
Analysing ProB’s Constraint Solving
Backends

What Do They Know? Do They Know Things?
Let’s Find Out!

Jannik Dunkelau(B) , Joshua Schmidt , and Michael Leuschel

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,
40225 Düsseldorf, Germany

{jannik.dunkelau,joshua.schmidt,michael.leuschel}@hhu.de

Abstract. We evaluate the strengths and weaknesses of different back-
ends of the ProB constraint solver. For this, we train a random forest
over a database of constraints to classify whether a backend is able to find
a solution within a given amount of time or answers unknown. The forest
is then analysed in regards of feature importances to determine subsets
of the B language in which the respective backends excel or lack for per-
formance. The results are compared to our initial assumptions over each
backend’s performance in these subsets based on personal experiences.
While we do employ classifiers, we do not aim for a good predictor, but
are rather interested in analysis of the classifier’s learned knowledge over
the utilised B constraints. The aim is to strengthen our knowledge of the
different tools at hand by finding subsets of the B language in which a
backend performs better than others.

Keywords: Constraint solving · Machine learning · Decision trees ·
Feature importances · Association rules · Automated tool selection

1 Introduction

Besides its native CLP(FD)-based backend, the validation tool ProB [30] offers
various backends for solving constraints, e.g. encountered during symbolic ver-
ification. In previous work [18,19], we trained neural networks to decide for a
given constraint which backend should be used. We compared two approaches:
one based on feature vectors derived from domain knowledge, and one based on
encoding constraints as images. While we achieved promising results with the
image-based approach, it was not possible to extract a comprehensible explana-
tion about how the predictions were made. In follow-up work [34] the experiment
was replicated with decision trees [5] using the same feature sets as before. This
was motivated by the fact that decision trees are a transparent machine learning
algorithm allowing to extract and interpret the learned decision rules and thus
the acquired knowledge.

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 107–123, 2020.
https://doi.org/10.1007/978-3-030-48077-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_8&domain=pdf
http://orcid.org/0000-0003-0819-5554
http://orcid.org/0000-0001-8842-2993
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-48077-6_8

108 J. Dunkelau et al.

In this paper we will expand on the decision tree approach and further anal-
yse the relative importances of the features used for deciding whether the dif-
ferent backends of ProB will be successful or not. Moreover, we will compare
these results with our a priori assumptions about the subdomains in which each
backend should work well. While we will display achievable classification perfor-
mances for our predictors, we do not aim for a good performance, but instead
for an analysis over the whole dataset. In particular, we are not interested in
replacing the decision function in ProB with a predictor presented in this paper.
The goal is to find subsets of the B language in which a backend performs better
than others to strengthen our knowledge of the different tools at hand. With the
gathered information we may be able to improve the ProB constraint solver
and to obtain more suitable features sets for related machine learning tasks for
B in the future.

2 Primer on ProB and its Backends

ProB [29,30] is an animator, model checker, and constraint solver for the formal
specification language B [1]. The B language allows to specify, design, and code
software systems as well as to perform formal proof of their properties. When
using ProB, properties can be checked exhaustively on a state space using
various model checking techniques. B is rooted in predicate logic with arithmetic
and set theory. At the heart of ProB is a constraint solver for the B language.
ProB’s constraint solver is used for many tasks. During animation it has to find
suitable parameters for the B operations and compute the effect of executing
an operation, during disproving [26] it is used to find counter examples to proof
obligations. The constraint solver is also used for test case generation, symbolic
model checking or program synthesis.

ProB has actually not one but three constraint solving backends and each
backend has a variety of options. In Sects. 2.1, 2.2 and 2.3 we will introduce each
backend, outline their differences, and summarise our a priori assumptions about
their performances on subdomains of the B language.

2.1 The Native CLP(FD) Backend

ProB’s kernel [29] is implemented in SICStus Prolog [11] using features such as
co-routines for delayed constraint propagation, or mutable variables for its con-
straint store. The CLP(FD) finite domain library [10] is used for integers and enu-
merated set elements. The library has a limited precision of 59 bits. ProB han-
dles overflows by custom implementations and also supports unbounded domains
as well as symbolic representations for infinite or large sets. Some specific features
of the ProB constraint solver are that it computes all solutions to a constraint
using backtracking. This is important as constraints are often used within set
comprehensions. It is also important for model checking to ensure that the entire
state space is constructed. ProB can deal with higher-order sets, relations and
functions.

Analysing ProB’s Constraint Solving Backends 109

Subdomains in Which CLP(FD) Presumably Performs Better. First and fore-
most, the CLP(FD) backend of ProB is the only backend supporting all con-
structs available in B. It is thus the default backend. It performs best for con-
straints arising in animation, where usually a small number of variables (oper-
ation parameters) have to be enumerated. In this context, it can deal well with
large data values.

Generally speaking, ProB performs well on constraints using enumerated
sets, booleans and/or bounded integers as base types. It performs reasonably
well on unbounded intervals if interval reasoning can be applied. While ProB
is very good at model finding, it can only detect unsatisfiability by exhaus-
tively enumerating all values remaining after deterministic propagation. In case
of unbounded data structures, ProB cannot exhaustively enumerate all cases
and is much less powerful. While CLP(FD) cannot natively handle unbounded
domains or quantifiers, ProB’s backend contains several custom extensions to
do so. A key limitation of the CLP(FD) backend is that it has no features such
as backjumping, conflict-driven clause learning, or random restarts. In conse-
quence, the backend can get stuck in the search space repeatedly enumerating
invalid values which SAT or SMT solvers would rule out by learning.

2.2 The Kodkod Backend

An alternative backend [35] for ProB makes use of Alloy’s Kodkod library [38]
to translate constraints to propositional logic, which are then solved by a SAT
solver. For instance, sets are translated as bit vectors. In particular, a subset x
of the interval 0..2 would be translated into three propositional logic variables
x0, x1, x2 where xi is true if i ∈ x holds. The constraint {1, 2} ⊆ x can then
be translated to the propositional logic formula x1 ∧ x2. As Kodkod does not
allow higher-order values, any such constraint is not passed to Kodkod and is
instead dealt with by ProB’s default CLP(FD) backend after Kodkod has found
a solution for the other constraints.

When using this backend, ProB will first perform an interval analysis and
determine which variables have a finite scope and a first-order type. The con-
straint is then partitioned into a part sent to Kodkod and a part solved by
ProB. During solving, the SAT solver is called first. For every solution obtained
by the SAT solver, ProB’s CLP(FD) backend solves the remaining constraints.
By default, Kodkod’s Sat4j [28] SAT solver is selected.

Subdomains in Which Kodkod Presumably Performs Better. The strengths and
weaknesses of the backend based on Kodkod stem from its internal reliance on
SAT solving. While modern SAT solvers are very fast when it comes to solving
very large boolean formulae, encoding B into propositional logic underlies cer-
tain restrictions. SAT encodings can only be used for data types known to be
finite. In particular, one has to assign an upper and lower bound for integers and
set sizes. Thus, integer overflows might occur and it is hard to ensure soundness
and completeness. Furthermore, arithmetic operations have to be encoded in

110 J. Dunkelau et al.

propositional logic as well such as binary adders. This leads to additional over-
head when generating a conjunctive normal form, especially for large bit widths.
The designers of Alloy argue [25] that lack of integers is not disadvantageous
in general, as integer constraints are often of secondary nature. In B models,
this is not the case. In summary, this backend is not good for arithmetic, large
relations, infinite domains, higher-order constraints, or data structures.

In contrast, SAT solving is ideal for problems involving relations as those
can be expressed in a way suitable for Kodkod’s backends [35]. Furthermore,
given that Kodkod is originally used as a backend for analysing Alloy it has
been tuned towards constraints involving operations on relations. For instance,
the relational image or transitive closure operations of B are handled efficiently
by the translation to SAT using Kodkod.

2.3 The Z3 Backend

The third backend of ProB translates B constraints to SMT-LIB formulae and
targets the SMT solvers Z3 [13] and CVC4 [3]. Here we focus on the Z3 bind-
ing [27] only. The translation works by rewriting the B constraints into a normal
form using a core subset of the B operators which can be mapped to SMT-LIB.
Additional variables, set comprehensions, and quantifiers are introduced for those
operators which have no counterpart in SMT-LIB or Z3, e.g. cardinality, or mini-
mum and maximum of an integer set. Functions and relations are translated to the
Array theory of SMT-LIB. The DPLL(T) [21] algorithm underlying SMT solvers
is fundamentally different from CLP(FD). Just like for the SAT translation, SMT
solvers can perform backjumping and conflict-driven clause learning.

Subdomains in Which Z3 Presumably Performs Better. SMT solvers such as
Z3 are very good at proof for B and Event-B (cf. [14,15]). Our experience in
the context of model finding is that Z3 is good at detecting inconsistencies,
in particular on infinite domains. For example, Z3 is able to detect that the
constraint x < y ∧ y < x is unsatisfiable. The other two backends are unable
to detect this using their default settings. Note that ProB is able to detect
this inconsistency if one enables an additional set of propagation rules based on
CHR.

On the downside, Z3 often has difficulties to deal with quantifiers. Moreover,
the translation from B to SMT-LIB does not yet support various operators
such as general union or general sum nor does it support iteration and closure
operators. Constraints using one of these operators are not translated to SMT-
LIB at all and the backend returns unknown. In summary, the Z3 backend is
good at detecting inconsistencies and reasoning over infinite domains, but for
constraints involving quantifiers, larger data values or cardinality computations
it often answers unknown.

3 Primer on Decision Trees and Random Forests

We utilise techniques of supervised machine learning to train a classifier for B
constraints, which we will then further analyse in Sect. 6.

Analysing ProB’s Constraint Solving Backends 111

The notion of machine learning covers a family of algorithms which are able to
improve their predictions using a dataset processed at a so called training time.
For supervised machine learning, this dataset consists of tuples (x, y) ∈ D ⊆
X × Y , where x ∈ X represents the input data and y ∈ Y is the corresponding
ground truth, which is the correct class label to be predicted by the employed
algorithm. For instance, for a binary classification task, the ground truth can
be either 0 or 1. Usually, X = R

d corresponds to a d-dimensional feature space,
where each problem instance to be classified is represented as a feature vector
x = 〈x1, . . . , xd〉. Each xi hereby refers to a specific characterisation, i.e. feature,
of the problem instance. During training time, the algorithm is supposed to learn
the mapping x �→ y for each (x, y) ∈ D by generalising over recurring patterns
in the input data X. It is important that this learned mapping is accurate yet
as general as possible, so as to cover yet unseen problem instances. A classifier
is said to overfit on the training data if its performance in classifying unseen
data is significantly worse. To detect possible overfitting, the resulting classifier’s
performance is evaluated on a separate test set, i.e. a data set which was not
experienced during training time.

In this article, we employed decision trees as the machine learning algorithm
of choice. They correspond to a supervised learning method where the training
data at the root of the decision tree is progressively split into smaller subsets
using a feature-based splitting criterion. At the leaves of the decision tree only
subsets with the same ground truth remain. Such subsets are referred to as pure
subsets.

A variety of splitting criteria exist. For example, the CART algorithm [5] is
based on the Gini impurity i(t) [31] of a node t defined as

i(t) = 1 −
∑

c∈C

pc(t)2

with C being the set of possible classes, and pc(t) is the relative frequency of the
elements in t belonging to the class c. For a pure subset t′ of a class c, pc(t′) will
be 0 for c 	= c′ and 1 for c = c′. Hence i(t′) = 0. For an evenly distributed node
t′′ we have i(t′′) = 1 − 1

|C| , where |C| is the cardinality of C.
The goal of the decision tree learning algorithm is to reach an impurity of 0

with as few splits as possible. For any split of t into two sub-nodes tL and tR,
we thus measure the impurity decrease by

d(t(L,R)) = i(t) − i(tL)
|tL|
|t| − i(tR)

|tR|
|t| .

The split which maximises the impurity decrease is finally chosen and the algo-
rithm is called recursively on tL and tR respectively. A decision tree is shown
in Fig. 1, where leaves represent actual classes.

3.1 Random Forests

Random forests [7] are a bagging approach [6] to decision trees, i.e. instead of
only training a single decision tree, a set of k decision trees (Ti)1≤i≤k is trained.

112 J. Dunkelau et al.

petal length ≤ 2.45 cm

setosa petal width ≤ 1.75 cm

yes no

versicolor virginica

yes no

Fig. 1. Decision tree classifier over a set of iris flowers [20]. The species iris setosa, iris
versicolor, or iris virginica is classified based on petal length and width.

Each tree is trained on a random subset of the training samples as well as a
random subset of features. This randomisation ensures most trees in the set to be
distinct from each other. For example, the impurity decrease of common features
will vary between the training samples, leading to different choices of splitting.
Due to bagging, the relatively unstable nature of decision trees is countered and
the technique is less prone to overfitting.

A measure for the relative importances of each feature in a random forest is
the mean decrease importance [7]. The mean decrease importance of a feature
averages the impurity decrease per feature over each decision tree in the forest.
Hence, it is a measure of the average impurity decrease the feature offers [2,37].

3.2 Rationale for Using Random Forests

While we had multiple classification algorithms to choose from, we finally settled
on random forests. This choice was motivated by our need for a strong and
interpretable classifier.

In previous work [19] we used convolutional neural networks, but we were
unable to extract the knowledge accumulated by the classifciation due to the
black box nature of the neural networks. Hence, we started to use decision trees,
as one can easily extract classification rules after the training phase. These rules
are comprehensible and can be interpreted by non-experts as well. Decision trees
also offer insights about the relevancy of features: the closer to the root a split
over a specific feature is done, the more impact it has for the decision process.

Alternate machine learning approaches are linear regression and clustering
approaches. For linear regression the relevance of features could be extracted by
examining the relative differences in their coefficients. However, this would not
yield direct rules describing why a particular prediction was made. As we are
particularly interested in extractable knowledge from trained classifiers and rea-
soning for the given predictions, we favoured decision trees over linear regression.
On a similar note, we decided against clustering. However, a clustering approach
for grouping similar constraints together presents an interesting alternative app-
roach to be studied in future work.

In the end, we decided to utilise random forests for the present article.
Although they are again blackbox algorithms, they consist of interpretable
pieces, which can be analysed for more general rules [16,23].

Analysing ProB’s Constraint Solving Backends 113

4 Related Work

The related work in the field is split into two categories: machine learning pow-
ered algorithm portfolios for SMT solving, and knowledge extraction from tree
ensemble learners such as random forests. To the best of our knowledge, no
intersection of both categories exists yet in literature, as we do in this article.

Healy et al. [24] conducted a solver portfolio for the Why3 platform [4]. The
solver selection was done via decision trees which predicted the anticipated run-
time of a proof obligation for each solver, and choosing the fastest one. James
P. Bridge [8] used support vector machines for automating the heuristic selec-
tion for the E theorem solver [36]. While he was able to improve the already
implemented auto-mode in E, he also investigated picking a minimal feature set
which ultimately consisted of only two to three features.

Yang et al. [39] analysed decision trees to extract minimal feature subsets
which need to be flipped to achieve a more favourable outcome. Their applica-
tion area was customer relationship management with focus on increasing the
amount of loyal customers, i.e. detect what needs to be done to turn a regular
customer into a loyal customer. Similarly, Cui et al. [12] proposed an integer
linear program on random forests for finding the minimal subset of features to
change for obtaining a different classification. Deng [16] proposed interpretable
trees (inTrees) for interpreting tree ensembles. In their paper, they propose a set
of metrics to extract learned knowledge from a tree ensemble such as a random
forest. This includes the actual rules learned in an ensemble as well as frequent
variable interactions. Narayanan et al. [32] extracted the most common patterns
for failing solid state drives in datacenters using inTrees. In their work, they
found that these extracted patterns match with previously made observations.

5 Experimental Setup

In this section, we briefly outline the training data and the feature set in use.

5.1 The Training Data

For acquiring the constraints for the training data, we extracted B predicates
from the public ProB examples repository1 and constructed more complex con-
straints inspired by ProB’s enabling analysis [17] or discharging proof obli-
gations [26]. Each backend was given a timeout of 25 s to decide whether the
constraint has a solution or is a contradiction. Constraints for which a definite
answer was found build up the positive class for a solver. The negative class
is made up of the other outcomes: timeouts, errors, or the answer unknown.
Overall, the class distribution was imbalanced, as for instance only about 35%
of samples belonged to the negative class for the CLP(FD) backend. Yet, we do
not deem this as a problem because the decision trees are trained with respect
to a weighted training set.
1 https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz.

https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz

114 J. Dunkelau et al.

The choice of the 25 s timeout was arbitrary. However, we evaluated how
much more constraints are assigned to the positive class compared to using
ProB’s default timeout of 2.5 s. The CLP(FD) backend is able to solve 65.47%
of the constraints using a timeout of 2.5 s, while the Kodkod and Z3 backends
solve 64.65% and 21.52% respectively. When increasing the timeout by factor 10
to 25 s, these percentages increase to 65.48% for CLP(FD) (+0.01%), 64.67% for
Kodkod (+0.02%), and 21.53% for Z3 (+0.01%). As the percentage of solvable
constraints for each backend only increased by a rather insignificant amount, we
deemed the unsolvable constraints as complex enough for our analysis approach.
We did not test with higher timeouts.

For each backend’s analysis we had around 170,000 unique samples.

5.2 The Feature Set

For training the decision trees, we created a manually selected set of 109 fea-
tures (further referred to as F109) which mainly consists of characteristics such
as the amount of arithmetic operations per top level conjunct, or the ratio of
intersections of all used set operators. Further features consist of maximum and
mean nesting depths for certain language constructs such as negations and pow-
ersets, or the amount of unique identifiers per top level conjunct and number of
interactions between them. Additionally, identifiers are grouped into unbounded,
semi-bounded (only upper or lower bound), and fully bounded (both, upper and
lower bound) identifiers. This grouping is sensitive to whether the boundaries
are explicitly set (e.g. a < 5) or only bounded by another identifier (a < b).

As we are interested in the knowledge gathered by the random forests over
the whole corpus of B constraints at our disposal, we will not split the dataset
into sets for training and testing for our final analysis as is common for classi-
fication tasks aiming for a good predictor. However, as a sanity check that the
selected features are indeed discriminatory enough to actually learn weaknesses
and strengths of each backend, we still analysed the predictive performances of a
random forest for each backend on a classical split into datasets for training and
testing. For measuring performance, we utilised the metrics accuracy, balanced
accuracy [9], and the F1-score [22].

Each prediction of a classifier can either be a true positive (tp), true negative
(tn), false positive (fp) or false negative (fn), i.e. the prediction can be either
correct or false corresponding to either the positive or negative classes 1 and 0.
The utilised performance metrics are defined as follows:

accuracy =
tp + tn

tp + tn + fp + fn
,

balanced acc. =
1
2

[
tp

tp + fn
+

tn
tn + fp

]
.

Accuracy describes the percentage of the test data which were classified cor-
rectly. Balanced accuracy is most suitable for an unbalanced dataset in which
the distribution of classes is not equal. It averages the percentage of correctly

Analysing ProB’s Constraint Solving Backends 115

Table 1. Random Forest classification performances over the set of 109 features.

Backend Dataset Accuracy Balanced acc. F1-score

CLP(FD) F109 0.947 0.926 0.966
Kodkod F109 0.926 0.906 0.950
Z3 F109 0.919 0.873 0.797

predicted samples per class. The F1-score is defined as the harmonic mean over
the notions precision and recall [22]:

precision =
tp

tp + fp
, recall =

tp
tp + fn

F1 = 2 ∗ precision ∗ recall
precision+ recall

.

Precision describes the probability of a positive prediction to be correct. Recall
describes the probability for samples of the positive class to be classified as such.

Table 1 shows the results of this sanity check. We used 80% of the data for
training, whereas the performance measures were taken on the remaining 20%.
Each classification task was concerned with whether a backend would return
a definitive answer for a given constraint (satisfiable or unsatisfiable) or would
yield unknown. As the performance scores are all higher than 0.9, we deem the
feature set F109 to be suitable for our purposes.

6 Analysis and Results

For each backend, we trained a random forest with 50 trees using the Gini
impurity decrease splitting criterion to predict whether the respective backend
can find an answer or leads to unknown. As machine learning framework, we
employed the Scikit-learn Python library [33].

For the following analysis, we utilised the whole dataset of 109 features (F109)
as the training set and did not make use of a test set, as we are more interested
in an analysis of random forests containing information of all the data.

Please note that this work only considered the default settings of each back-
end. It is relevant to mention that multiple settings exist which could influence
the respective outcomes of the analysis. For instance, although the CLP(FD)
backend has problems with detecting inconsistencies over unbounded domains
such as x < y ∧ y < x, one can activate an additional CHR propagation which
improves detection of inconsistencies in general as mentioned in Sect. 2.3.

6.1 Feature Importances

In order to gain a deeper insight in the feature set we compute the Gini impor-
tance which is the mean decrease importance of a feature within a random forest
using the Gini impurity as the splitting criterion.

116 J. Dunkelau et al.

Table 2. Top ten features for each backend ranked by the Gini importance.

Backend Most important features (descending)

CLP(FD) Function application, max conjunct depth, forward
compositions, relational overrides, nested logic with conj.,
nested logic with implications, equalities, function variables,
subset ratio, identifier count

Kodkod Function application, function vars, forward compositions, set
op., nested logic with conj., nested logic with disj., nested logic
with impl., avg. powerset nesting, identifier count, relational
overrides

Z3 Relational operators, domain ops, functions, function vars,
avg. powerset nesting, domain restrictions, unbounded
domains, identifier count, max. conjunct depth, function
application

Table 2 shows the top ten features that are necessary to classify the data at
hand for each backend. The common features of the three subsets are highlighted.
These indicate a particularly high importance as they are used for each of the
three backends’ decisions.

The CLP(FD) backend and the Kodkod backend have the most features
in common. The most important feature for both backends is the presence of
function applications. Indeed, a function application is a complex operation for
a constraint solver since it entails for example the well-definedness condition
that the applied value is an element of the function’s domain. Both backends’
classifiers favour the presence of nested logic formulae with further possibly
nested conjunctions, disjunctions, and implications, indicating more involved
constraint as well. The initial assumption that the Kodkod backend is better
suited to solve constraints over relations is strengthened by the high ranking
of the ratio of relational compositions and overrides in the top 10 features. Of
course, the overall higher similarity of the top ranked features for the CLP(FD)
and Kodkod backend is influenced by the fact that constraints that cannot be
translated to SAT are solved by ProB.

The gathered feature set for the classifier of the Z3 backend favours the pres-
ence of relational operations, in particular, the presence of domain operations. As
initially expected, the feature representing the presence of unbounded domains
has a high importance as well.

While this analysis allows for selection of features for the sole purpose of clas-
sification, it does not yet give us info as of why a feature ranks high. For instance,
it remains uncertain whether the presence of relational operators correlates to
Z3’s positive or negative class. This will be analysed in Sect. 6.2.

Classifying on Reduced Feature Sets. While we are mostly interested in
analysing which language subsets are hard for a backend to solve, we can evaluate
the significance of the most relevant features (determined via Gini relevance

Analysing ProB’s Constraint Solving Backends 117

as done above) by conducting a regular classification over only these relevant
features. When using the ranked feature sets to find a minimal set of features,
we have to consider that at least one feature exists for each B data type or group
of operations, e.g. relational operators, as the dataset might be biased to specific
operations. For instance, the fact that the presence of arithmetic operations is
not ranked high does not mean there should be no such feature at all in general.

Table 3. Random forest classification performances for minimised feature sets.

Backend Dataset Accuracy Balanced acc. F1-score

CLP(FD) F10 0.914 0.875 0.944
F50 0.947 0.929 0.966

Kodkod F10 0.887 0.853 0.923
F50 0.924 0.907 0.949

Z3 F10 0.875 0.804 0.747
F50 0.916 0.870 0.795

We created two features sets containing the top 10 and 50 ranked features
for each backend, referred to as F10 and F50 respectively. The results presented
in Table 3 show that the minimised subsets of 50 features capture the problem
domain as well as the larger set containing 109 features presented in Table 1. The
smaller subset containing 10 features already shows good performance but does
not perform as well as the one using 50 features, indicating that the problem at
hand is complicated at least.

6.2 Association Rule Analysis

Our main goal is to determine how the backends perform on different subsets
of the B language. For this we performed an association rule analysis using the
inTrees framework [16], thereby identifying frequent feature interactions as well
as determining those syntax elements which increase the chance of unsolvability
for each backend. For the analysis, we interpret paths from the root to the
leaves of each decision tree in the forest as a single rule. Each node in these trees
corresponds to a feature along with a threshold value for deciding which path to
follow. An example based on the decision tree from Fig. 1 is given in Fig. 2.

petal length (<) ⇒ setosa
petal length (>) ∧ petal width (<) ⇒ versicolor
petal length (>) ∧ petal width (>) ⇒ virginica

Fig. 2. Association rules extracted from the decision tree in Fig. 1.

118 J. Dunkelau et al.

Different paths might be identical up to the respective threshold values. In
our analysis, we discard the threshold values and only consider the tendency
(below or above threshold) for each rule. This way we can compare rules without
having to worry about mismatching threshold values while still accounting for
the feature’s tendency. Table 4 displays several rules that were collected from the
random forest trained for each backend.

Deng [16] uses two metrics for the association rules, support and confidence.
Given two rules a = {Ca ⇒ Ya} and b = {Cb ⇒ Yb} where Ca, Cb are the
respective conditions and Ya, Yb the respective outcomes. Rule b is said to be in
the support of rule a iff Ca ⊆ Cb. That is, each feature used in Ca is also used
in Cb (with equal threshold tendency). Let σ(a) = {r | r is in the support of a}
denote the support set of a. The confidence of an association rule a is then
defined as c(a) = |{{Cr ⇒ Yr} ∈ σ(a) | Yr = Ya}|/|σ(a)|, i.e. the ratio of rules
in the support of a with the same outcome as a.

For a deeper analysis of the subproblems’ performances for each backend, we
calculated the support and confidence of the respectively 250,000 shortest rules
of the corresponding random forests.

Table 4. Exemplary association rules with their corresponding support and confidence
values (Supp. and Conf. respectively). The operators < and > indicate whether the
feature value is above or below the learned threshold.

Backend Rule Supp. Conf.

CLP(FD) Function applications (<) ∧ conjunctions (<) ∧
quantifiers (>) ∧ logic operators (>) ∧ functions (>)
=⇒ negative

853 0.69

Kodkod Function applications (<) ∧ conjunctions (<) ∧
disjunctions (>) ∧ implications (<) ∧ powersets (<) ∧
inequality (>) ∧ quantifiers (<) ∧ lambda-expression
ratio (<) ∧ relational inversions (<) ∧ sequences (<) ∧
=⇒ negative

2413 0.79

Z3 Relational operations (<) ∧ functions (<) ∧
unbounded variables (>) ∧ set inclusions (member,
subset) (<) ∧ sequences (<) ∧ set operations (<) =⇒
positive

24,479 0.69

Analysis for CLP(FD). For ProB’s native backend, most rules with high
support only had a confidence of 50%, rendering them insignificant for our anal-
ysis. While higher confidence rules had less support such as the one presented
in Table 4, they allowed for a look on certain subareas in the problem domain in
which the backend struggles to find an answer for.

Main concern for the backend appears to be function applications because
they are the most relevant feature for deciding whether the CLP(FD) backend
is able to satisfy or reject a constraint according to the analysis in Sect. 6.1.

Analysing ProB’s Constraint Solving Backends 119

The implementation of function applications in ProB consists of many spe-
cial cases such as different treatment for partial or total functions. Moreover,
function applications entail a well-definedness condition leading to more involved
constraints and possibly weaker propagation. In particular, the constraint solver
has to deduce that the values applied to a function are part of its domain which
increases complexity drastically if domains are (semi-)unbounded. The multi-
tude of such cases might emphasise the overall complexity for constraint solving
and be the reason for function applications leading to negative predictions. This
finding suggests the need for a more involved statical analysis of constraints
with function types by means of discarding well-definedness constraints early to
allow for a more aggressive propagation of function applications. Thus the solver
would not need to wait for verification of whether an element actually resides in
a function’s domain or not.

Further findings show that the use of implications, equivalences, nested pow-
ersets as well as operations on powersets contribute to the probability for the
backend to answer unknown for a given constraint, as do operations concerning
multiple variables representing functions and unbounded domains.

Comparing this to our initial presumptions made in Sect. 2.1, the particular
difficulty associated with function application was mostly unexpected. Further-
more, while we did not anticipate implications or equivalences to have such
significance, their role for unsolvability might be caused by a lot of backtracking
inside the constraint solver for satisfying these constraints. The analysis did not
bring up further results mismatching our assumptions from Sect. 2.1.

Analysis for Kodkod. The Kodkod backend struggles with arithmetic and
powersets, which was to be expected. As already observed with the native back-
end, we also found an increase in logical operators to increase the constraint
complexity significantly. An increase in logical operators naturally increases the
nesting depth of the top-level conjuncts, leading to much more involved con-
straints. The use of functions only appears to be a problem for Kodkod if these
are not manipulated by relational operators, rendering Kodkod as a more suit-
able choice over CLP(FD) in these cases. We generally found our expectations
from Sect. 2.2 met regarding Kodkod’s handling of relations.

Most positive rules favouring relational operators only showed a small sup-
port but had high confidence values and mostly differed in a single feature
describing a different relational operator. If one was to generalise these rules
into a singular one which is independent of the particular relational operator,
these rules should be able to support each other while maintaining their high
confidence. This suggests the use of relational operators for the Kodkod backend.

Note again that the Kodkod backend has a fallback to the CLP(FD) backend
for non-translated structures, hence both backends perform similar overall.

Analysis for Z3. Contrary to the two backends presented above, the Z3
backend’s association rule analysis delivered many high-support/high-confidence
rules for the positive class. Table 4 shows one such rule with high support and

120 J. Dunkelau et al.

confidence. Since the analysis did not provide rules with high support and con-
fidence for the negative class, we compared absence of syntax elements in the
positive rules to their existence in low-support negative rules for analysis of areas
where Z3 does not perform well.

The results suggest that Z3 handles unbounded domains well and favours
integer variables and inequality constraints. This is in line with our expectations
from Sect. 2.3. However, we observed good performance for relational operators
as well which goes against initial presumptions, although this is correlated to
the amount of domain restrictions in use. Otherwise, Z3 lacks performance with
quantifiers, set comprehensions, powersets, or set operations (as was expected).

The main issues for the Z3 backend are the non-translated operators as well
as highly involved translations as outlined in Sect. 2.3. Revisiting these transla-
tions and comparing their implementations to those of well-performing syntax
elements might allow to increase the backend’s performance on further language
subsets significantly. For instance, the translation of relational operators might
inspire the translation of certain set operators.

7 Conclusion

In this article, we identified subproblems of the B language for which the individ-
ual ProB constraint solving backends performed better or worse respectively.

While our findings generally matched our expections stated in Sects. 2.1,
2.2 and 2.3, we found certain results which we did not explicitly expect. For
instance, our evidence suggests a difficulty for dealing with function applications
as well as implications and equivalences. Involved constraints containing many
nested conjunctions and disjunctions also increased the chance for the backends
to return unknown. Surprisingly, the Z3 backend performed much better on
relational operators as expected. As a consequence, our analysis identified the
need for a more sophisticated handling of function application and nested logic
operators.

As by-product of this work, we were also able to train well-performing clas-
sifiers for each backend, which can be used for automated backend selection.

The experimental data as well as corresponding Jupyter notebooks are avail-
able on GitHub:

https://github.com/jdnklau/prob-backend-analysis.

Acknowledgements. Computational support and infrastructure was provided by the
“Centre for Information and Media Technology” (ZIM) at the University of Düsseldorf
(Germany).

https://github.com/jdnklau/prob-backend-analysis

Analysing ProB’s Constraint Solving Backends 121

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable
importance measures. Comput. Stat. Data Anal. 52(4), 2249–2260 (2008). https://
doi.org/10.1016/j.csda.2007.08.015

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wrocław, Poland, pp. 53–64, August 2011

5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1007/BF00058655

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Bridge, J.P.: Machine learning and automated theorem proving. Technical report,

University of Cambridge, Computer Laboratory (2010)
9. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-

racy and its posterior distribution. In: 2010 International Conference on Pattern
Recognition, pp. 3121–3124. IEEE, August 2010. https://doi.org/10.1109/ICPR.
2010.764

10. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

11. Carlsson, M., et al.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of
Computer Science Kista, Sweden (1988)

12. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: International Conference on Knowledge Discovery and Data
Mining KDD 2015, pp. 179–188. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2783258.2783281

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

14. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Derrick,
J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7_14

15. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94, 130–143 (2014). https://doi.org/10.1016/j.scico.2014.
04.012

16. Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7(4),
277–287 (2019). https://doi.org/10.1007/s41060-018-0144-8

17. Dobrikov, I., Leuschel, M.: Enabling analysis for Event-B. Sci. Comput. Program.
158, 81–99 (2018). https://doi.org/10.1016/j.scico.2017.08.004

18. Dunkelau, J.: Machine learning and AI techniques for automated tool selection
for formal methods. In: Proceedings of the PhD Symposium at iFM’18 on Formal
Methods: Algorithms, Tools and Applications, University of Oslo, September 2018.
https://doi.org/10.18154/RWTH-CONV-236485

https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1145/2783258.2783281
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-30885-7_14
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1007/s41060-018-0144-8
https://doi.org/10.1016/j.scico.2017.08.004
https://doi.org/10.18154/RWTH-CONV-236485

122 J. Dunkelau et al.

19. Dunkelau, J., Krings, S., Schmidt, J.: Automated backend selection for ProB
using deep learning. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol.
11460, pp. 130–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20652-9_9

20. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

21. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9_14

22. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1_25

23. Hara, S., Hayashi, K.: Making tree ensembles interpretable. In: ICML Workshop
on Human Interpretability in Machine Learning (WHI 2016) (2016)

24. Healy, A., Monahan, R., Power, J.F.: Evaluating the use of a general-purpose
benchmark suite for domain-specific SMT-solving. In: Symposium on Applied
Computing SAC 2016, pp. 1558–1561. ACM (2016). https://doi.org/10.1145/
2851613.2851975

25. Jackson, D.: Alloy: a lightweight object modelling notation. Trans. Softw. Eng.
Methodol. 11(2), 256–290 (2002)

26. Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB dis-
prover for B and Event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22969-0_15

27. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_23

28. Le Berre, D., Parrain, A.: The Sat4J library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010). System description

29. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.-L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
pp. 427–446. Wiley, Hoboken (2014)

30. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_46

31. Loh, W.: Classification and regression tree methods. In: Wiley StatsRef: Statistics
Reference Online. American Cancer Society, September 2014. https://doi.org/10.
1002/9781118445112.stat03886

32. Narayanan, I., et al.: SSD failures in datacenters: what? when? and why? In: Sys-
tems and Storage Conference, p. 7. ACM (2016)

33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

34. Petrasch, J.: The decision does not fall far from the tree: automatic configura-
tion of predicate solving. Master’s thesis, Heinrich Heine Universität Düsseldorf,
Universitätsstraße 1, 40225 Düsseldorf, April 2018

35. Plagge, D., Leuschel, M.: Validating B,Z and TLA+ Using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_31

https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-030-20652-9_9
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1145/2851613.2851975
https://doi.org/10.1145/2851613.2851975
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1002/9781118445112.stat03886
https://doi.org/10.1002/9781118445112.stat03886
https://doi.org/10.1007/978-3-642-32759-9_31

Analysing ProB’s Constraint Solving Backends 123

36. Schulz, S.: E-a brainiac theorem prover. Ai Commun. 15(2,3), 111–126 (2002)
37. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable

importance measures: Illustrations, sources and a solution. BMC Bioinf. 8(1), 25
(2007). https://doi.org/10.1186/1471-2105-8-25

38. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1_49

39. Yang, Q., Yin, J., Ling, C.X., Chen, T.: Postprocessing decision trees to extract
actionable knowledge. In: International Conference on Data Mining, pp. 685–688.
IEEE, November 2003. https://doi.org/10.1109/ICDM.2003.1251008

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1109/ICDM.2003.1251008

	Analysing ProB's Constraint Solving Backends
	1 Introduction
	2 Primer on ProB and its Backends
	2.1 The Native CLP(FD) Backend
	2.2 The Kodkod Backend
	2.3 The Z3 Backend

	3 Primer on Decision Trees and Random Forests
	3.1 Random Forests
	3.2 Rationale for Using Random Forests

	4 Related Work
	5 Experimental Setup
	5.1 The Training Data
	5.2 The Feature Set

	6 Analysis and Results
	6.1 Feature Importances
	6.2 Association Rule Analysis

	7 Conclusion
	References

