®

Check for
updates

Diverse Scenario Exploration in Model
Finders Using Graph Kernels and
Clustering

Robert Claris6!®@® and Jordi Cabot?

! Universitat Oberta de Catalunya (UOC), Barcelona, Spain
rclariso@uoc.edu
2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Complex software systems can be described using modeling
notations such as UML/OCL or Alloy. Then, some correctness properties
of these systems can be checked using model finders, which compute
sample scenarios either fulfilling the desired properties or illustrating
potential faults. Such scenarios allow designers to validate, verify and
test the system under development.

Nevertheless, when asked to produce several scenarios, model finders
tend to produce similar solutions. This lack of diversity impairs their
effectiveness as testing or validation assets. To solve this problem, we
propose the use of graph kernels, a family of methods for computing the
(dis)similarity among pairs of graphs. With this metric, it is possible to
cluster scenarios effectively, improving the usability of model finders and
making testing and validation more efficient.

Keywords: Model-driven engineering - Verification and validation -
Testing - Graph kernels - Clustering - Diversity

1 Introduction

The structure and behavior of a software system can be described by means of
software models, using notations such as Alloy [10], graph-based formalisms [20]
or UML/OCL [17]. These notations describe software systems at a high level of
abstraction, hiding implementation details while preserving its salient features.
Analysing these models can reveal complex faults in the underlying systems.

In this analysis, the key assets for checking the correctness of software models
are model finders [8], tools capable of computing instances of a model that
satisfy a set of constraints and properties of interest. Each model finder targets

This work is partially funded by the H2020 ECSEL Joint Undertaking Project
“MegaM@Rt2: MegaModelling at Runtime” (737494) and the Spanish Ministry of
Economy and Competitivity through the project “Open Data for All: an API-based
infrastructure for exploiting online data sources” (TIN2016-75944-R).

© Springer Nature Switzerland AG 2020

A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 27-43, 2020.
https://doi.org/10.1007 /978-3-030-48077-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_3&domain=pdf
http://orcid.org/0000-0001-9639-0186
http://orcid.org/0000-0003-2418-2489
https://doi.org/10.1007/978-3-030-48077-6_3

28 R. Clarisé and J. Cabot

a particular modeling notation and uses a different reasoning engine, like search-
based methods [1,24], SAT [10], SMT [24,28] or constraint programming [3].

For verification purposes, it is usually enough to search for one instance,
which either proves or disproves the property of interest. However, for test-
ing and validation purposes several instances are usually required to increase
our confidence in the correctness of the model. It is highly desirable that those
instances exhibit diversity, i.e., distinct configurations of the system and inter-
esting corner cases [11]. Lack of diversity may make validation and testing more
time consuming, as the analysis includes almost-duplicate instances that do not
provide added value; and less effective, as the sample of instances may fail to
include relevant scenarios.

Nevertheless, most model finders focus on efficiency and expressiveness of
the input modeling notation, so few of them ensure diversity of the generated
instances [6,11,20,23,26]. In these few, diversity assurance is integrated into the
solver: it guides the search process to look for diverse instances. However, this
integration makes it harder to transfer the proposed methods to other solvers and
notations. Thus, designers are limited in terms of expressiveness (e.g., no support
for integer or string attributes [11,20,26] or dynamic properties [6,11,23,24]) and
cannot benefit from additional features provided by others model finders (e.g.,
computation of minimal instances [16] or support for max-satisfiability [28]).

This paper proposes a method for distilling diverse instances in the model
finder output based on the use of clustering. Instances are classified into cate-
gories according to their similarity, which is calculated using information about
their structure (the existing objects and the links between them), typing (the
specific type of each object) and attribute values. This calculation is based on
the use of graph kernels, a family of methods for computing distances among
graphs. Selecting a representative instance from each category ensures diversity
while reducing testing and validation time, as redundant instances can be safely
discarded. As a drawback, this method does not force the model finder to look
for diverse instances, it only distills the most diverse ones.

Compared with related works, our approach offers the following advantages:

— It is independent of the solver used by the model finder (SAT, SMT, ...) and
the modeling notation being analyzed (Alloy, UML/OCL, ...).

— It does not require manual intervention from the designer to define what kind
of instances are “relevant” or when two instances are “similar”.

— The similarity computation can be customized, e.g., by selecting a trade-off
between precision and accuracy.

Paper Organization. The remainder of the paper is structured as follows.
Section 2 presents an overview of the method illustrated with a simple example.
Then, we describe the three steps of our method: the abstraction process for
transforming instances into graphs (Sect. 3); graph kernels (Sect.4), the frame-
work for computing similarities among graphs; and clustering algorithms that
can use this similarity to build groups of related instances (Sect.5). Section 6
presents some experimental results of the application of this method. After that,

Diverse Scenario Exploration in Model Finders 29

Sect. 7 describes previous work on diversity and model finding. Finally, Sect. 8
outlines the conclusions and lines for future work.

2 Method Overview

The overview of our approach for identifying diverse instances in model finder
output is depicted in Fig. 1. Our input is a set of instances computed by a model
finder, and our output is a set of clusters grouping those instances according to
their similarity. From this output, it is possible to select a representative instance
for each cluster, e.g., choosing the smallest instance.

The method can be divided into three steps:

1. Graph abstraction: First, each instance is abstracted as a labeled graph,
where labels store type and attribute value information and the underlying
graph captures the objects and the links among them.

2. Graph kernel: Then, the pairwise similarity among the n graphs is com-
puted using a state-of-the-art labeled graph comparison technique. The result
of this computation is a 7 X n matrix S where each cell S;; provides informa-
tion about the similarity between graphs i and j.

3. Clustering: Finally, the similarity data is used by a clustering procedure to
classify instances into groups of similar instances. The most suitable number
of groups is determined by using clustering validity indices, which measure
whether elements in the cluster are similar to each other and different from
elements in other clusters.

To illustrate how the method works and the type of results it can achieve,
we will use the UML class diagram in Fig. 2(a). This model describes the rela-
tionships between employees who work in or lead a department. There are two
constraints regarding the salary, defined as OCL invariants: all salaries must be
below a salary threshold and also below the salary of the department’s director.

e
Model — | i 1 : ——
Model | |

Finder E:> oolloo E:> :Proposed method: E:> 00
Property — w ! :
Instances L | Clusters

|

|

|

Graph 511 812 513 i !

: I

E:> kernel E:> [ggi 522 ggg} E:> Clustering :
|

|

|

Similarity matrix

Fig. 1. Overview of the method presented in this paper.

30 R. Clarisé and J. Cabot

Employee
salary: Integer
boss|1 |* alice: Employee bob: Employee
Leads WorksIn salary: 450 salary: 200

Leads
0.1 1 |dept WorksIn cads /{'orksln

Department
hr: Department

maxSalary: Integer

maxSalary: 500

context Employee inv maxSalary:
self.salary < self.dept.maxSalary

context Employee inv bossSalary:
self.salary < self.dept.boss.salary

(a) (®) (©)

Leads
‘WorksIn caas Leads
‘WorksIn

Fig. 2. Motivating example: (a) UML/OCL class diagram; (b) Sample instance; (c)
Encoding of the instance as a labeled graph; (d) Graph shapes of the three clusters.

(d)

To be usable in practice, this model should be strongly satisfiable [3]: it should
have some instance where all integrity constraints are satisfied with each class
having a non-empty population. In our example, the class diagram is satisfiable
and a potential solution is the instance shown in Fig.2(b). Instances like this
can then be used for validating and testing the UML/OCL model.

We have used the USE Model Validator [12] to generate 25 valid instances
for this model. By manually inspecting these instances, we can easily realize that
most of them are very similar. A designer would be interested in a smaller and
more diverse set of instances that gives the same or even more information as
the 25 original ones. We explain next how this can be achieved with our method.

Applying our method, each object diagram is abstracted as a labeled graph.
As an example, Fig.2(c) shows the abstraction for the object diagram in
Fig.2(b). We then apply hierarchical clustering to our 25 graphs using the simi-
larity information provided by a graph kernel algorithm. From the results, valid-
ity indices recommend choosing 3 clusters. Thus, we have discovered that out
of the 25 instances, there are only 3 types of solutions worth considering. The
common pattern in each cluster is depicted in Fig. 2(d).

Notice that one cluster identified by our method (the middle one) highlights
a potential problem in the model: a department where the director works in
another department. This is a corner case worth studying, to decide whether it
should actually be allowed or it is a mistake in the model that needs to be fixed.

The following sections describe the different phases of our approach in detail.

Diverse Scenario Exploration in Model Finders 31

3 Graph Abstraction

Depending on the model finder, instances have a different structure, e.g., an
object diagram, an enriched graph or a set of tuples. In order to take advantage
of off-the-shelf graph comparison algorithms, we translate these instances into
labeled undirected graphs. To this end, we define the vertices, edges and labels
in the graph in terms of the original instance.

Intuitively, the vertices of the graph will describe the object elements in the
instance, while the edges will describe the relationships among them. Labels are
integer values assigned to vertices. Labels will be used to describe information
such as the type of each element or the values of attributes that can, later on,
help to establish whether a pair of vertices from two different graphs can be
considered “equivalent”.

The complexity of this step depends on the kind of output provided by the
model finder. Our approach provides a specific solution for each type of out-
put. As shown in Fig. 2, the abstraction of object diagrams is straightforward
according to this pattern: objects and attributes becomes vertices, links become
edges, and types and attribute values become labels. Similarly, the mapping
from instances in graph-based modeling notations is also trivial: the vertices
and edges of the original graph are preserved while the type of each element is
used as a label for the corresponding vertex. Nevertheless, the transformation
from the relational notation used by Alloy is more involved. Thus, we devote the
remainder of this Section to formalize the abstraction of Alloy instances.

Alloy Models. An Alloy specification is defined as a collection of signatures
and constraints, followed by a command.

Signatures (sig) describe the data in the model. Each signature has a unique
name and represents a set of atoms, the base individuals in Alloy’s logic. Sig-
natures can have fields which take values for each atom of the signature. These
values can be basic data types like integers, other signatures or complex values
like functions or sets. Internally, these values are managed as relations, collec-
tions of tuples with the same arity (number of elements).

It is possible to define a hierarchy among signatures (extends). Moreover,
fields and signatures may have multiplicity constraints limiting their population,
e.g., one or lone (zero or one). In addition to user-defined signatures, Alloy pro-
vides some built-in signatures to describe common data types such as booleans,
integers, strings or sequences.

Regarding constraints, there are different types of constraint: facts (fact)
describe invariants that should always hold; assertions (assert) state desired
properties that should be checked; and predicates (pred) are reusable constraints
where some elements are passed as parameters. Each constraint can be defined
using a mixture of logical operators (e.g., and, not or implies), relational oper-
ators (e.g., dot join or transpose) and quantifiers (e.g., all or some).

Finally, commands instruct the solver which constraint should be analyzed
and the scope (number of atoms) that should considered for each signature.

32 R. Clarisé and J. Cabot

Command check searches for a counterexample of an assertion, while command
run searches for an example of a predicate.

Alloy Snapshots. Executing a command with the Alloy Analyzer may yield

two outcomes: either no instance within the scope satisfies the constraints or an

instance has been found. Instances are called snapshots in the Alloy terminology.
An Alloy snapshot is defined by the following elements:

— A list of signatures, including both built-in and user-defined signatures.

— A list of relations, each one with a fixed arity n.

A list of free variables in the model, e.g., parameters of predicates and exis-
tentially quantified variables.

— For each signature, a set of atoms.

For each relation with arity n, a set of tuples of n atoms.

— For each free variable with arity n, a witness, i.e., a set of tuples of n atoms.

That is, when checking for a property with existential quantifiers, Alloy not
only answers whether it is satisfied or not: if it holds, it also computes for which
specific value of the quantified variable (the witness) the property holds.

From Snapshots to Graphs. We need to define how to translate: (1) built-
in signatures, (2) user-defined signatures and (3) relations. As witnesses are a
special type of relation, we do not need to treat them separately.

Regarding built-in signatures, we need to make sure that each value will be
given the same label in different snapshots: an integer like 7 and a string like
“John” should be considered equal among different snapshots. Thus, the first
step is traversing the set of snapshots being abstracted to construct a vocabulary
of values. In this way, we compute a unique label for each value of a basic type.

1. Built-in signatures: We create a vertex for each atom in these signatures,
plus a vertex for each built-in value (string, integer or sequence) used in the
model. We label each vertex with the unique label for that built-in value.

2. User-defined signatures: We create a vertex for each atom. It is labeled
with its signature, i.e., the innermost signature in the signature hierarchy
where it belongs.

3. Relations: We create a vertex v for each tuple, labeled with the name of the
relation. Then, for each i-th element in the tuple, we create a vertex! labeled
with ¢ connected to both v and the vertex of the corresponding value.

Figure 3 shows an example of this abstraction process. The Alloy model in
Fig. 3(a) describes a DNS server lookup process. We want to validate the poten-
tial scenarios in this process, for instance, whether two names may resolve to
the same IP address. To do that, Alloy finds example instances, highlighting
the offending names (n1 and n2) and DNS (d). Figure 3(b) and (c) show one
sample Alloy instance in textual and graphical format. The corresponding graph

! The intermediate vertex is omitted when the position ¢ can be inferred: no other
position in the relation has a compatible signature, i.e., with a common supertype.

Diverse Scenario Exploration in Model Finders 33

abstraction is depicted in Fig. 3(d). For clarity, vertices are depicted in a different
shape according to their origin: circles for atoms; rectangles for relations (white)
and positions within relations (grayed); and hexagons for witnesses.

Abstraction and Diversity. Some approaches aimed at achieving diversity
use uniform sampling [5,14,15,18] as their goal: achieving a uniform distribu-
tion among solutions. Nevertheless, the desired notion of diversity may be more
complex (a target probability distribution, a partition into meaningful classes),
and specific to a domain or even a particular problem [6,24]. In the following, we
discuss how this information about the desired type of diversity can be integrated
in the graph abstraction process with very few changes.

For example, let us consider the specification of a banking system. From our
domain knowledge, it seems reasonable to think that the name of the owner
an account is not very relevant: if there are 10 clients in our system, the fact

sig Name, IP {} Atoms

sig DNS { Name = {NameO, Namel}
parent: lone DNS, IP = {IPO}
lookup: Name -> lone IP DNS = {DNSO, DNS1}

¥ Relations

parent = {DNSO->DNS1}
lookup = {DNS1->Name0O->IPO,
DNS1->Name1->IPO}

pred Dup[nl, n2: Name] {
some d: DNS | (nl != n2) and
(d.lookup[ni] = d.lookup[n2])

} Witnesses
Dup.nl = {Namel}
// Find names with same IP Dupn2 = {NameO}
run Dup for 2 Dup.d = {DNS1}
(a) (b)
DNSO
parent
DNS1
($Dup_d)

Il

resolve [Name1]
|

solve [Name0]
|/

I
Name0 Mame1
($Dup_n2) ($Dup_n1)

(©) @

Fig. 3. Example of graph abstraction: (a) Alloy model; (b) Alloy snapshot in textual
format; (c) Alloy snapshot depicted graphically; (d) Abstracted graph.

34 R. Clarisé and J. Cabot

that all of them are called “John Smith” might not be problematic. Thus, the
name of the owner could be abstracted away in our graph representation, i.e.
remove from the graph the vertices related to this particular attribute. On the
other hand, focusing on the balance of an account, we might be interested in
considering accounts with a positive, negative and zero balance. In this case, we
are not interested in specific values for the balance, only if they fit in these three
categories. In our graph abstraction, this situation can be modeled by using
these categories (instead of the integer value) as the label for the vertex.

4 Graph Kernels

There are different ways to compare a pair of graphs and establish the degree
of similarity between them. For instance, the edit distance measures the number
of atomic changes required to transform one graph into the other. An alterna-
tive is checking for isomorphism? between the whole graphs or their subgraphs.
However, these approaches have a high computational complexity and may be
unsuitable for comparing large graphs or sizable collections of graphs.

An alternative approach is taken by graph kernels [7,27], a family of methods
for measuring the (dis)similarity among pairs of graphs. Rather than computing
an exact measure for similarity, kernels aim to provide an efficient approximation
that can be computed efficiently but still captures relevant topological informa-
tion about the graphs. A typical approach is counting the number of matching
substructures within the graphs, like paths, subtrees or subgraphs. In this work,
we have used the Weisfeiler-Lehman kernel [22], as it has been shown to provide
good precision with an efficient computation in a variety of domains [13,22].

Algorithm 1 describes the Weisfeiler-Lehman (WL) kernel. The procedure
computes the distance between a pair of graphs G; and Gs by counting the
number of common subtrees up to height h. To avoid enumerating subtrees
explicitly, a characteristic label is computed for each subtree. This label is con-
structed iteratively: each iteration ¢ computes the label for the tree of height @
rooted in each node v (1abel(s,v)). Iteration O (line 11) uses the original labels
in the graph. Then, each iteration 7 (lines 14—21) assigns a label to each vertex v
by combining the labels of v and its adjacent vertices in iteration ¢ — 1. Finally,
the distance between the pair of graphs is computed by counting the original
labels (line 12) and the labels for subtrees up to height A (line 22) and comparing
their frequencies (lines 4-6). The complexity of this procedure is O(hm), with
m being the number of edges in the graphs [22]. The parameter h allows us to
control the trade-off between performance and precision.

Notice that thanks to how our graph abstraction process is defined (types
and attribute values as labels), the similarity value computed by the kernel is
implicitly taking advantage of topological, type and attribute value information
from the instance.

2 Graphs G1 = (Vi, E1) and G2 = (Va, E»2) are called isomorphic if there is a mapping
f: Vi — Va5 such that Vx,y € Vi : (z,y) € E1 iff (f(z), f(y)) € E-.

Diverse Scenario Exploration in Model Finders 35

1 Function WLKernel(G1, G2, h) // Weisfeiler-Lehman graph kernel
input : G1,G2: a pair of labeled graphs; h : an integer (the tree height)
output: A distance measure between G; and Ga

2 freql < WLTest(G1, h); // frequency of each label in G

3 freq2 <« WLTest (G2, h); // frequency of each label in Gg

a distance «— 0; // distance = difference among frequencies

5 foreach label lab do

6 distance < distance + |freql[lab] — freq2[lab]|;

7 return distance;

8 Function WLTest(G, h) // Weisfeiler-Lehman isomorphism test
input : G: a labeled graph G = (V, E); h : an integer (the tree height)
output: A map counting the frequency of labels in G

9 // Initially all labels x have frequency[z] = 0

10 foreach wvertex v € V(G) do

11 label(0,v) « label of v in G}

12 frequency[label(0,v)] « frequency[label(0,v)] + 1

13 for i +— 1 to h do

14 foreach wvertex v € V(G) do

15 adjacentLabels <« labels(i-1, neighbours(v, G));

16 // signature = my label + sorted labels of adjacent vertices

17 signature «— append(label(i-1,v), sort(adjacentlLabels));

18 // Assign an integer label that summarizes signature

19 // Two equal signature should always receive the same label

20 // Compressed labels not reused in the next iterations

21 label(4, v) «— compressLabels(signature) ;

22 frequency[label(i,v)] < frequency[label (i,v)] + 1

23 return frequency;

Algorithm 1: Pseudocode for the Weisfeiler-Lehman graph kernel [22].

5 Clustering

Clustering is one of the fundamental tasks in the field of Machine Learning (ML).
Intuitively, it consists in the analysis of a collection of elements to identify groups
of similar individuals, for a given definition of “similarity”.

Algorithm Selection. Several algorithms have been proposed for this task [29].
There is no single “best” clustering algorithm: the most suitable one depends on
the collection being analyzed. This is because the strategies for finding clusters
can be very different. For example, means and medoids are different definitions
of the “center” of a cluster, and algorithms like K-means and K -medoids aim to
find the best location for those centers. On the other hand, methods like hierar-
chical clustering initially consider each element as a cluster and then iteratively
merge the two nearest clusters.

In order to select which clustering algorithm should be used, the required
input information should be considered:

— Feature versus Kernel methods: Some algorithms like K-means require
each element to be described by a vector of features (relevant characteristics)
of a fixed length. Meanwhile, other algorithms like hierarchical clustering only
require a distance (or similarity) measure among pairs of elements.

— Target number of clusters: Algorithms like K-means or K-medoids require
knowing the target number of clusters a priori. Conversely, algorithms like
hierarchical clustering do not require this information beforehand.

36 R. Clarisé and J. Cabot

In our context, the elements we are trying to cluster are labeled graphs
abstracting the outputs of a model finder. The number of target clusters is
unknown a priori and, as discussed in the previous section, we will be using a
similarity metric. Given this setting, we have chosen hierarchical clustering.

Choice of Number of Clusters. Hierarchical clustering computes a hierarchi-
cal structure called dendogram, a tree that describes the order in which clusters
should be merged according to their similarity. A clustering is obtained when we
decide where (in which level of the tree) the merging should stop. In order to
decide that, we can use cluster validity indices, metrics that measure the quality
of a clustering. In a good clustering, elements within a cluster should be very
similar and very dissimilar to elements in other clusters. The metric is evaluated
in each level of the tree and the clustering providing the optimal value is selected.

In this work, we have used the silhouette coefficient [19], a classical metric
that measures the average distance to elements in the same cluster compared to
the minimum of the average distances to elements in other clusters. It provides
a value in the [—1,1] range (higher is better), where values below 0.5 signal a
bad fit in the clustering. As mentioned previously, the clustering achieving the
highest average silhouette width is selected as our output.

6 Experimental Results

In order to assess the computational effort of the proposed method and the use-
fulness of its output, we have performed several experiments. These experiments
aim to answer the following research questions:

RQ1. How does the execution time of the method compare to model finding?
RQ2. Do the resulting clusters provide a concise yet diverse summary of the
model finder output?

Experiment Design. We have analyzed a collection of Alloy models provided
in the Alloy GitHub model repository®. Among them, we have chosen examples
dealing with the generation of examples or counterexamples, rather than proving
their absence. These type of models could be used for validation and testing,
and thus they are the target of the proposed method. For these models, we have
used the Alloy Analyzer to generate up to 100 instances (less if there are not
enough valid instances available). Table 1 provides information about the size
and complexity of these models: the number of signatures (Sig), fields (Fields),
facts (Fact) and predicates (Pred) in each Alloy model.

Implementation. We have implemented our method as two separate compo-
nents. First, we have developed a Java program that calls the latest version of
the Alloy API (5.0.0) to compute a collection of instances and generate their
graph abstraction. The output of this tool is stored as a set of files in GML
format. Then, a R script reads the GML files, computes the graph kernel and

3 https://github.com/AlloyTools/models.

https://github.com/AlloyTools/models

Diverse Scenario Exploration in Model Finders 37

Table 1. Summary of the models analyzed with the Alloy Analyzer.

Model Domain Sig | Field | Fact | Pred
chord-bug-model | Chord distributed hastable lookup protocol | 4 | 8 3 15
file-system Generic file system 7| 4 0 3
firewire Leader election in the Firewire protocol 15 | 16 2 15
flip-flop Flip-flop state machine 6 8 1 2
genealogy Genealogical relationships 5 2 4 1
grandpa “I am my own grandfather” puzzle 3 3 3 2
philosophers Dining philosophers problem 3 5 1 2
railway Train safety in a railway system 41 5 3 6
reset-flip-flop Evolution of a flip-flop 78 1 2

performs the clustering. This script takes advantage of existing libraries for rep-
resenting graphs (the igraph package?), similarity analysis among graphs (the
graphkernels package®) and clustering (the cluster package®).

The experiments have been performed on a quad-core Intel i5-760 2.8 GHz
with 4 GB of RAM. On the software side, we have used Java 9.0.4 64 bits and
R 3.50 64 bits. With respect to the settings, Alloy has used MiniSat as the SAT
solver back-end with the highest amount of symmetry breaking (symmetry=20).
Regarding the graph kernel, the Weisfeiler-Lehman graph kernel has been used
with the default number of iterations (h = 5).

Execution times have been measured in each step of the computation: the
Alloy analysis, the graph abstraction phase and the kernel and clustering phases.

Table 2. Experimental results.

Model Execution time Output
Model Scope | Inst || finding || Abst Kern Clust | Total # Cl| Sil
chord-bug-model | 2 52 498 ms || 169 ms| 90 ms | 30 ms | 289 ms || 5 0.31
file-system 5 100 825 ms || 165 ms | 180 ms | 30 ms | 375 ms || 3 0.99
firewire 2-7 100 || 1474 ms || 209 ms | 180 ms |40 ms 429 ms || 3 0.76
flip-flop 10 100 652 ms || 203 ms | 180 ms | 50 ms | 433 ms || 2 0.04
genealogy 6 100 830 ms || 129 ms | 140 ms | 50 ms | 319 ms || 33 0.45
grandpa 4 48 554 ms || 8 ms| 70ms| 40 ms| 198 ms|| 2 0.96
life 36 100 || 1681 ms || 283 ms | 180 ms | 40 ms | 503 ms || 14 0.30
philosophers 4 100 || 1539 ms || 157 ms | 160 ms | 40 ms | 357 ms || 2 0.30
railway 14 100 735 ms || 179 ms | 170 ms | 30 ms | 379 ms || 50 0.46
reset-flip-flop 10 100 672 ms || 250 ms | 160 ms | 40 ms | 450 ms || 14 0.48

* https://igraph.org.
5 https://cran.r-project.org/package=graphkernels.
5 https://cran.r-project.org/package=cluster.

https://igraph.org
https://cran.r-project.org/package=graphkernels
https://cran.r-project.org/package=cluster

38 R. Clarisé and J. Cabot

Results and Discussion. Table 2 shows, for each experiment, the scope used in
the analysis (Scope) and the number of computed instances (Inst). Notice that
for two models there were less than 100 satisfying instances. Then, we describe
the time (in milliseconds) required by Alloy to compute the instances (Model
finding), compared to the time taken by the different steps of our method: graph
abstraction (Abst), graph kernel (Kern) and clustering (Clust). The total time
for the three steps is reported as well. Finally, we list the optimal number of
clusters (# Cl) identified by our method and the silhouette coefficient (Sil). As
mentioned in Sect. 5, the silhouette is a value in the [—1,41] range that estimates
the quality of the clustering (higher is better).

Considering these results, regarding RQ1 (efficiency) the execution time of
the method is always below 0.5 seconds and less than the time required by Alloy
to compute the instances. This was somewhat expected, as the computational
effort of our approach depends on the number of instances and their size, but it
is unaffected by the hardness of finding instances, the decisive factor in Alloy’s
execution time. Therefore, we can conclude that using our approach does not
incur in a significant overhead with respect to using the model finder.

With respect to the scalability of our approach, let us consider the computa-
tional complexity of our method. We consider two parameters in this analysis:
n, the number of instances that will be computed by the model finder; and m,
the size (number of atoms, tuples in the relation and witnesses) of an instance.
Graph abstraction performs a traversal of the instance, requiring O(m) time.
The graph kernel takes O(m) time for each comparison and performs O(n?)
comparisons, so in total it requires O(m - n?). Finally, clustering requires O(n?)
time, so the overall complexity is O(m - n? +n?). In terms of space complexity,
we require O(m - n) to store the n graphs, O(n?) to store the similarity matrix
and perform clustering, that is, O(m - n 4+ n?) in total.

Regarding RQ2 (quality of the output) we can see that the proposed num-
ber of clusters varies significantly from one model to another, and so does the
silhouette coefficient:

— Models with a high silhouette (e.g., file-system and grandpa) exhibit some sort
of symmetry that is not being detected by the Alloy Analyzer. For instance,
in file-system there is a symmetry between directory names, so in practice, it
is as if Alloy was only returning the same 3 effective instances all the time.
Models like this one are the scenarios where our approach is most effective.

— Models with a low number of clusters and a low silhouette (e.g., flip-flop)
highlight scenarios where all instances are very similar. For instance, in flip-
flop the instance models 10 steps of a trace in the evolution of a flip-flop. All
these traces are very similar, so no salient features can be used to classify
them. Diversity can only be slightly improved for these scenarios.

— Models with a high number of clusters (e.g., genealogy or railway) describe
scenarios where the instances produced by the solver are already very dissim-
ilar among them. In this case, the output of the solver was already diverse
before applying our method.

Diverse Scenario Exploration in Model Finders 39

— The rest of models, with an average silhouette between (0.4-0.7) illustrate a
middle ground: some instances share similarities but the boundaries between
each group may overlap or be hard to establish. Choosing a representative
from each cluster ensures diversity, but there is the risk (higher for lower
silhouette values) of discarding relevant instances. To reduce this risk, it would
be possible to select a higher number of representatives per cluster.

To sum up, our method can reduce the number of instances to consider
while preserving diversity. Furthermore, this method provides an estimate of the
quality of its result that helps designers deciding when and how to employ it.

7 Related Work

Several works have considered how to improve the diversity in the output of
model finders, e.g., [6,9,11,20,23,26]. We will classify them according to two
criteria: (i) how diversity is specified by the designer and (ii) how it is achieved.

We exclude from this discussion all methods designed for general-purpose
solvers [5,15,25], as they have not been used within model finders and they con-
sider diversity at a lower level of abstraction (e.g., assignments to a boolean for-
mula) where some model-level similarities may be lost (e.g., isomorphic instances
with different bit-vector representations are still equivalent). For instance, a
related software engineering problem that relies on low-level constraint solvers
is finding valid configurations in a software product line. In this context, it has
been shown [18] that SAT solvers designed for uniform sampling (i.e., comput-
ing satisfying assignments that are distributed as close as possible to a uniform
distribution) do not achieve a uniform distribution in the set of computed con-
figurations.

Definition of Diversity. The designer has different ways to specify the desired
notion of diversity. Some methods [6,23] need to be given a probability distribu-
tion that the output instances should follow. Otherwise, the designer can parti-
tion the universe of instances by defining predicates called classifying terms [9].
For instance, for an attribute the designer may only be interested in its sign
(positive, negative or zero), defining 3 partitions. Diversity is then achieved by
finding instances that cover each partition.

Meanwhile, other methods such as [11,26] or the one proposed in this paper
do not require any input from the designer: diversity is defined implicitly by
ensuring non-equivalence or enforcing some distance metric between the output
instances. Nevertheless, in our case, the designer has some degree of control
over the desired type of diversity by adapting the graph abstraction process, as
explained in Sect. 3.

Implementation of Diversity. Most methods operate inside the model finder,
reducing the number of instances being computed in different ways.

Some techniques aim to automatically detect equivalent solutions during the
analysis in order to avoid exploring them. In the context of boolean satisfiability

40 R. Clarisé and J. Cabot

(SAT), SAT-Modulo Theories (SMT) and Constraint Programming (CP) this
notion is called symmetry breaking [3,10] and it is achieved by including addi-
tional constraints a priori. These constraints can also be added dynamically each
time a new instance is found [9,23], to forbid exploring equivalent instances in
the future. Another way to avoid exploring equivalent instances is requiring the
solution to be minimal [2,4,16].

In search-based methods like genetic algorithms [2] or simulated annealing [4],
similarity among solutions can be detected through a distance measure: neigh-
bors that are too close to previously explored solutions can be ignored. Similarly,
in graph solvers graph shape analysis [20,21] can detect equivalent or similar
graphs. Nevertheless, this approach does not support features like attributes,
relations or witnesses like the approach presented in this paper.

Moreover, model finders can introduce randomness [6], such as random selec-
tion of the next value to be explored or random restarts that can help explore
different areas of the search space. Another take on randomness, randomized
partitioning [11], shares the goal of classifying terms (partitioning the solution
space) but generates the partitions by randomly splitting the domains of model
elements. While this approach may be successful in problems with simple and
local constraints, it is ineffective when dealing with complex constraints.

Finally, the COMODI tool [6] provides several techniques for clustering the
object diagrams produced by a UML/OCL model finder. First, it defines a fea-
ture vector encoding for object diagrams that captures, for each object, infor-
mation about attribute values and adjacent objects. And second, it defines a
centrality metric (similar to the pagerank algorithm of search engines) that
measures the importance of each object within the object diagram. Compared
to our method, this approach is specific for object diagrams: it cannot deal with
features from other modeling notations, such as Alloy’s relations or witnesses.
Furthermore, the proposed similarity metrics do not consider information about
types, structure and attribute values simultaneously: the centrality metric omits
attribute values entirely; and the feature vector approach does not consider topo-
logical information about the structure of the object diagram.

8 Conclusions

We have presented a method for addressing the lack of diversity among the
instances computed by a model finder. Our approach uses clustering to group
instances according to their similarity, using information both about topology,
types and attribute. The method is solver- and notation-agnostic: it can be
applied to model finders using different types of solvers (e.g., SAT, SMT or CP)
and even targeting different modeling notations (e.g., UML/OCL or Alloy).
This approach is capable of computing meaningful clusters and has an execu-
tion time that is negligible with respect to that of the model finder itself. Still, as
our diversity computation is an a posteriori procedure, it is intended for valida-
tion and testing scenarios where model finders are able to find instance solutions
with relative ease. In this sense, our approach does not increase the diversity of

Diverse Scenario Exploration in Model Finders 41

the model finder output. However, it maximizes diversity by selecting, on behalf
of the user, the widest possible variation among the output set.

As future work, we plan to define custom kernels for comparing instances that
take into account specific characteristics of the input model. For instance, the
invariants and multiplicities in the model can be used to identify which model
elements are more constrained: this is where diversity is most relevant, rather
than elements where we are free to choose almost any value. Also, we plan to look
into combining graph kernels with topological and label features [13] that can
improve the quality of the similarity analysis. Finally, we will consider strategies
for tailoring the graph abstraction to particular problems and domains.

References

1. Ali, S., Zohaib Igbal, M., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376-1402
(2013). https://doi.org/10.1109/TSE.2013.17

2. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the unifica-
tion of testing and learning MDE tasks. In: ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems (MODELS 2016), pp. 374—
384. ACM Press, New York (2016). https://doi.org/10.1145/2976767.2976785

3. Cabot, J., Clarisé, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1-23 (2014). https://doi.org/
10.1016/.js5.2014.03.023

4. Cadavid, J.J., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling
space to test metamodels. In: IEEE International Conference on Software Testing,
Verification and Validation (ICST 2012), pp. 131-140. IEEE (2012). https://doi.
org/10.1109/ICST.2012.93

5. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: International Conference on Software Engineering (ICSE 2018), pp.
549-559. ACM (2018). https://doi.org/10.1145/3180155.3180248

6. Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., Nebut, C.: Measurement
and generation of diversity and meaningfulness in model driven engineering. Int.
J. Adv. Softw. 11(1/2), 131-146 (2018). https://hal-lirmm.ccsd.cors.fr/lirmm-
02067506

7. Ghosh, S., Das, N., Gongalves, T., Quaresma, P., Kundu, M.: The journey of graph
kernels through two decades. Comput. Sci. Rev. 27, 88-111 (2018). https://doi.
org/10.1016/J.COSREV.2017.11.002

8. Gonzdlez, C.A., Cabot, J.: Formal verification of static software models in MDE:
a systematic review. Inf. Softw. Technol. 56(8), 821-838 (2014). https://doi.org/
10.1016/j.infsof.2014.03.003

9. Hilken, F., Gogolla, M., Burgueno, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. Softw. Syst. Modeling 17(3), 885-912
(2016). https://doi.org/10.1007/s10270-016-0568-3

10. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006). https://mitpress.mit.edu/books/software-abstractions

11. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level
architectures. In: International Conference on Embedded Software (EMSOFT
2013), pp. 1-10. IEEE, September 2013. https://doi.org/10.1109/EMSOFT.2013.
6658589

https://doi.org/10.1109/TSE.2013.17
https://doi.org/10.1145/2976767.2976785
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1109/ICST.2012.93
https://doi.org/10.1109/ICST.2012.93
https://doi.org/10.1145/3180155.3180248
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://doi.org/10.1016/J.COSREV.2017.11.002
https://doi.org/10.1016/J.COSREV.2017.11.002
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1007/s10270-016-0568-3
https://mitpress.mit.edu/books/software-abstractions
https://doi.org/10.1109/EMSOFT.2013.6658589
https://doi.org/10.1109/EMSOFT.2013.6658589

42

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Clarisé and J. Cabot

Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290-306. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21952-8_21

Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on
topological and label attributes. Stat. Anal. Data Mining 5(4), 265-283 (2012).
https://doi.org/10.1002/sam.11153

Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130-145. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02674-4_10

Nadel, A.: Generating diverse solutions in SAT. In: Sakallah, K.A., Simon, L. (eds.)
SAT 2011. LNCS, vol. 6695, pp. 287-301. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21581-0-23

Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: International Conference
on Software Engineering (ICSE 2013), pp. 232-241. IEEE, May 2013. https://doi.
org/10.1109/ICSE.2013.6606569

Petre, M.: UML in practice. In: International Conference on Software Engineering
(ICSE 2013), pp. 722-731. IEEE Press (2013). https://doi.org/10.1109/ICSE.2013.
6606618

Plazar, Q., Acher, M., Perrouin, G., Devroey, X., Cordy, M.: Uniform sampling
of SAT solutions for configurable systems: are we there yet? In: IEEE Conference
on Software Testing, Validation and Verification (ICST 2019), pp. 240-251. IEEE
(2019). https://doi.org/10.1109/ICST.2019.00032

Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20(1), 53—-65 (1987). https://doi.org/
10.1016/0377-0427(87)90125-7

Semerath, O., Nagy, A.S., Varrd, D.: A graph solver for the automated generation of
consistent domain-specific models. In: International Conference on Software Engi-
neering (ICSE 2018), pp. 969-980. ACM Press (2018). https://doi.org/10.1145/
3180155.3180186

Semerdath, O., Varrd, D.: Iterative generation of diverse models for testing spec-
ifications of DSL tools. In: Russo, A., Schiirr, A. (eds.) FASE 2018. LNCS, vol.
10802, pp. 227-245. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89363-1_13

Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539-2561 (2001).
https://dl.acm.org/citation.cfm?id=2078187

Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statis-
tical testing. In: IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017), pp. 872-882. IEEE (2017). https://doi.org/10.1109/ASE.
2017.8115698

Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical model-driven data generation
for system testing. ACM Transactions on Software Engineering and Methodology
(2020, to appear). http://arxiv.org/abs/1902.00397

Vadlamudi, S.G., Kambhampati, S.: A combinatorial search perspective on diverse
solution generation. In: AAAI Conference on Artificial Intelligence, pp. 776-783.
AAAT Press (2016). https://dl.acm.org/citation.cfm?id=3015927

https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1002/sam.11153
https://doi.org/10.1007/978-3-642-02674-4_10
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606618
https://doi.org/10.1109/ICSE.2013.6606618
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1145/3180155.3180186
https://doi.org/10.1007/978-3-319-89363-1_13
https://doi.org/10.1007/978-3-319-89363-1_13
https://dl.acm.org/citation.cfm?id=2078187
https://doi.org/10.1109/ASE.2017.8115698
https://doi.org/10.1109/ASE.2017.8115698
http://arxiv.org/abs/1902.00397
https://dl.acm.org/citation.cfm?id=3015927

26.

27.

28.

29.

Diverse Scenario Exploration in Model Finders 43

Varrd, D., Semerath, O., Szarnyas, G., Horvéth, A.: Towards the automated gen-
eration of consistent, diverse, scalable and realistic graph models. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 285-312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6-16

Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph ker-
nels. J. Mach. Learn. Res. 11(Apr), 1201-1242 (2010). http://www.jmlr.org/
papers/v11/vishwanathanl0a.html

Wu, H.: MaxUSE: a tool for finding achievable constraints and conflicts for incon-
sistent UML class diagrams. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017.
LNCS, vol. 10510, pp. 348-356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66845-1_23

Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645-678 (2005). https://doi.org/10.1109/TNN.2005.845141

https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16
http://www.jmlr.org/papers/v11/vishwanathan10a.html
http://www.jmlr.org/papers/v11/vishwanathan10a.html
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1109/TNN.2005.845141

	Diverse Scenario Exploration in Model Finders Using Graph Kernels and Clustering
	1 Introduction
	2 Method Overview
	3 Graph Abstraction
	4 Graph Kernels
	5 Clustering
	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

