l‘)

Check for
updates

Programming the CLEARSY Safety
Platform with B

Thierry Lecomte®™)

ClearSy, 320 Avenue Archimede, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. The CLEARSY Safety Platform (CSSP) is aimed at easing
the development and the deployment of safety critical applications, up to
the safety integrity level 4 (SIL4). It relies on the smart integration of
the B formal method, redundant code generation and compilation, and
a hardware platform that ensures a safe execution of the software. This
paper exposes the programming model of the CSSP used to develop
control & command applications based on digital I/Os.

Keywords: B method - Safety critical + Programming model

1 Introduction

In many industrial standards, formal methods are highly recommended when
developing safety critical software for the highest safety levels. However formal
methods are highly recommended just like many other non-formal (combina-
tion of) techniques, as these recommendations are setup collectively and rep-
resent the industrial best practices. Convinced that formal methods could help
to obtain better products [4,5,7,8], more easily certifiable, a generic, safe exe-
cution platform has been researched for years, combining safety electronics and
defect-free proven software. The software model is proved to be defect-free -
complying with its formal specification and without programming errors. The
code generators and the compilers are not defect-free. They are not required to
be defect-free as the defects are detected with divergent behaviour during exe-
cution. The CLEARSY Safety Platform was initially an in-house development
project before being funded by the R&D collaborative project LCHIP (Low
Cost High Integrity Platform) to obtain a generic version of the platform (i.e.
not only aimed at railway systems). LCHIP [6] is aimed at allowing any engineer
to develop a function by using its usual Domain Specific Language (DSL) and to
obtain this function running safely on a hardware platform. With an automatic
development process, the B formal method will remain “behind the curtain”
in order to avoid expert transactions over several languages (domain specific
language, B language, interactive proof). Indeed the programs developed with
the CLEARSY Safety Platform are considerably simpler than metro automatic
pilot, with few properties, simpler algorithms and hence with an expected excel-
lent automatic proof ratio. The integration of third party provers/solvers is also

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 124-138, 2020.
https://doi.org/10.1007/978-3-030-48077-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_9

Programming the CLEARSY Safety Platform with B 125

expected to improve automatic proof. Based on our previous certification expe-
rience, the safety demonstration of a safety case does not require any specific
feature for the input B model; it could be handwritten or the by-product of a
translation process. Several DSLs are being connected (or planned to be) based
on an Open API (Bxml).

This paper introduces the CLEARSY Safety Platform, presents and explains
the evolution of the supported B0 modelling language. The shape of the programs
developed for this platform are tightly linked with the specific mission of the
platform: ensuring a safety (see Sect.3.3) out of reach of the developer who
cannot alter it.

This paper is structured in five parts. The Terminology is first introduced as
some terms and concepts are quite specific. Then a description of the CLEARSY
Safety Platform is provided with a focus on its safety features. Third the pro-
gramming model is introduced; the simplification of the proof is also discussed.
Exploitation and dissemination are then exposed. Finally conclusion and per-
spectives are discussed.

2 Terminology

This chapter clarifies a number of unusual terms and concepts used in this paper.

Atelier CSSP is Atelier B extended with diverse code generator toolchain,
bootloader, and a new project type (CSSP project).

BO is a subset of the B language [1] that must be used at implementation level.
It contains deterministic substitutions and concrete types. BO definition depends
on the target hardware associated to a code generator [2]. Most railways product
lines use their own own specific code generator.

Bxml is an XML interface to B models, supported by Atelier B.

CRC stands for cyclic redundancy check, is an error-detecting code commonly
used in digital networks and storage devices to detect accidental changes to raw
data.

CSSP abbreviation of CLEARSY Safety Platform. The CLEARSY Safety Plat-
form is made up of a hardware execution platform, an IDE enabling the genera-
tion of diverse binaries from a single B model, and a certification kit describing its
safety features as well as the safety constraints exported to the hosting system.

Diversity intentional differences between redundant components, to reduce the
likelihood of common failures due to systematic causes that would reduce the
benefit of redundancy [3].

Fault tolerance is the property that enables a system to continue operating
properly in the event of the failure of some of its components. In our case, any
electronic part including the processors.

126 T. Lecomte

HEX is a file format that conveys binary information in ASCII text form. It is
commonly used for programming microcontrollers, EPROMs, and other types of
programmable logic devices.

PLC stands for programmable logic controller, is an industrial digital com-
puter which has been ruggedized and adapted for the control of any activity
that requires high reliability control and ease of programming and process fault
diagnosis.

Safety refers to the control of recognized hazards in order to achieve an accept-
able level of risk.

SIL put for Safety Integrity Level, is a relative level of risk-reduction provided
by a safety function. Its range is usually between 0 and 4, SIL4 being the most
dependable and used for situations where people could die.

Reliability is the ability of a system to perform its required functions under
stated conditions for a specified time.

3 The CLEARSY Safety Platform

3.1 Rationale

Developing a safety computer from scratch is not something you easily decide
because of the effort required to obtain such a device. Two kinds of device
are currently available on the market for safety critical applications: PLCs and
SIL3/SIL4-ready boards. Large companies building trains have their own in-
house devices but they are not publicly available. PLCs provide a strict, certi-
fied environment from which it is impossible to escape, requiring systems to be
designed and programmed in specific ways. On the contrary, SIL3/SIL4-ready
boards offer more freedom, come with hardware features not incompatible with
the standards but where the safety principles have to be fully programmed by
the developer in C or similar language.

To overcome this inconvenience, CLEARSY decided to develop its own solu-
tion based on the combination of redundant hardware and proven software devel-
oped with B. Producing its own hardware would reduce by an order of magnitude
its cost compared to PLCs and SILx-ready boards while using Atelier B would
allow more freedom and more control on the software development. The decision
to go for B was easily taken as it is highly recommended by the industry stan-
dard for SIL4 software development. B is also the central formal technology we
have been using during more than 20 years for most of safety critical software
development. Finally the CLEARSY Safety Platform is aimed at easing the cer-
tification process, as the safety principles, embedded in the electronics design
and the B software, are out of reach of the developer who cannot alter them.

Programming the CLEARSY Safety Platform with B 127

3.2 Description

The CLEARSY Safety Platform (abbreviated as CSSP in the rest of the docu-
ment) is a new technology, both hardware and software, combining a software
development environment based on the B language and a secured execution
hardware platform, to ease the development of safety critical applications.

It relies on a software factory that automatically transforms function into
binary code that runs on redundant hardware. The starting point is a text-
based, B formal model that specifies the function to implement. This model may
contain static and dynamic properties that define the functional boundaries of
the target software. The B project is automatically generated (Fig.5), based on
the inputs/outputs configuration (numbers, names). The project contains all the
machines and implementation components required to program the CLEARSY
Safety Platform. From the developer’s point of view, only one function (name
user_logic) has to be specified (machine logic) and implemented properly (imple-
mentation logic_i).

uct

Program

Crt Binary 1]

Sequencer

{

Program

verificatiol
Binary 1

Sequencer

+ e .
Safety library verification]

+
Safety library

1 Compier]

[Function [

s

Binary 2

Sequencer

+
Safety library

Coherency, no
programming error

development EXECUTION sl

Fig. 1. The safe generation and execution of a function on the double processor.

The implementable model is then translated using two different chains:

— Translation into C ANSI code, with the C4B Atelier B code generator
(instance I;). This C code is then compiled into HEX! binary code with
an off-the-shelf compiler (gec).

— Translation into MIPS Assembly then to HEX binary code, with a specific
compiler developed for this purpose (instance Is). The translation in two steps

L A file format that conveys binary information in ASCII text form. It is commonly
used for programming micro-controllers.

128 T. Lecomte

allows to better debug the translation process as a MIPS assembly instruction
corresponds to a HEX line.

The software obtained is the uploaded on the execution platform to be exe-
cuted by two micro-controllers (Fig. 2).

outputs EEN
AN
o BUN NLN ¢
POWER - Rl Lo L] O R
5 Power supply 0 g ey Programming & monitoring link)

PLATFORM

2 Reset button —&'e | - Serial channel selector)
' Board id fE8

uct mn

fEMicrocontroller 2 Microcontroller 188

{3 serial bus Serial bus (i)

50 inputs

Fig. 2. The CLEARSY Safety Platform Starter Kit 0 (SKo) — documentation available
at https://github.com/CLEARSY /CSSP-Programming- Handbook

3.3 Safety

These two different instances I; and Is of the same function are then executed
in sequence, one after the other, on two PIC32 micro-controllers. Each micro-
controller hosts both I; and Iy, so at any time 4 instances of the function are
being executed on the micro-controllers. The results obtained by I; and Iy are
first compared locally on each micro-controller then they are compared between
micro-controllers by using messages. In case of a divergent behaviour (at least one
of the four instances exhibits a different behaviour), the faulty micro-controller
reboots. The sequencer and the safety functions are developed once for all in

initialisation

while(true) {
execute 11
execute 12
perform safety verifications

Fig. 3. The pseudo-code of the sequencer.

https://github.com/CLEARSY/CSSP-Programming-Handbook

Programming the CLEARSY Safety Platform with B 129

B by the IDE design team and come along as a library. This way, the safety
functions are out of reach of the developers and cannot be altered. The safety is
based on several features such as:

— the detection of a divergent behaviour,

— micro-controller liveness regularly checked by messages,

— the detection of the inability for a processor to execute an instruction prop-
erly?,

— the ability to command outputs?®,

— memory areas (code, data for the two instances) are also checked (no overlap,
no address outside memory range),

— each output needs the two micro-controllers to be alive and providing respec-
tively power and command, to be active (permissive mode). In case of mis-
behaviour, the detecting micro-controller deactivate its outputs and enter an
infinite loop doing nothing.

The code generators are different (code generation paths, specification, pro-
gramming languages, development teams) and as such common failure modes
are neglected. Some of the tools part of the tool-chain have been “certified by
usage” since 1998 (B parser, B compiler, C code generator), but the newest tools
of this tool-chain have no history to rely on for certification. It is not a problem
for railway standards as the whole product is certified (with its environment, its
development and verification processes, etc.), hence it is not required to have
every tool certified. Instead the main feature used for the safety demonstration
is the detection of a misbehaviour among the 4 instances of the function and
the 2 microcontrollers. This way, similar bugs that could affect at the same
time and with the same effects two independent tools are simply neglected. In
its current shape, the CLEARSY Safety Platform provides an automatic way
of transforming a proven B model into a program that safely executes on a
redundant platform while the developer does not have to worry about the safety
aspects.

3.4 Target Applications

The execution platform is based on two PIC32 micro-controllers?. The process-
ing power available is sufficient to update 50k interlocking Boolean equations
per second, compatible with light-rail signalling requirements. The execution
platform can be redesigned seamlessly for any kind of mono-core processor if a
higher level of performance is required.

2 All instructions are tested regularly against an oracle.

3 Outputs are read to check if commands are effective, a system not able to change
the state of its outputs has to shutdown.

4 PIC32MX795F512L providing 105 DMIPS at 80 MHz.

130 T. Lecomte

The IDE provides a restricted modelling framework for software where:

— No operating system is used.

— Software behaviour is cyclic (no parallelism).

— No interruption modifies the software state variables.

— Supported types are Boolean and integer types (and arrays of).

— Only bounded-complexity algorithms are supported (the price to pay to keep
the proof process automatic).

4 Programming Model

Target CSSP applications are controllers. They execute the following infinite
loop: read inputs, perform computation, then set outputs. If a failure happens,
the board deactivates the outputs (they are all OFF — not powered) and enters
an infinite loop doing nothing (Fig.4). The only way to exit this loop is to reset
the board. The program in Flash memory is copied into RAM and then its
execution starts. If the failure is permanent, the board keeps restarting with the
outputs deactivated — the board remains in a safe, restrictive state.

Y X

inputs — F — outputs inputs — Do nothing — deactivated

== (read inputs, compute, set outputs)*

Fig.4. A CSSP is either able to execute its software properly (transfer function F)
(left) or is not able (right) and hence does nothing while its outputs are deactivated.

4.1 Development Process

A CSSP project (Fig.5) is a B project generated from a CSSP board configu-
ration where I/O are selected (some inputs/outputs pins may not be used) and
named. This generated B project is made of:

— the interface with the safety library, containing the definition of all the types
(and related constants) that may be used in a CSSP project, as well as specific
operators (arithmetic, logic) and operations (access to current time, message
to print on serial channel),

— the model of the function to program, that has:

e a read-only access to the safety library, the digital inputs status (OFF,
ON), the current time since the last rest/power-on, and
e the ability to modify the digital outputs (OFF, ON).

Programming the CSSP consists in modifying the components user_ctz and
logic, and to possibly add other components to be imported by logic_i.

Programming the CLEARSY Safety Platform with B 131

[types | [acoperators] [io_constants] (idip_configuration] [user_configuration | [ichip_interface] [safety_variables|
la_types i

i—““’—‘“ }—{"‘“’ i—""’: |—|"‘“““’
wser_cb i inputs | logc i outputs §

L J\ J

I |

Safety library interface Model of the function to program

Fig. 5. A CSSP project.

4.2 Pragmas

A component cannot contain both constants (SETS, CONSTANTS) and vari-
ables. Constants are hosted by context machines (machines without variables,
with possibly read-only operations). The compiler is made aware of this situation
by the use of one and only one pragma in each implementation:

— CONSTANTS, to indicate a constants-only module
— SAFETY_VARS, to indicate a variables-only module

IMPLEMENTATION IMPLEMENTATION
logic_i user_ctx i
REFINES REFINES
logic user_ctx
SEES
g_types, // pragma CONSTANTS
g_operators, SEES
io_constants, g_types
lchip interface, VALUES
user_ctx, DELTA T = 1000 // 1000 ms == 1s
inputs END
// pragma SAFETY VARS

Fig. 6. Two examples of pragmas.

4.3 Types and Operators
The types available in implementation are:

— wint8-t, uint16_t, uint32_t. These types (unsigned integers coded on 8, 16 and
32 bits) are preferred to the generic type INT, to get a better control over
variable memory size and overflow. Automatic casting is performed when for
example a uintl6_t variable is combined with a wint§-t value. The reverse
situation generates a warning from the B32 compiler.

- BOOL

132 T. Lecomte

The values of the digital inputs and outputs (/O-OFF, IO_ON) are stored as
wint8-t and not as Boolean. It is because a memory glitch could easily transform
a0in 1 (or a 1 in 0) without being easily detected. Having these values coded
with 8 bits (with a sufficient Hamming distance) make this undetected mod-
ification unlikely to occur. Moreover setting one output with a value different
from IO_OFF and IO_ON is detected during execution by the CLEARSY Safety
Platform which enters panic mode.

In order to automate as much as possible the proof process, the arithmetic
operators able to overflow — 4+, —, x — are replaced by non-overflowing opera-
tors. These operators are modelled as modulo operators (Fig. 7), preventing an
overflow to happen. These operators are defined for the 3 supported arithmetic
types as lambda functions and implemented with native functions in the safety
library. These operators avoid to generate overflow proof obligations and enable
a better automation of the proof process. However well-definedness proof obli-
gations remain and when using the integer division/, the denominator has to be
proved different from 0.

add_uint32 = %(x1,x2).(x1 : uint32 t & x2 : uint32 t | (x1 + x2) mod (MAX UINT32 + 1)) &

sub_uint32 = $(x1,%2).(x1 : uint32 t & x2 : uint32_t | (x1 - x2 + MAX UINT32 + 1) mod (MAX UINT32 + 1)) &
mul_uint32 = %$(x1,x2).(x1 : uint32_t & x2 : uint32_t | (x1 * x2) mod (MAX_UINT32 + 1)) &

add uintlé = $(yl,y2).(yl : uintlé_t & y2 : uintlé_t | (yl + y2) mod (MAX UINT16 + 1)) &

sub_uintlé = %(yl,y2).(yl : uintlé_t & y2 : uintlé_t | (yl - y2 + MAX UINT16 + 1) mod (MAX UINT1é + 1)) &
mul_uintlé = %(yl,y2).(yl : uintlé_ t & y2 : uintlé t | (yl * y2) mod (MAX UINT1€ + 1)) &

add_uint8 = %(yl,y2).(yl : uint8_t & y2 : uint8_t | (yl + y2) mod (MAX UINT8 + 1)) &

sub_uint8 = %(yl,y2).(yl : uint8_t & y2 : uint8_t | (yl - y2 + MAX UINT8 + 1) mod (MAX UINT8 + 1)) &
mul_uint8 = %$(yl,y2).(yl : uint8_t & y2 : uint8_t I (yl1 * y2) mod (MAX UINTS + 1)) &

Fig. 7. Arithmetic operators redefined.

Bitwise operators (and, or, xor, not, shift left logical, shift right logical) have
been added similarly (Fig. 8). They allow programs to operate more easily at bit
level. They are defined for 8, 16, and 32 bit sizes.

bitwise s11 uint32 : uint32 t*uint8 t --> uint32 t &
bitwise srl uint32 : uint32 t*uint8 t --> uint32 t &
bitwise not uint32 : uint32_t --> uint32 t &
bitwise and uint32 : uint32 t*uint32 t --> uint32 t &
bitwise xor uint32 : uint32 t*uint32 t --> uint32 t &
bitwise or uint32 : uint32 t*ulnt32 t --> uint32 t &

Fig. 8. Bitwise operators added.

4.4 Time

Time is defined as a uint32_-t and represent a number of milliseconds. The oper-
ation get_ms_tick returns the number of milliseconds elapsed since the last reset
or power on. Storing the current time and then checking its difference with a
future current time allows one to program timers.

Programming the CLEARSY Safety Platform with B 133

4.5 1I/0

Inputs and outputs valid values are IO_OFF and I0_ON. To get the value of
an input, use the operation get_xxx where xxx is the name given to the input.
The operation returns a uint8_t. To set the value of an output, use the operation
set_xxx where xxx is the name you gave to the output.

4.6 Substitutions

The B0, implementation language, supported by the CLEARSY Safety Platform
is more strict than the one supported by the C code generator C4B. The main
reason for not providing as much freedom to the develop is to keep the B32
compiler simple in order to more easily convince the safety auditor during the
certification process. Several substitutions are constrained as follow:

— IF THEN ELSE supports only single condition. If a test is a disjunc-
tion/conjunction of several expressions, the test will have to be nested into
several levels. Testing operators are restricted to <, < and =.

— assignments are restricted to two operands on the right hand term in order
to avoid to manipulate the stack. The valuation with the addition of more
than two operands will have to be decomposed in successive additions with
two operands.

— variables declared in a VAR substitution have to be typed first with a sub-
stitution “becomes such that”.

user_logic = res <-- trianND(vl, v2, v3) =
BEGIN BEGIN
VAR il , i2_, i3_ IN res := IO_OFF;
il_ :(il_ : uint8_t); IF vl = IO_ON THEN
i2_ :(i2_ : uint8_t); IF v2 = IO_ON THEN
i3_ :(i3_ : uint8_t); IF v3 = IO_ON THEN
res := IO_ON
il <-- get I1; END
i2” <-- get_12; END
i3_ <-- get_1I3; END
END;
0l <-- triAaND(il_, i2_, i3):
02 <-- negIO(01)
END
END;

Fig. 9. Local variables in user_logic are types before use. Tests in triAND are nested
because only single conditions are supported.

5 Ease to Prove Models

One of the objectives of the CLEARSY Safety Platform is to make to proof pro-
cess fully automated. The use of the modulo arithmetic operators contributes

134 T. Lecomte

directly to this objective. The low complexity of the target lightweight applica-
tions (smaller and simpler than metro automatic pilots for example) is another
reason to keep the proof effort low.

However given the modelling choices made for the arithmetic operators and
the heavy use of lambda functions, we had to make sure that trivial arith-
metic assignment with these operators would lead to proof obligations that are
provable automatically. The analysis of the proof obligations initially that were
not demonstrated automatically led to the addition of several proof elements
(Fig. 10):

— two rules to handle properly any predicate containing 2**x. These rules
appear in the PatchProver, a slot for mathematical rules to be applied for
any project. PatchProverA means that these rules are applied after (A put
for After) the one iteration of the main prover.

— several proof tactics in the User_Pass of several components.

v @ PatchProverAd 1~ THEORY User_Pass IS
v @ Paiseveanl 2 Operation(ValuesLemmas) & ££(0) & mp & pp(rp.0 | 5) & pp(rp.0 | 5);
Bty 3 Operation(ValuesLemmas) & f£(0) & dd(0) & mp & SS & mp & SS & MP & SS & Mp & S5 & Mp & S5 & Mp & 55 &

mp & SS &MP & S5 &MP & S5 &M & SS &MP & SS &MP & S5 &MP & S5 &MP & 55 & Mp & 55 & Mp & 55 & mMp &
S5 &Mp & 5SS &MP & S5 &MP & S5 &MP & S5 &MP & S5 &MP & S5 &MP & S5 &MP & 55 & MP & 55 & MP & 55 &

=>

0+1<=2"%
- (‘)Pat:thv)(uAOZ mp & SS &MP & SS &Mp & SS & MP & 5SS & MP & SS & MP & 5SS & MP & SS & MP & 55 & WP & MPp & ah(Mhyp(xx :
o 5)) & pp(rp.0 | 60) & ah(Mhyp(xx : s)) & pp(rp.0 | 60) & pp(rp.0 | 60)
- 4 END
not(2*x = 0)

Fig. 10. Mathematical rules and User_Pass proof tactic defined to automate proof.

Finally the default CSSP project generated after creation is fully proved
automatically with the following scenario: select all components, prove force 0,
prove user pass. It also applies for the two examples provided with the Atelier
CSSP: Clock and Combinatorial (Fig. 11).

1B dock (OKIOK[-|-18310]100%) 13 combinatorial (OK|OKI-I-17610]100%)

Classical view v %] Classical view v %]
Component TypeChecked POs Generated Proof Obligations Proved Unproved Component TypeChecked POs Generated Proof Obligations Proved Unproved
@ g_operators oK oK 37 37 0 © g_operators oK oK 37 37 0
@ g_standard types OK oK [0 0 @ g_standard types OK oK [0 0
© g_types oK oK 3 3 0 © g_types oK oK 3 3 0
@ g types_i oK oK 10 10 0 @ g_types_i oK oK 10 10 0
@ inputs oK oK [0 0 © inputs oK oK [0 0
@9 inputs.i oK oK 6 6 0 @ inputs.i oK oK 6 6 0
@ io_constants oK oK 0 0 0 @ io_constants 0K oK 0 0 0
@ Ichip_configuration OK oK 0 0 0 @ Ichip_configuration OK oK [0 0
© Ichip_interface oK oK 1 1 0 © Ichip_interface oK oK 1 1 0
© logic oK oK 0)) © logic oK oK [0 0
@ logic_i oK oK 6 6 0 @ logic_i oK (3 [0 0
@ outputs oK oK 0 0 0 © outputs oK oK [0 0
@9 outputs.i oK oK 4 4 0 @ outputs_i oK oK 4 4 0
© safety_variables OK oK [0 0 © safety_variables OK oK [0 0
@ user_component OK oK [0 0 © user_component OK oK [0 0
@) user_component i OK oK 2 2 0) user_component i OK (3 2 2 0
@ user_configuration OK oK [0 0 © user_configuration OK (3 [0 0
@) user_configuration_i OK oK 13 13 0) user_configuration_i OK oK 13 13 0
© user_ctx oK oK [0 0 © user_ctx oK oK [0 0
@ usercti oK oK 1 1 0 @ user_ctxi oK oK [0 0

Fig. 11. Both project Clock and Combinatorial, provided with Atelier CSSP are fully
proved automatically with added rules and predefined tactics.

Programming the CLEARSY Safety Platform with B 135

Of course, the added rules and tactics are not sufficient to automatically prove
all the proof obligations generated for the CSSP but provide a basis for reuse
and extension, together with existing mathematical rules (including packages sl
and bl, added after the end of the development of the automatic metro line 14
in Paris, and able to simplify arithmetic predicates and expressions).

6 Reaching the Limits

The CSSP is intrinsically different from an Arduino as its offers safety features.
However if these safety features cannot be demonstrated, a CSSP is not distin-
guishable from an Arduino. The following situations allow to demonstrate some
of the safety features:

— 2002 principle: corrupting the memory is not easily performed as it requires
generating perturbing electromagnetic field and some luck to indeed modify
the memory. Instead the CSSP software interface provides two functions,
get_instance_id() and get_processor_id(), which allow to program a behaviour
dependent on the software instance and on the processor executing the soft-
ware. In this case, a divergent behaviour could be obtained leading to the
panic mode.

— regular synchronisation between microcontrollers: the two microcon-
trollers are expected to synchronise every 100ms maximum by checking the
signature (CRC) of their memory spaces. Executing a loop with for example
100 millions steps would similarly trigger the panic mode.

It is also possible to reach the RAM limit by allocating large tables (containing
48700 wint8-t for example) or change the board id (jumper) during program
execution to respectively prevent or stop its execution.

7 Dissemination

A first starter kit, SKg, containing the IDE and the execution platform, was
released by the end of 2017°, presented and experimented at the occasion of
several hands-on sessions organized at university sites in Europe, North and
South America. Audience was diverse, ranging from automation to embedded
systems, mechatronics, computer science and formal methods. Results obtained
are very encouraging:

— Teaching formal methods is eased as students are able to see their model
running in and interacting with the physical world. It was the occasion to
demonstrate how formal methods could be used with embedded systems and
ToT. Fruitful discussions took place about how to specify/guaranty perfor-
mances, what can or cannot be proved with such systems, etc.

5 https://www.clearsy.com/en/our-tools/clearsy-safety-platform/.

https://www.clearsy.com/en/our-tools/clearsy-safety-platform/

136 T. Lecomte

— Less theoretic student profiles (computer science, mechatronics, automation)
may be introduced/educated to more abstract aspects of computation. clock
and combinatorial exercises were a starting point for specification enrichment
and the discovery of the formal proof. Of course, the pedagogical objective
in term of formalization was lower than with more formal profiles, but the
students managed to understand the absence of programming error and the
non-deterministic substitutions for simple modelling.

— The platform has demonstrated a certain robustness during all these manip-
ulations and has been enriched with the feedback collected so far. Several
electronics/software errors were detected during the preparation of the course
when designing exercises, others during these exercises.

— The IDE GUI was improved with the automation of the code generation
process and the display of a carousel showing graphically the progress of the
generation. The configuration of the board was also simplified, by displaying
the position of the switches on the board and by filling the configuration file
with default input and output names.

— CLEARSY Safety Platform is used to teach in Master 2° in universities
and engineering schools. Electronic documentation” is used to structure the
courses and is updated every 2 months. With 3 inputs and 2 inputs, the
starter kit SKO is for discovering the technology; another version of the board
is planned for 2020 able to handle more I/O (up to 64).

8 Ready for Industry

The SKy board provides a good introduction to the programming of safety criti-
cal systems. However the framework proposed is mainly aimed at education and
not perfectly fit for industry:

— the number of I/0O is reduced (5)
— the programming schema is simple: read inputs, compute, set outputs. Iden-
tical algorithms are executed by I; and Is.

The CLEARSY Safety Computer 0 (abbreviated as CSg) (Fig.12) was
designed to offer more flexibility by providing:

— more I/O. The associated mother board brings 32 inputs and 32 outputs, all
digital.
— and a programming model less constrained:

e Safety functions are still programmed and proved in B, but are callable
individually from the C program, in the main loop or associated to an
interrupt vector.

e Mandatory (watchdog-based) safety verification are still performed by the
safety library but the developer is now responsible for calling in time the
verification functions that keep the watchdogs alive.

e Computation could be asymmetric between I; and I.

Programming the CLEARSY Safety Platform with B 137

Fig. 12. The CS0 daughter board safety computer on the left, plugged on the mother
board.

The CSp only embeds the 2 microcontrollers on a smart card format daughter
board while the I/O and the power supply are located on a hosting mother board.

9 Conclusion and Perspectives

The CSSP provides a new way of practising formal methods by allowing stu-
dents/engineers to connect formal models with the surrounding world. The CSSP
is also used to create safety-critical systems, able to be certified at the highest
safety levels®:9:10.

As a consequence, the B0 modelling language has been (even more) restricted
to allow an easier certification because of the simplicity of the tool chain. These
restrictions oblige to have more verbose models (with more lines and more nest-
ing levels). Even if these constraints could be released /removed in the future, the
obtained proof automation level is a real improvement that would certainly ease
its adoption in engineering processes. The invention of the CLEARSY Safety

6 Second year of a Master’s degree.

7 Available at https://github.com/CLEARSY/CSSP-Programming-Handbook.

8 Generic product certificate, CERTIFER. 8891/200-1, 27th Feb 2017 SILA4.

9 System certificate BUREAU VERITAS 6393741 3rd March 2017 SIL3.

!9 Generic product certificate BUREAU VERITAS 7092509, 23rd July 2019 SIL4.

https://github.com/CLEARSY/CSSP-Programming-Handbook

138 T. Lecomte

Platform also paves the way for a broader use of the B formal method, in the
railways and in other safety-related domains like energy or autonomous vehicles.

Acknowledgements. The work and results described in this article were partly
funded by BPI-France (Banque Publique d’Investissement) and Métropole Aix-
Marseille as part of the project LCHIP (Low Cost High Integrity Platform) selected
for the call AAP-21.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Boulanger, J.: Formal Methods: Industrial Use from Model to the Code. Wiley,
Hoboken (2013)

3. Gashi, 1., Povyakalo, A., Strigini, L.: Diversity, safety and security in embedded
systems: modelling adversary effort and supply chain risks. In: Proceedings of 2016
12th European Dependable Computing Conference (EDCC), Gothenburg, pp. 13-24
(2016)

4. Lecomte, T.: Safe and reliable metro platform screen doors control/command sys-
tems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
430-434. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0.32

5. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26-34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7_3

6. Lecomte, T.: Double coeur et preuve formelle pour automatismes sil4. 8E-Modeles
formels/preuves formelles-stireté du logiciel (2016)

7. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in indus-
try: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS,
vol. 10623, pp. 70-87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70848-5_6

8. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20-31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1.2

https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-642-04570-7_3
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2

	Programming the CLEARSY Safety Platform with B
	1 Introduction
	2 Terminology
	3 The CLEARSY Safety Platform
	3.1 Rationale
	3.2 Description
	3.3 Safety
	3.4 Target Applications

	4 Programming Model
	4.1 Development Process
	4.2 Pragmas
	4.3 Types and Operators
	4.4 Time
	4.5 I/O
	4.6 Substitutions

	5 Ease to Prove Models
	6 Reaching the Limits
	7 Dissemination
	8 Ready for Industry
	9 Conclusion and Perspectives
	References

