
Verifying SGAC Access Control Policies:
A Comparison of ProB, Alloy and Z3

Diego de Azevedo Oliveira(B) and Marc Frappier(B)

Université de Sherbrooke, Québec, Canada
{dead1401,marc.frappier}@usherbrooke.ca

Abstract. This paper describes the formalisation of SGAC access con-
trol policies using Z3 and then we compare the performance with ProB
and Alloy. SGAC is an attribute-based, fine-grain access control model
that uses acyclic subject and resource graphs to provide rule inheritance
and streamline policy specification. To ensure patient privacy and safety,
four types of properties are checked: accessibility, availability, contextu-
ality and rule effectiveness. Automatic translation of SGAC policies into
each specification language has been defined. ProB offers the best veri-
fication performances, by two orders of magnitude. The performances of
Alloy and Z3 are similar.

Keywords: Access control · Consent management · Verification ·
ProB · Formal model · Alloy · Z3

1 Introduction

SGAC (Solution de Gestion Automatisée du Consentement/ Automated consent
management solution) [2] is a powerful, attribute-based, fine-grain access con-
trol model for EHR that uses acyclic subject and resource graphs to provide rule
inheritance and streamline policy specification. To ensure patient privacy and
safety, four types of properties are defined: Accessibility, Availability, Contextu-
ality, and Rule effectiveness.

In [2], ProB [4] and Alloy [3] are investigated to verify these SGAC proper-
ties. ProB is mainly based on constraint logic programming using the CLP(FD)
finite domain library of SICStus Prolog, while Alloy relies on Kodkod and SAT
solvers. In this paper, we intend to complement this study by exploring a differ-
ent technology, SMT solvers, using Z3 [1]. We present the translation of SGAC
to SMT-LIB2 using the Python API for Z3. We then compare the performance
of Z3 with that of ProB and Alloy using the translation described. We also
improve this translation by fully taking into account rule conditions in contexts,
instead of an abstraction as proposed in [2].

This work was supported in part by NSERC (Natural Sciences and Engineering
Research Council of Canada).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 223–229, 2020.
https://doi.org/10.1007/978-3-030-48077-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_15


224 D. de Azevedo Oliveira and M. Frappier

This paper is structured as follows. A brief overview of SGAC is presented in
Sect. 2. Section 3 presents the formalisation of the SGAC model in Z3. Section 4
describes the formalisation of the properties to check. Section 5 brings the per-
formance tests and compares each tool. We conclude this paper in Sect. 6.

2 Brief Introduction to SGAC

SGAC is an access control model with conflict resolution. Conflict resolution
is based on a definition of precedence between rules; the rule with the highest
precedence is chosen to determine the access decision. The precedence relation
is not a total order. When there are several maximal elements, access is granted
when all of them are permissions. The definitions provided in this section are
taken from [2]. SGAC uses directed acyclic graphs (DAG). A sink of a DAG G
is a vertex without any successor; sink(G) denotes the set of all sinks of G.

An SGAC policy P = (S,R,L) consists of a DAG S denoting subjects, a
DAG R denoting resources, and a set of rules L. A rule l ∈ L permits to specify
who (subject) has access (action and modality) to what (resource) and when
(priority and condition). A request is a demand the subject issues in order to
execute an action on a document. A rule l applies to a request iff all of the
following conditions are satisfied: the request subject is a descendant of the rule
subject; the request resource is a descendant of the rule resource; the request
action is the same as the rule action; the rule condition holds.

One strong point of SGAC is how it deals with conflict resolution. A conflict
occurs when more than one rule apply to a request, and if they have different
modalities. It is necessary to decide which rule has the highest precedence and
determine the access decision. Let r1, r2 be two different applicable rules for a
request:

1. If r1 has a smaller priority than r2, we say that r1 has precedence over r2.
2. If r1 and r2 have the same priority, and if the subject of r1 is more specific

than the subject of r2 (i.e., the subject of r1 is a descendant of the subject of
r2 in the subject graph), then r1 has precedence over r2.

3. If r1 and r2 have the same priority, and neither of their subjects is more
specific than the other, then a prohibition has precedence over a permission.

Figure 1 provides a small example where a hospital has just one doctor,
Edward, and he is part of the GP Physicians and the Psychologists groups. A
patient was accepted to the hospital and the resources available are the exams:
a blood test and an urine test. Four rules with the same priority are defined.
In rule 1 there is a prohibition of access from the hospital to the exams. That
way, just more specific groups may have access to content. In rule 2 the GP
Physicians are permitted to access blood tests. In rule 3, the Psychologists are
prohibited to access blood tests. In rule 4, Edward is allowed to access urine
tests. Edward is only granted access to the urine test of the patient. Since rule 2
is overridden by rule 3, he is prohibited from accessing blood tests. This happens
because the rules have the same priority, also neither rule2 is less specific than
rule3 or vice-versa, and rule4 is more specific than rule1.



Verifying SGAC Access Control Policies 225

Rule3

Rule2

Rule1

Rule4

Hospital

GP Physician Psychologist

Edward

Exams

BloodTest UrineTest

Subject Graph Resource Graph

Permission
Prohibition
Membership

Fig. 1. SGAC graphs with rules

3 Formalisation of SGAC with Z3

Z3 [1] is a Satisfiability Modulo Theories (SMT) solver developed by Microsoft
Research. It is specialized for solving background theories. Z3 supports arith-
metic, fixed-size bit-vectors, extensional arrays, algebraic datatypes, uninter-
preted functions and quantifiers. Several programming languages are available
as front-end to interface with Z3, such as Ocaml, C++ and Python. Z3 uses
combination theory and novel algorithms. It is composed of a congruence clo-
sure engine, a SAT solver-based and several default theory solvers or plug-ins.

Z3 does not natively support sets and relations. A set S that is a subset of a
sort T can be represented by a boolean function Sf ∈ T →BOOL. The predicate
s ∈ S is represented by Sf (s). Similarly, an n-ary relation r ⊆ T1 × . . . × Tn is
represented by a function rf ∈ T1 × . . . × Tn → BOOL. A record w ∈ W , with
W = struct(a1 : T1, . . . , an : Tn), is represented by one function ai,f for each
attribute ai such that ai,f ∈ TW → Ti, where TW is a sort representing the set
of all records. The value of an attribute ai of w is given by ai,f (w).

The formalisation of SGAC in Z3 is highly inspired from the B specification
of [2]. Z3 is not able to solve the SGAC specification in a single model, thus
model staging is needed. Z3 does not natively support model staging. Thus, we
use Python scripts to do model staging. In the first stage we calculate the graphs,
their transitive closure and determine rule precedence. The second stage calcu-
lates the maximal applicable rules. The third stage verifies the SGAC properties.
After solving a stage, we use Python to get the instance found and generate new
constraints representing the values of the symbols solved in the next stage.

The sets of clause SETS of the B model are represented by sorts in our
Z3 model. Although a sort in Z3 is infinite, it is possible to restrain its set of
elements using constraints. For SGAC it is mandatory to use the elements that
we nominated, and not let the solver choose others.

It is then possible to name the elements of the sort, using constants, and use
them in the constraints. In our model, each element of subject, resource, rule,
context and the two modalities is unique. A constraint must be added to state
that each pair of constants are distinct from each other (i.e., pairwise inequality).



226 D. de Azevedo Oliveira and M. Frappier

To build the subject and resource graphs, we use a relation as previously
described. We also compute the transitive closure of the subject and resource
graphs externally in Python, taking advantage of their acyclicity, which is more
efficient than the generic transitive closure operator provided in Z3Py.

A rule is represented by a structure as explained above. The set of requests is
represented by a relation using the sinks of the subject and resource graphs, as in
B. The next step is to specify conflict resolution and how the rules are ordered.
We then define: applicable, takes the pair subject-resource, as a request, and
decides if the rule is applicable to the pair, returning a boolean; maxElem, a
function that was declared in the B definitions, responsible for giving the max-
imal rule elements for a given request; isPrecedeBy, that connects a subject, a
resource, to two rules (r1, r2 ) and a boolean. The boolean only holds true when
r1 is less specific than r2 and the two rules are part of the same request, repre-
sented as the subject and resource; pseudoSink (psdSink), returns all maximal
applicable rules for a given request for a given context.

4 Properties Verification

Accessibility and Contextuality. Accessibility verifies whether a subject sub
can access a resource res in a context con. Contextuality determine which con-
texts make a given request granted. Access is granted when the maximal appli-
cable rules of each request (sub, res) under the context con are all permissions.
We define the function accessibility(sub, res, con) that returns true when access
is granted. Then, we add a constraint that holds if the request for the given
context is accessible and we ask Z3 to solve it. In contrast to [2], where two
formulas are used, we use a single formula to compute both.

accessibility(sub, res, con)
⇔ ∀(rule).(psdSink(sub, res, con, rule) ⇒ r mod(rule, perm))

∧ ∃(rule).(psdSink(sub, res, con, rule))

Availability. Finding hidden data allows one to warn the patient that within
some conditions, their data may be out of reach. A document is defined hidden
or unreachable under the context con if there is not a valid request under con.

The formalisation in Z3 checks if there is a document under the context
that cannot be accessed by anyone. Z3 will return the context with hidden
documents.

hiddenDataSet(con, res)
⇔ res /∈ dom(graph res) ∧ ∀(sub).(Request(sub, res)

⇒ ¬(∀(rule).(psdSink(sub, res, con, rule) ⇒ r mod(rule, perm))
∧ ∃(rule).(psdSink(sub, res, con, rule))))



Verifying SGAC Access Control Policies 227

Rule Effectivity. A rule that can never be the determinant for the evaluation
of a request is said ineffective. For instance, if we take two rules with different
priorities, one of them has to be ineffective since one will always have precedence
over the other. Effectivity of a rule r is formally defined in [2] as follows: Case r
is a prohibition: there is at least one pair request-context where r is a maximal
applicable rule, and r is the sole prohibition among the maximal rules for this
pair; Case r is a permission: there is at least one pair request-context where r is
the sole maximal rule.

ineffectiveSet(rule1)
⇔ ¬(∃(sub, res, con).

(Request(sub, res) ∧ conRule(con, rule1)
∧ psdSink(sub, res, con, rule1)
∧ (¬(∃(rule2).(psdSink(sub, res, con, rule2) ∧ rule1 
= rule2)))

∨ (r mod(rule1, proh)
∧ ∀(rule2).(psdSink(sub, res, con, rule2)

∧ rule1 
= rule2 ⇒ r mod(rule2, perm)))))

5 Performance Test

In this section, we discuss the results of the performance tests we executed for
the four checked properties. Tests were performed with randomly SGAC models.
We vary the following parameters: the number of vertices in each graph (subject
and resource), the number of rules, the number of contexts and the number of
requests. We check all four SGAC properties by modifying only one parameter

Fig. 2. SGAC performance tests.



228 D. de Azevedo Oliveira and M. Frappier

at a time. For each defined value of the parameters, at least 6 randomly gener-
ated models are created and solved with Z3, ProB and Alloy. The tests were
performed on a Windows 10 64-bit OS, with 16 GB of RAM and Intel R©CoreTM

i7-7700 3.60 GHz as CPU.
As shown in Fig. 2, ProB is faster than the other two solvers by two orders of

magnitude in every occasion. Z3 is consistently better than Alloy when varying
the number of rules, while Alloy outperforms Z3 when varying the the number
of contexts. When varying the number of vertices, Z3 is slightly faster up to 75
vertices, after which Alloy performs better than Z3. As detailed in [2], we use
a staged model finding in ProB to solve the properties. The B model of SGAC
uses constants to define the subject and resource graphs. The transitive closure of
graphs are computed using the B closure operator, for which ProB provides an
efficient implementation. B machine operations using set and relation operators
are used to solve the four properties checked.

In our experiment, Alloy is the only model that does not use staged model
finding. We decided to investigate if staging could help in increasing its perfor-
mance. We divided the Alloy model into three smaller models, following the
approach used in the B model. The instances found in one stage are used to
build the next stage. This staged model finding cuts the computation time in
half, but it is still outperformed by ProB.

6 Conclusion

In this paper we compared Z3 with the B and Alloy models of SGAC [2] for
checking SGAC properties. Our experiment shows that ProB is still the most
adequate of the three solvers for this task. It is quite easy to use staged model
finding in B to increase performance, compared to Z3 and Alloy. B operations
can be easily used to compute the state variables needed to check the properties.
During the development of the Z3 model, improvements were made to better
take into account rule conditions. We were able to add constraints to the con-
texts, representing the formula of rule conditions. These modifications were also
deployed on the B model. In future work, we plan to investigate the use of Z3 to
further analyse rule conditions when a policy is constructed. Another approach
would be to explore αRby [5], a deep embedding of Alloy in Ruby.

References

1. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

2. Huynh, N., Frappier, M., Pooda, H., Mammar, A., Laleau, R.: SGAC: a multi-
layered access control model with conflict resolution strategy. Comput. J. 62(12),
1707–1733 (2018)

3. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

https://doi.org/10.1007/978-3-540-78800-3_24


Verifying SGAC Access Control Policies 229

4. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
JSTTT 10(2), 185–203 (2008)

5. Milicevic, A., Efrati, I., Jackson, D.: αRby - an embedding of alloy in ruby. In:
Ameur, Y.A., Schewe, K. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 56–71. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 5

https://doi.org/10.1007/978-3-662-43652-3_5

	Verifying SGAC Access Control Policies: A Comparison of ProB, Alloy and Z3
	1 Introduction
	2 Brief Introduction to SGAC
	3 Formalisation of SGAC with Z3
	4 Properties Verification
	5 Performance Test
	6 Conclusion
	References




