy to Create Working Space

In this section, we describe how one can exploit the redundancy in the input
representation to save almost n lg n bits, which can then be used as part of the
working space for a graph algorithm.

2.1 Saving Linear Bits and Its Applications

As a warm up, we start by showing how we can squeeze in linear sized free bits
inside the offsets part of Z while still being able to access any element inside
the offsets part in O(1) time, as well as returning to the original configuration
of the offsets part of Z before freeing linear bits. Towards this, we first reprove
the following lemma, which is essentially same as [34, Lemma 5]. See the full
version [15] for a proof.

Lemma 1. Given a sorted list of n integers from the universe [0,m − 1], it can
be represented either simply as an array A[1...n] with the integers in sorted order
or as an array of n integers, such that for some fixed constant c > 1, the last
cn bits of this array are all zero. Moreover, there exists an in-place O(n) time
algorithm for switching between both these formats.

The above lemma alone is powerful enough to help us design in-place algo-
rithms (albeit with sub-optimal time complexity as we will see shortly) for a
variety of fundamental graph algorithms. In the full version [15] of this paper,
we describe how to obtain efficient in-place algorithms for a variety of graph algo-
rithms, using the above lemma. The main idea is to simulate the corresponding
ROM algorithms in the in-place model. Next, we further improve the running
times to optimal, by providing an improved version of Lemma 1.

2.2 Saving n lgn − 2n Bits

In what follows, we show how one can improve Lemma 1 so that almost n lg n bits
become free to be used, and using this we will design optimal in-place algorithms
for the above mentioned graph problems. Our main result can be described as
follows:

Theorem 2. Given a sorted list of n integers from the universe [0,m − 1], it
can be represented either simply as an array A[1...n] with the integers in sorted
order or as an array of n integers, such that the last n lg n−2n bits of this array
are all zero. Moreover, there exists an in-place O(n) time algorithm for switching
between both these formats.

Proof. One can easily obtain the space bound mentioned in the second repre-
sentation by applying the Elias-Fano encoding [24,28] on the array A. But to
implement this encoding in-place, we apply this encoding in two steps.

We first split the array A into two subarrays of size n/2 each (assume, for
simplicity, that n is even) - call them A1 and A2. One can replace the most
significant lg n bits of each of the elements in A1 by a bit vector, say B, length
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Fig. 2. (a) General adjacency array structure Z of a given input directed graph. (b)
Configuration of Z after freeing n lg n − 2n bits in the offsets part of Z.

n + n/2, using the Elias-Fano encoding. To store B (of length 3n/2), we first
replace the most significant 3 bits of each of the elements in A2 by storing 8
positions into the array A2 (using Lemma 1, with c = 3). We store the bit
vector B inside the most-significant 3 bits of every element of A2, and compact
the remaining (least-significant lg m − lg n) bits of every element in A1 into a
consecutive chunk of (n/2) lg(m/n) bits in A1, so that the first (n/2) lg n bits of
A1 is free (i.e., filled with all zeros). We now copy the bit vector B into this free
space, and restore the 3 most significant bits of all the elements of A2. We now
replace the most-significant lg n bits of each element in A2 by a bit vector C of
length 3n/2, and store it inside free space in A1 (here, we assume that 3n ≤
(n/2) lg n), and compact the remaining (least-significant lg m − lg n) bits into a
consecutive chunk of (n/2) lg(m/n) bits in A2. Finally, we copy all the lower order
bits (of total length n lg(m/n) bits) into a single chunk, and also merge the two
bit vectors of length 3n/2 each into a single bit vector of length 2n. Thus the array
A is replaced by a total of n lg(m/n) + 2n bits, giving a free space of n lg n − 2n
bits. These steps can be essentially performed in reverse order to restore the
original representation from the second representation. To support the operation
of accessing the i-th element of A in O(1) time, we can store an additional o(n)-
bit auxiliary structure that support the rank and select operations [20,38] on
the 2n bit sequence, which can then be used to access the most-significant lg n
bits of any element in O(1) time. The remaining lg m − lg n bits can be simply
read from the array of values stored in the second representation. See Fig. 2 for
a visual description of the final outcome of application of this theorem.

3 Optimal In-place Graph Algorithms

In this section, we show how one can use Theorem 2 for solving the graph prob-
lems mentioned before. Before giving specific details, we would like to sketch the
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general pattern for designing optimal in-place algorithms for some of these graph
problems. Given the adjacency array representation (as in Z) of the input graph
G, we now first apply Theorem 2 on the offsets part of Z to make n lg n−2n bits
free. Now the classical linear time algorithms [21,27,42–45] for these problems
typically take cn lg n + dn bits where both the constants c and d are at most 2.
Hence, our idea is to run these algorithms as it is but in some constant number of
phases. More specifically, we store only, say n/3 vertices, explicitly at any point
of time during the execution of these algorithms, and when these vertices are
taken care of by the respective algorithms, we refresh the data structures by ini-
tiating it with a new set of n/3 vertices and proceed again till we exhaust all the
vertices, thus, the entire algorithm would finish in three phases ultimately. Now
the exact details of refreshing the data structure with a new set of vertices and
start the algorithm again where it left off depends on specific problems. This idea
would work for most of the algorithms that we discuss in this paper except a few
important ones. More specifically, a few of the algorithms for those graph prob-
lems are two (or more) pass algorithms, i.e., in the first pass it computes some
function which is what used in the second pass to solve the problem finally, for
example, chain decomposition, biconnectivity etc. For these kinds of algorithms,
it seems hard to make them work using the previously described constant phase
algorithmic idea. Thus, we handle them differently by first proving some related
lemmata which might be of independent interest, and then use these lemmata
to design in-place algorithms for these graph problems. We discuss these after
giving proofs for the algorithms which we can handle in constant phases only.
In what follows we provide the proofs of linear time in-place algorithms for DFS
and its applications, especially chain decomposition, biconnectivity, 2-edge con-
nectivity, and also develop/prove the necessary ideas for these algorithms. The
missing proofs of Theorem 1 cen be found in the full version [15].

The classical implementation of DFS (see for example, Cormen et al. [21])
uses three colors and a stack to traverse the whole graph. More specifically, every
vertex v is white initially while it has not been discovered yet, becomes grey when
DFS discovers v for the first time and pushes on the stack, and is colored black
when it is finished i.e., all its neighbors have been explored completely, and it
leaves the stack. The algorithm maintains a color array C of length O(n) bits
that stores the color of each vertex at any point in the algorithm, along with
a stack (which could grow to O(n lg n) bits) for storing all the grey vertices at
any point during the execution. Our idea is to run essentially the same DFS
algorithm but we limit the stack size so that it contains at most n/2 latest grey
vertices all the time. More specifically, whenever the stack grows to have more
than n/2 vertices, we delete the bottom most vertex from the stack so that
above invariant is always maintained along with storing the last such vertex to
be deleted in order to enforce the invariant. At some point during the execution
of the algorithm, when we arrive at a vertex v such that none of v’s neighbors are
white, then we color the vertex v as black, and we pop it from the stack. If the
stack is still non-empty, then the parent of v (in the DFS tree) would be at the
top of the stack, and we continue the DFS from this vertex. On the other hand,
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if the stack becomes empty after removing v, we need to reconstruct it to the
state such that it holds the last n/2 grey vertices after all the pops done so far.
We refer to this phase of the algorithm as reconstruction step. For this, using
ideas from [3,25], we basically repeat the same algorithm but with one twist
which also enables us now to skip some of the vertices during this reconstruction
phase. In detail, we again start with an empty stack, insert the root s first and
scan its adjacency list from the first entry to skip all the black vertices and insert
into the stack the leftmost grey vertex. Then the repeat the same for this newly
inserted vertex into the stack until we reconstruct the last n/2 grey vertices.
As we have stored the last vertex to be deleted for maintaining the invariant
true, we know when to stop this reconstruction procedure. It is not hard to see
that this procedure correctly reconstructs the latest set of grey vertices in the
stack. We continue this process until all the vertices become black. Moreover,
this algorithm runs in O(m+n) time as it involves two phases each taking linear
time in the worst case, and uses at most (n lg n)/2 + n lg 3 bits which fits in our
budget of free space in the offsets part of the adjacency array. This completes
the description of the linear time in-place DFS algorithm.

Before providing the algorithms for other problems, we need a few additional
ideas which we will describe next. In the following theorem, we are interested
in dynamically maintaining the degree sequence of all vertices that belong to a
spanning subgraph of the original graph. More specifically, given a graph G =
(V,E), we want to run some algorithm on G for constructing a sparse spanning
subgraph G′ = (V,E′) (which is a spanning subgraph of G i.e., E′ ⊆ E and
|E′| = O(V )) of G, and we are interested in dynamically maintaining the degree
of all the vertices v in G′ i.e., degree of a vertex v in G′ is defined as the number
of neighbors u such that the edge (v, u) belongs to G′. Thus, degree of a vertex
v in G′ may not be same as degree of v in G. Also note that, by the notion of
dynamic, we mean that the algorithm starts with an empty graph and gradually
add edges to it before finally culminating with a sparse spanning subgraph, thus
during the execution of this algorithm degrees of the individual vertices are
changing, and it is this dynamically changing degrees that we want to efficiently
maintain. We refer to this as the dynamic maintenance of degree sequence phase.
Towards this goal, we prove the following general theorem.

Theorem 3. Given a graph G with n vertices and m edges, let G′ be a spanning
subgraph of G with m′ edges, and also let d′ = m′/n be the average degree of G′.
Then, we can construct the dynamically created degree sequence for the vertices
of G′ in O(m + n) time using O(n(lg d′ + lg lg n)) bits of construction space.
Moreover, the final degree sequence can be stored using O(n lg d′) bits such that
degree of any vertex can be returned in O(1) time.

Proof. We divide the vertices into n/ lg n groups of lg n vertices each. For each
group, we allocate a block of lg n(lg d′ + lg lg n) (≤ lg2 n) bits initially (uni-
formly for all the vertices in the block), to store their degrees. We also maintain
another parallel bit vector for each block that simply stores the delimiters for
each vertex’s degree (i.e., a 1 bit to indicate the last bit corresponding to each
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vertex’s degree, and 0 everywhere else). To access the degree of the i-th vertex
in a block, we first find the positions of the i − 1-th and the i-th 1 bits in the
corresponding delimiter sequence, and read the bits between these two positions
in the block. To perform this efficiently during the construction, we maintain an
auxiliary structure that supports select operation in O(1) time [20,38]. At any
point, the representation of each block and delimiter sequence consists of an inte-
gral number of words, and these representations are maintained as a collection
of “extendible arrays” using the structure of [41, Lemma 1].

At any time, a vertex has some number of bits allocated to store its degree. If
the degree of the vertex can be updated in-place, then we first access the position
where the degree of the vertex is stored, using the select data structure stored for
the corresponding delimiter sequence, and update the degree of the node stored
within the block. Otherwise, we first note that at least lg n increments have
been performed to some vertex within the block (since each vertex has a ‘slack’
of lg lg n bits at the beginning of the latest re-construction of the block). Now,
we spend O(lg n) time to re-construct the block (and also the corresponding
delimiter sequence with its select structure) so that the degree of each vertex v
in the block is stored �lg dv� + lg lg n bits, where dv is the current degree of v.
This lg n construction time can be amortized over the lg n increments performed
on the block before its re-construction, incurring an O(1) amortized cost per
increment. Once we construct the degree sequence for the entire subgraph G′,
we can scan all the blocks, and compact the degree sequence so that it occupies
O(n lg d′) bits. The space usage during the construction is bounded by O(n(lg d′+
lg lg n)) bits of space. Note that, the above task can be performed while executing
the linear time DFS algorithm described before, and this completes the proof.

Corollary 1. When G′ is the DFS tree of G, then we can store the dynamically
created degree sequence of G′, whose size is bounded by 2n bits, by running a lin-
ear time DFS procedure while using O(n lg lg n) bits of space during construction
such that the degree of any vertex in G′ can be accessed in O(1) time.

For the following discussion, assume that we are working with connected
undirected graphs only, and given this, now we are going to describe the setting
up parent phase. More specifically, while performing DFS, suppose we visit the
vertex u for the first time from the vertex v (hence v becomes the parent of u
in the DFS tree), at that point we perform one or more swaps in the portion of
the adjacency array Z where the neighbors of u are located so that the vertex
v becomes the first neighbor of u now. If the initial configuration of Z already
satisfies this property in u’s neighborhood, we don’t need to do anything else.
We repeat this procedure for every vertex v ∈ V so that when DFS ends, the
first neighbor of every vertex v (except the root vertex) is its parent in the DFS
tree. Note that we can perform this step of setting up parent in the first location
of every neighborhood list of every vertex alongside performing the linear time
DFS algorithm of Theorem 1. Thus, we obtain the following.

Lemma 2. There exists a linear time in-place algorithm for performing the set-
ting up parent procedure for every vertex of G.
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Note that, by choosing appropriate parameters, we can actually perform
the dynamic maintenance of degree sequence and the setting up parent phase
together while running the linear time in-place DFS algorithm of Theorem 1 in
any graph G. More specifically, suppose we choose to run the linear time in-place
DFS algorithm of Theorem 1 coupled with the setting up parent procedure (to
implement Lemma 2) by storing n/2 vertices (thus taking n lg n/2 bits) in the
free space of the offsets part of Z, thus, leaving roughly (n lg n/2 − 2n) bits of
space still free, which can be used to construct and store the degree sequence
of all the vertices in the DFS tree (to implement Corollary 1) while running the
same linear time in-place DFS algorithm of Theorem 1. By degree of a vertex v
in the DFS tree T , we mean the number of children v has in T , and it is this
number that gets stored using the algorithm of Corollary 1. Hence, at the end of
this linear time in-place procedure, we have the following invariant: (a) the first
neighbor of every vertex (except the root) is its parent in the DFS tree, and (b)
the offsets part of Z contains the degree sequence of every vertex v in the DFS
tree, and this occupies at most 2n bits.

Armed with the above algorithm, we are going to explain next the implicit
representation of the search tree phase. The goal of this phase is to rearrange the
neighbors of any vertex v in such a way that the first neighbor of v becomes its
parent in the DFS tree (except for the root vertex), followed by all of v’s children
in the DFS tree (if any) one by one, finally all the non-child neighbors. Thanks
to the setting up parent phase, we can implement the implicit representation
the search tree phase in linear time overall by doing a reverse search. More
specifically, for every non-root vertex v, we start by scanning v’s list from the
second neighbor onward (as first neighbor is its parent), and for each one of them,
say u, we go to the first location of u’s neighbor list to check if v is u’s parent if
so, we move u in v’s list closer to v’s parent (i.e., towards the beginning of v’s
list) by swapping, and repeat this procedure for all the neighbors of v’s so that
at the end all the children of v are clustered together followed by v’s parent.
The root vertex can be handled similarly, but we need to start the scanning
procedure from the first neighbor itself as it doesn’t have any parent. Hence, we
spend time proportional to its degree at every vertex, and obtain the following.

Lemma 3. There exists a linear time in-place algorithm for implicitly repre-
senting the search tree of G.

Thus, from now on we can assume that the neighbor list of every vertex
is represented in the search tree format implicitly. We choose to call it so as,
note that, given in this format, it is very convenient to answer the following
queries for any given vertex v in the DFS tree T : (a) return the parent of v
in T in O(1) time, (b) return the number of children v has in T in O(1) time
(from the dynamically maintained degree sequence), and finally, (c) enumerate
all the children of v one by one optimally in time proportional to its number of
children. Not only this, observe that we can still perform the DFS traversal of
G optimally in linear-time using essentially the same algorithm of Theorem 1
given this representation. We can even slightly optimize this DFS algorithm by
stop scanning the neighbor list of any vertex v as soon as we encounter its last
child u in the DFS tree (can be derived from the dynamically maintained degree
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sequence) as neighbors after u will not be of significance in performing the DFS
traversal of G. Hence, we obtain the following.

Lemma 4. There exists a linear time in-place algorithm for performing the DFS
traversal of a given graph G using the implicit search tree representation of G.

Topological Sorting. One of the standard algorithms for computing topologi-
cal sort [21] works by simply reporting the vertices of a DFS traversal of a given
directed acyclic graph in reverse order. We can easily implement this in-place in
linear time by running our DFS algorithm in two phases. More specifically, in the
first phase, we run the DFS algorithm completely to generate/store the last n/2
vertices in the DFS traversal order, and then report them in reverse order. This
is followed by running the DFS algorithm one more time but stopping just when
we obtain the other n/2 vertices, then we reverse the order of this vertices and
report. This completes the description of generating the vertices in topologically
sorted order of an input directed acyclic graph in-place in linear time.

In the full version [15] of this paper, we describe linear-time in-place algo-
rithms for all the remaining graph algorithms mentioned in Theorem 1, namely,
ordered BFS, MCS, st-numbering, MST, chain decomposition, checking bicon-
nectivity and/or 2-edge connectivity, and finding cut vertices and bridges.

4 Conclusions

In this paper, we designed linear time in-place algorithms for a variety of graph
problems. As a consequence, many interesting and contrasting observations fol-
low. For example, for directed st-reachability, the most space efficient polynomial
time algorithm [7] in ROM uses n/2Θ(

√
lg n) bits. In sharp contrast, we obtain

optimal linear time using logarithmic extra space algorithms for this problem as a
simple corollary of both BFS and DFS. Thus, in terms of workspace this is expo-
nentially better than the best known polynomial time algorithm [7] in ROM.
This provided us with one of the main motivations for designing algorithms
in the in-place model. A somewhat incomparable result obtained by Buhrman
et al. [9,35] where they gave an algorithm for directed st-reachability on cat-
alytic Turing machines in space O(lg n) with catalytic space O(n2 lg n) and time
O(n9). Finally, we conclude by mentioning that we barely scratched the sur-
face of designing in-place graph algorithms with plenty of more to be studied
in this model in future. For example, can we design linear time in-place algo-
rithms for testing planarity of a graph? Can we compute the max-flow/min-cut
in-place? Can we compute shortest paths between any two vertices of a given
graph in-place? We leave these problems as our future directions of study.
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