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Abstract. Negotiation is an important component of the interaction
process among humans. With increasing automation, autonomous agents
are expected to take over a lot of this interaction process. Much of auto-
mated negotiation literature focuses on agents having a static and known
reservation value. In situations involving dynamic environments e.g., an
agent negotiating on behalf of a human regarding a meeting, agents can
have a reservation value (RV) that is a function of time. This leads to
a different set of challenges that may need additional reasoning about
the concession behavior. In this paper, we build upon Negotiation algo-
rithms such as ONAC (Optimal Non-Adaptive Concession) and Time-
Dependent Techniques such as Boulware which work on settings where
the reservation value of the agent is fixed and known. Although these
algorithms can encode dynamic RV, their concession behavior and hence
the properties they were expected to display would be different from
when the RV is static, even though the underlying negotiation algorithm
remains the same. We, therefore, propose to use one of Counter, Bayesian
Learning with Regression Analysis or LSTM model on top of each algo-
rithm to develop the PredictRV strategy and show that PredictRV indeed
performs better on two different metrics tested on two different domains
on a variety of parameter settings.

Keywords: Automated negotiation · Dynamic reservation value ·
Belief update

1 Introduction

Negotiation is an important component of interaction process among humans
[18,19,22]. A lot of negotiation literature assumes that we have a good amount
of information about our own choices [10,15] and reservation value (RV), while
not knowing our opponents preferences [4,5,12]. Note that RV refers to the utility
of a bid in the negotiation, below which we would not be willing to accept any
bid. Reasons for not accepting a bid whose utility is below RV can be due to a
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better BATNA - Best Alternative to Negotiated Agreement [6] (so RV may be
set to BATNA) or that the agent receives a utility that is not good enough for
the agent to accept. In settings where the environment is dynamic, there can
be situations where our RV can change with time (while the preference profile
is static) [16]. We may not know how the changes would pan out e.g., an agent
acting on behalf of a meeting attendee may have varying estimates on when
the human may arrive for the meeting [3,23]. Dynamicity of RV can, therefore,
throw additional challenges when we are unaware of the nature of changes (which
is different from RV changing because of a discount factor where the change is
computable). Bids that simply react to the dynamicity may not be sufficient since
they can change in a random fashion and result in lower utility. For example, it
can be hard to agree on a meeting time if an agent acting on behalf of a human
declares that the human would arrive in 30 min and then re-declares in a short
period that the human would arrive in 10 min and then quickly change to say
20 min even though the agent may simply be acting based on its belief of when
the human would arrive.

1.1 Related Work

Making concessions to reach an agreement is an important part of the negotiation
process [8,14,20]. There are a variety of ways in which negotiating agents can
concede. One such category of techniques is Time-Dependent Tactics (TDT’s)
[7,9] e.g., Boulware and Conceder agents. [1] presents an Optimal Non-Adaptive
Concession (ONAC) algorithm with incomplete information where time pressure
(amount of time to deadline) is a primary criterion to influence the concession
behavior. Negotiation algorithms such as ONAC and Boulware [1] work on set-
tings where RV of the agent is fixed and known. Although these algorithms can
work with (or be modeled as a function of) a dynamic RV, their concession
behaviors can have a lot more randomness or fluctuations compared to when
they have a static RV. For purposes of a more stable bidding behavior, the
agent should, therefore, make choices based on predicted (RV) values. While the
quality of agreement is a default metric used in negotiations, popular negotia-
tion frameworks such as the Genius platform [17] do not support the modeling
of dynamic RV. We, therefore, had to develop a simple negotiation simulator
that can encode dynamic RV. In addition to the quality of agreement, we use
Prediction as an additional metric to evaluate the concession behavior.

We propose to use the following models on top of negotiation algorithms, to
handle the effects of a dynamic RV: (a) Counter model [24], (b) Bayesian
learning with Regression Analysis [25,26] and (c) LSTM model. All three
models are present in literature and we adapt them here to work suitably with
the different negotiation algorithms. While the paper builds on top of ONAC
and Boulware algorithms, the procedure, in general, would be suitable to apply
to algorithms that are sensitive to the dynamicity of RV (which results in fluc-
tuations in bidding). Given that the models help to predict the RV to reduce
the effect of dynamicity, we refer to the new strategy as PredictRV.
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Rest of the paper is organized as follows: Sect. 2 presents an overview of the
negotiation model and two negotiation algorithms namely ONAC and Boulware
with static RV. Section 3 presents a dynamic RV version of the negotiation model
and the ONAC and Boulware algorithms. In addition, it introduces the Predic-
tRV strategy and presents three methods used to make predictions over the
dynamic RV namely Counter, Bayesian Learning with Regression Analysis and
LSTM based prediction. Section 4 showcases the working of the three prediction
methods via an example when faced with dynamic RV. In Sect. 5, we present a
variety of experiments on two different domains to evaluate the performance of
the PredictRV strategy. Section 6 presents the conclusions of the paper.

2 Static RV

2.1 Negotiation Model

The negotiation model we use follows the alternating offers protocol [21] for a
bilateral negotiation: Consider two agents A and B with utility functions UA(z)
and UB(z) ∈ [0, 1] where z belongs to the set of all possible negotiation outcomes
for a domain D. The RV’s for the agents are rvA and rvB ∈ [0, 1]. The agents
will propose offers with utility higher than their own RVs.

2.2 Utility Generation for ONAC Algorithm

The ONAC algorithm [1] aims to construct optimal concession strategies against
specific classes of acceptance strategies [2]. It applies sequential decision tech-
niques to find analytical solutions that optimize the bidders expected utility,
given certain strategy sets of the opponent. The ONAC solution was found to
significantly outperform state of the art approaches in terms of obtained utility.
As shown in [1], the utility of the ONAC bid is computed by taking into account
the probability of acceptance of the bid (x, bid of agent A) by the opponents
where the agents have opposing preferences.

Uj = Uj+1 + max
U(x)≥rvA

(U(x) − Uj+1)(1 − U(x))

where U(x) ∈ [0, 1] and Uj+1 is the utility of the bid proposed by the agent at
round (j +1), Uj is the utility at round j and x is a valid bid with utility greater
than RV. This is a recurrence formula that gives the utility of the bid at each
round, where rvA is the RV for agent A and N is the deadline:

UN = rvA, Uj = (
Uj+1 + 1

2
)2, j ∈ {1, 2, 3, ..., N − 1} (1)

2.3 Utility Generation for Boulware Algorithm

The Boulware algorithm is a TDT [7,9], which concedes considerably more as
the negotiation deadline approaches. TDTs consist of a family of functions that
represent an infinite number of possible. The formula for tactics, one for each
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Uj = rvA + (1 − rvA) ∗ (
min(N − j,N)

N
)

1
β (2)

value of β this family of functions is as follows where j is the jth round and β
should be in the range (0, 1) for Boulware.

3 Dynamic RV: The PredictRV Strategy

3.1 Negotiation Model

The negotiation model remains the same as for the static RV case with the
following difference: Since agent A’s RV is dynamic, it is represented as rvA(t)
(and rvB(t) for B for generality).

3.2 ONAC for Dynamic Reservation Values

To model dynamic RV we assume that the value of RV is drawn from an unknown
probability distribution, and in each round, agent A receives a signal rvA(t)
drawn from that distribution. PredictRV attempts to predict this probability
distribution (p.d.) and incorporate it into a negotiation algorithm (ONAC here).
We assume that there is no noise in the signal rvA(t), hence it corresponds to
the actual RV at time step t. The PredictRV recurrence formula would be:

UN = rvA(t), where t = j at round j

Uj = (
Uj+1 + 1

2
)2, j ∈ {1, 2, 3, ...N − 1}

(3)

For a dynamic RV, the value to bid will no longer be determined using Eq. (1).
Instead, we first need to assign the new RV to UN and then re-compute for Uj

as shown in Eq. (3).

3.3 Boulware for Dynamic Reservation Values

The Boulware algorithm present in negotiation literature assumes a static RV.
For Boulware that works with dynamic RV, utilities can be generated using the
following function:

Uj = rvA(j) + (1 − rvA(j)) ∗ (
min(N − j,N)

N
)

1
β , at round j (4)

3.4 Illustrative Example

Consider a toy example, where the RV can be either 0.1 or 0.9 and it changes
randomly every 2 rounds for a total of 100 rounds. Figure 1 shows the concession
curves obtained by using the ONAC and Boulware algorithms. The x-axis of each
figure shows the number of rounds from 0 to 100 while the y-axis shows the utility
values ranging from 0 to 1. The utilities of the bids at each round are computed
using Eq. (3). The figures show that the concession curves are not monotonic due
to the dynamic nature of the RV, which results in to and fro concessions being
made, where peaks correspond to RV of 0.9 and troughs correspond to 0.1.
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(a) ONAC algorithm (b) Boulware algorithm

Fig. 1. Utilities obtained by using ONAC and Boulware algorithms

3.5 Steps of Strategy for PredictRV

Given a negotiation algorithm (like ONAC or Boulware):

1. Generate hypotheses about the RV and assign weights to each
hypothesis. Compute the utility for each hypothesis Txi

[by setting
UN as the utility of the hypothesis and plugging in Eq. (3)].
For each round j from 1 to N (no. of rounds):
2. Update weights of hypotheses based on the rvA at that round i.e.,
rvA(j) [using Counter, Bayesian or LSTM approaches presented below]
3. Using the utility computed for each hypothesis in Step (1), we now
compute the utility of the bid [Using one of Eqs. (6) or (13)].

End of for

To generate hypotheses (first step), we divide the range between which the
RV can vary, into n number of intervals Ii for i ∈ {1, 2, 3, ...n}. A suitable
point xi is selected as a representative value for each interval Ii. If the RV
falls within an interval, it is classified as having the utility of the point that
represents the interval. We then compute negotiation algorithm utilities, Txi

=
〈U1(xi), U2(xi), ..., UN (xi)〉 using Eq. (3). At the start, all hypotheses are equally
likely, hence each hypothesis is initialized with a probability 1

n i.e., uniform dis-
tribution over hypotheses. As the negotiation progresses we may have a better
prediction over the hypotheses based on the past RVs, hence the probability dis-
tribution would change. The second step of the PredictRV strategy is to update
the weights of the hypotheses as the new round starts. How the weights are
updated depends on the actual procedure we use namely Counter, Bayesian
Learning or LSTM models presented below.

3.6 Counter Learning

In the Counter based learning procedure, the count for each hypothesis is ini-
tialized as cxi

= 0, where i ∈ {1, 2, 3, ...n}. At a new round j, we obtain a new
RV. As step 2 of PredictRV, using the new RV we update the counter for the
hypothesis that corresponds to the new RV. We re-compute the probability for
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each interval as follows:

pxi
=

cxi∑n
i=1 cxi

, i ∈ {1, 2, 3, ...n} (5)

As step 3 of PredictRV, using the probabilities computed on different intervals
we compute the utility Uj to be bid by PredictRV as:

Uj =
n∑

i=1

pxi
∗ Txij , j ∈ {1, 2, 3, ...N} (6)

3.7 Bayesian Learning with Regression Analysis (BLRA)

In the BLRA procedure presented in [25], the learning agent i has a belief about
the p.d. of its opponent’s negotiation parameters (i.e., the deadline and RV). As
shown in step 1 of PredictRV, we have a belief over the hypothesis of our own
(dynamic) RV. By keeping track of the history of values obtained for RV so far
and comparing it with fitted estimates derived from a regression analysis, the
agent can revise its belief over the hypothesis by using a Bayesian updating rule
and can correspondingly adapt its concession strategy.

Regression Analysis. As the negotiation proceeds [25], utility ut for a TDT
decreases according to the following decision function:

ut = 1 − (
t

T
)
β

(7)

where T is the deadline and β is the concession parameter. We adopt this ter-
minology to express in terms of agent A’s own dynamic RV. We assume RV to
be 0 at the start of the negotiation and vary according to Eq. (7).

ut = u0 + (uT − u0)(
t

T
)β (8)

where uT is the RV at the deadline and u0 is the RV at the start. For
every round, we receive an RV for that round. We compute the regression
line (fitted utilities) R̂V tb

= {û0, û1, û2, ..., ûtb
} based on the historical RVs,

RVtb
= {u0, u1, u2, ..., utb

} until round tb as follows:

Step 1: Generate the hypotheses and initialize its probabilities as mentioned in
Sect. 3.5 (Steps of strategy) with xi representing the utility of each hypothesis.
Step 2: Based on Eq. (8), we use the following power regression function to
calculate the regression curve:

ût = u0 + (xi − u0)(
t

N
)β (9)

where N is the deadline. Next, β is calculated using Eq. (10) (as proposed in
[25]):

β =
∑tb

k=1 t∗ku∗
k∑tb

k=1 t∗2

k

,where u∗
k = ln(

u0 − uk

u0 − xi
), t∗ = ln(

t

N
) (10)
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Step 3: Based on the calculated regression curve given by Eqs. (9) and (10), the
fitted RVs, R̂V tb

would be = {û0, û1, û2, ..., ûtb
} at each round (where û0 = u0).

Step 4: We now calculate the non-linear correlation between RVtb
and the fitted

RVs R̂V tb
. The coefficient of non-linear correlation γ is given by Eq. (11), where

u and û are the average of all the historical and fitted RVs respectively:

γ =
∑tb

k=1(uk − u)(ûk − û)
√∑tb

k=1(ûk − û)2
∑tb

k=1(ûk − û)2
, γnew =

γ + 1
2

(11)

Step 5: Parameter γ (−1 ≤ γ ≤ 1) is used for evaluating resemblance between
chosen (xi) and real RVs (ut). To use γ as a probability to perform belief update
in Bayesian Learning, we normalize it to [0,1] (γnew in Eq. (11)).

Bayesian Learning

Step 1: Bayesian Learning can be used if we have a hypothesis about the pre-
diction. Belief about p.d. of these hypotheses can be revised through a posterior
probability by observing the RV. Each hypothesis Hi represents that it would
be the possible RV at the end of negotiation. The prior p.d., denoted by P(Hi),
i ∈ (1, 2, 3, ..., n) signifies the agent’s belief about the hypothesis i.e., how likely
the hypothesis matches the RV at the end of the negotiation.
Step 2: The agent can initialize the p.d. over hypotheses based on some prior
information if available, otherwise a uniform distribution P(Hi) = 1

n is assigned.
During each round of negotiation tb the probability of each hypothesis would be
computed using the Bayesian updating rule in Eq. (12):

P (Hi|RV ) =
P (Hi)P (RV |Hi)∑n

k=1 P (RV |Hk)P (Hk)
(12)

Step 3: The observed outcome here is historical RVs RVtb
= {u0, u1, u2, ..., utb

}.
As presented in [25], the agent will update the prior probability P(Hi) using the
posterior probability P(Hi|RVtb

), thus a more precise estimate is achieved using
Eq. (12).
Step 4: As presented in [25], conditional probability P(RVtb

|Hi) is obtained by
comparing the fitted points R̂V tb

on the regression line based on each selected
RV xi, with the historical RVs RVtb

. The more correlated fitted RVs are with
historical RVs, the higher P(RVtb

|Hi) will be.
Step 5: Difference between the regression curve and the real RV sequence can
be indicated by the non-linear correlation coefficient γnew. Thus, we can use the
value of γnew as the conditional probability P(RV |Hi) in Eq. (12). The learning
approach will increase the probability of a hypothesis when the RV selected (xi)
is most correlated with the RV at the end of the negotiation. As mentioned in
step 4 of PredictRV, using the probabilities on different intervals, we compute
the utility at that round as:

Uj =
n∑

i=1

P (Hi) ∗ Txij , j ∈ {1, 2, 3, ...N} (13)
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3.8 LSTM Based Prediction

Fig. 2. LSTM architecture

LSTM (Long-Short Term Memory)
[13] is a popular recurrent neu-
ral network architecture to perform
deep learning tasks and is useful in
time-series prediction. The negotia-
tion problem introduced here can be
modeled as a time series prediction
task wherein the agent learns more
information as the negotiation pro-
gresses. We, therefore, propose to use
an LSTM based approach to predict
the RV at the last time step n of the
negotiation, using time-series forecasting. As shown in Fig. 2, the input at each
time step t for LSTM is RV (t) (i.e., RV provided by the environment at t). Note
that there exists a single LSTM cell A to which input is fed repeatedly (one value
at every time step) along with the output of the previous time step. Output at
t is the predicted value for RV at the last time step n denoted by R̂V t(n). The
LSTM is trained using a mean squared error loss function and learns to predict
better as the number of epochs increases. There are n hypotheses in our problem
whose probability is updated every time step based on the predicted RV for the
last time step R̂V . This is similar to Counter model where we identify the inter-
val the R̂V falls into and increase the count of that hypothesis by 1 (Eq. (5)).
Using the probabilities for different hypotheses we compute the utility to be bid
by PredictRV (Eq. (6)).

4 Example Continued

The rest of the example is explained using the ONAC-D algorithm (ONAC-D is
ONAC strategy without any changes applied to Dynamic RV). Figure 4 shows
the utility values generated by Counter, BLRA and LSTM models computed
using Eqs. (6) and (13) respectively. The x-axes shows the number of rounds
from 0 to 100 while the y-axes shows the utility values ranging from 0 to 1.

Figure 3 shows the belief plots for the three models. A belief plot shows
how the belief in a particular hypothesis changes as the rounds progress. The
figure shows two plots corresponding to the two hypotheses that the RV is 0.1
(hypothesis 0.1) and 0.9 (i.e., hypothesis 0.9). The x-axes for both the figures
show the number of rounds from 0 to 100 and the y-axes show the probability
of belief in the hypothesis that the figure represents e.g., a y-axis value of 0.3
in figure on left implies that an algorithm believes that the RV is 0.1 with a
probability 0.3 which implies that other hypotheses are true with rest of the
probability (in this case only other hypothesis is hypothesis 0.9). The belief
plots show that:

(a) For hypothesis 0.1, while Counter stays close to middle (probability of
0.5), BLRA and LSTM are more clear in their belief for this hypothesis (former
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Fig. 3. Belief plots for two hypotheses

Fig. 4. Algorithms with their fitted curves

converges to close to 0 while the latter converges to close to 1 probability and
stay with these probabilities once converged) showing the inherent differences
between the models. (b) Counter converges quickly to a belief of 0.5 since RV
alternates between the hypotheses every 2 steps, hence the count is more or less
balanced. (c) For BLRA, belief in hypothesis 0.1 converges close to 0 since it
is not just the count but the time when the RV changes come into play here.
(e) For LSTM, belief in hypothesis 0.1 converges to close to 1 faster than other
models, however to the opposite belief of BLRA for this example. The outcome
utility for 〈ONAC-D, Counter〉 is 〈0.5, 0.5〉, 〈ONAC-D, Bayesian〉 is 〈0.25, 0.75〉
and 〈ONAC-D, LSTM〉 is 〈0.6, 0.4〉.

5 Experiments

5.1 Setup for the Experiments

We have a number of hypotheses, number of rounds of negotiation N and update
rate (frequency of change in RV) as the parameters of our algorithm. N is fixed
to 100 for all experiments. Experiments were performed on the Fire Disaster
Response and Meeting Scheduling domains. In both these domains, the agent
is faced with a dynamic RV. For purposes of experimentation, we model the
dynamic RV using a Markov chain model [we omit the specifics of our modeling
due to space constraints]. The number of hypotheses vary across the domains.
Update rate of RV is varied among the values {2, 5, 10, 20, 50}. We run each
experiment for 100 iterations keeping the parameters constant. X-axis shows the
(hypothesis, update rate) while y-axis shows the respective metric in each plot.
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5.2 Metrics

1) Outcome Utility Metric: We run negotiations for agent A vs agent B,
where A uses one of ONAC-D or Boulware-D and B is PredictRV strategy
(Counter, BLRA or LSTM). We average the outcome over 100 iterations and
compute the outcome utility for each UpdateRate and hypothesis (averaged
utility represented as OD for ONAC-D, C for Counter, B for BLRA and L
for LSTM). We then compute the utility of PredictRV w.r.t ONAC-D using
Eq. (14) (represented in graphs as Average Percentage Utility):

percentage utility of i =
i − OD

OD
∗ 100, i ∈ {C,B,L} (14)

2) Prediction Metric: We allow each model to train until the end of the nego-
tiation (N rounds). At the last round N , we have an RV predicted by each
of the models i.e R̂V for round N + 1 (which is not part of the negotiation).
For each of the models, we then compute the difference between R̂V and the
actual RV at round N + 1 which is used to capture the quality of prediction.
This value is averaged over 100 iterations where a lower difference in average
value implies a better prediction.

5.3 Fire Disaster Response

Consider a forest fire where the fire can spread quickly in any of the 4 directions
i.e., North, South, East or West. Assume that the forest is modeled as a grid of
size n1*n1 [11]. Fire fighting units (local units) are dispatched to many locations
to fight the fire. The commander in charge has a global picture of the fire and
wants to reduce the resources given to each local unit. The local unit leader
(modeled as agent) would like to negotiate with the commander to obtain higher
(than minimal needed to just put off the fire) number of resources to stop the
fire quickly at the local point. Given that the direction of fire changes in different
time steps, the RV is dynamic i.e. changes with time.

We operationalize the experimental parameters as follows: A negotiation is
being carried out with N (=100) as the deadline. The parameters here are number
of hypotheses, the update rate of the RV and grid size. The number of hypotheses
are varied among the values {2, 4} i.e., {North, South} or {North, West, East,
South} directions with {0.75, 0.15} and {0.75, 0.57, 0.32, 0.15} (corresponding to
number of resources {12, 10, 7, 4}) as the values for RV. Experiments were
performed with the local location start point, as a random point around the
center of the grid (up to a radius of 4 units from the center).

Figure 5 shows two plots corresponding to ONAC and Boulware with a ran-
dom start point for fire with grid size 100. Both plots show that the values for
outcome utility metric (Sect. 5.2) for PredictRV are higher than for ONAC-D
or Boulware-D respectively e.g., plot (b) of Fig. 5 shows that the Average Per-
centage Utility for BLRA varies from 50% at the lowest to 95% at the highest.
The plot also shows that the overall Average Percentage Utility across all the
intervals and update rates for BLRA is 71% while it is 61% for Counter and
−4.4% for LSTM.
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(a) ONAC Strategy (b) Boulware Strategy

Fig. 5. Outcome utility in fire domain with random start points

Fig. 6. Prediction in the
meeting domain

To showcase the statistical significance of the
outcome utility results presented in Fig. 5 of the
paper, we performed a paired valued t-tests for the
following settings (where O: ONAC, Bo: Boulware,
Ba: Bayesian, C: Counter, L: LSTM): In PredictRV
experiments for O: Ba vs. O, C vs. O, L vs. O, Ba
vs. C, Ba vs. L, C vs. L. In PredictRV experiments
for Bo: Ba vs. Bo, Co vs. Bo, L vs. Bo, Ba vs. C, Ba
vs. L, C vs. L. If the calculated P-value is less than
0.05, it means that statistically the mean difference
(in outcome utility as shown in Fig. 5) between the
paired observations is different. Our testing showed that mean values of outcome
utility for Bayesian vs. Counter does not have significant difference statistically
(both for ONAC and Boulware i.e., 2 tests). All the other (10) tests, showed
that the differences in (the averaged) outcome utility are statistically different.

5.4 Meeting Scheduling Domain

For brevity purposes, we present the gist of the domain here: We operational-
ized parameters for this domain from the E-Elves [23] application. The param-
eters for the algorithm are the update rate of the RV, delay intervals and
number of hypotheses. There are 9 possible delay intervals we consider here
i.e {5, 10, 15, 20, 25, 30, 35, 40, 45} min. A delay interval of 10 min means that a
meeting supposed to start at 10 am is now rescheduled to start at 10:10 am. For
this domain each hypothesis corresponds to a delay interval, hence 9 hypotheses
correspond to 9 delay intervals. The overall value of the meet is computed as
below:

Delaycost = (delayalpha) ∗ 2, V alue of themeet = 200
Overall value = V alue of meet − Delaycost

(15)

where delay is delay w.r.t. the scheduled starting time and alpha ∈
{1.0, 1.2, 1.4, 1.6}. Utility of the hypothesis is calculated by normalizing the
reward obtained using Eq. (15). The prediction measurement for the meeting
domain is shown in Fig. 6. Experiments for measuring prediction for the meet-
ing domain were performed with the following summary (we skip graphs due to
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Fig. 7. Relative performance table (ranks)

space issues): The overall average percentage prediction across all the intervals
and the update rates for Counter, BLRA and LSTM are −3.05, −8.27 and 88.12
respectively.

5.5 Summary of the Experiments

In Fig. 7, 1 signifies the best performing model and 2 signifies the second-best
performing model for a given metric and domain, x%: how much better the
best model is relative to the second-best model. Formulation: a= metric value of
best model, b = metric value of 2nd best model. For the outcome utility relative
performance = 100 * (a−b)

a , (a > b). For the prediction metric, relative perfor-
mance = 100 * (b−a)

b , (b > a).
Explanation: For each of the metrics, we measure the relative value of the

best performing model w.r.t the second-best performing model for each domain.
For example, in the Fire Random domain for the ONAC algorithm, BLRA is
5% better than Counter on outcome utility metric and LSTM is 33.91% better
than Counter on the prediction metric.

6 Conclusions

We introduced the PredictRV strategy which uses one of Counter, BLRA or
LSTM learning models that predict over the dynamic RV to perform a better
negotiation. Our results show that: a) For Outcome Utility: the BLRA model
performs slightly better than Counter although the difference is not statistically
significant. b) For Prediction metric: LSTM is the best performing model while
Counter performs next best. c) Outcome utility is the standard metric that is
used to evaluate negotiations. Given that both BLRA and Counter methods per-
form well on this metric, they can be tested for the specific use case needed and
one of them picked based on the insights obtained. In summary, the key novelty
of our work is that we enhance the ability of current negotiation algorithms to
handle dynamic RV. The problem can be more general where only an indicator
function for the RV is available rather than the actual value at each update
step as assumed here. Popular negotiation platform such as Genius allows us to
encode static RV currently – we believe this work takes a significant step towards
dealing with challenges in handling dynamic RV.
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