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Abstract. Choreographies prescribe the rendez-vous synchronisation of
messages in a communicating system. Such a system is called realis-
able, if the traces of the prescribed communication coincide with those
of the asynchronous system of peers, where the communication chan-
nels either use FIFO queues or multiset mailboxes. It has recently been
shown that realisability can be characterised by two necessary conditions
that together are also sufficient, whereas in general the synchronisability
of communicating peers is undecidable. The sufficiency of the condi-
tions permits the construction of correct communicating systems; their
necessity shows that all choreography-defined communicating system can
be obtained in this way. This article provides an integrated framework
based on Event-B for such a construction with a major emphasis on
Rodin-based proofs of correctness and completeness.
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1 Introduction

In a communicating system peers communicate asynchronously through mes-
sages. If the computations performed by the peers are disregarded and only the
sequences of messages sent and received are considered, the system becomes a
system of communicating FSMs with a semantics defined by the traces of sent
messages. In addition, only those traces may be taken into account in which all
sent messages have also been received.

Such a trace semantics can be defined in various ways using channels organ-
ised as FIFO queues for each pair of peers [6] or just for each receiver [1]. Alter-
natively, channels may be organised as multisets [8]. Naturally, one may also
consider the possibility of messages being lost [7]. The synchronisability problem
for such communicating systems is to decide whether the traces remain the same,
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if a rendez-vous synchronisation of sending and receiving of messages is consid-
ered. This was proven to be undecidable in general [9]. The picture changes in
the presence of choreographies which prescribe the rendez-vous synchronisation
[2]. In this case the peers are projections of a choreography, and synchronisability
becomes realisability of the given choreography. Recently it was shown that in
this case the rendez-vous composition of the projected peers coincides with the
choreography, and language synchronisability based only on the message traces
concides with synchronisability based in addition on the stable configurations
reached [10]. This further enabled the characterisation of realisability of chore-
ographies by two necessary conditions on a communication choreography, which
together are sufficient.

A constructive Event-B-based approach to develop realisable choreographies
and consequently communicating systems was brought up in [4,5]. The general
idea is to exploit construction operators, by means of which realisable choreogra-
phies can be built out of a primitive base [11]. This already contains a hint on
the sufficient conditions used in the associated proofs that were conducted using
Rodin [3]. As the sufficiency proof in [10] removes some unnecessary assump-
tions, this approach becomes general. More importantly, the necessity of the
conditions shows that all choreography-defined communicating systems can be
obtained in this way. In this paper we continue this route and show that also
the necessity proof for realisable choreographies can be supported by Event-B and
Rodin. This further gives us means for repairing choreographies.

The remainder of this article is organised as follows. Section 2 is dedicated
to theoretical foundations, where we review the fundamental definitions around
peer-to-peer (P2P) systems and choreographies as well as the theory of realisable
choreographies developed in [10]. Different to previous work we concentrate only
on the most restrictive composition using a single message queue per peer. In
Sect. 3 we briefly review our previous work on the Event-B-based construction
of choreography-defined P2P systems with a slight extension of the Rodin-based
proofs based on our newer insights. Section 4 is the core of this paper emphasising
the necessary conditions for realisable choreographies and the Rodin-based proof.
We conclude with a brief summary and outlook in Sect. 5.

2 Theoretical Background of Realisable Choreographies

Let M and P be finite, disjoint sets, elements of which are called messages and
peers, respectively. Each message m ∈ M has a unique sender s(m) ∈ P and a
unique receiver r(m) ∈ P with s(m) �= r(m). We use the notation i

m→ j for a
message m with s(m) = i and r(m) = j. We also use the notation !mi→j and
?mi→j for the event of sending or receiving the message m, respectively. Write
Ms

p and Mr
p for the sets of messages, for which the sender or the receiver is p,

respectively.
Let s(M) and r(M) denote the sets of send and receive events defined by a

set M of messages. A P2P system over M and P is a family {Pp}p∈P of finite
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state machines (FSMs) Pp over an alphabet Σp = s(Ms
p ) ∪ r(Mr

p ). By abuse of
terminology Pp is also called a peer.

We write Pp = (Qp, Σp, q0,p, Fp, δp), where Qp is the finite set of states of
the FSM, q0,p ∈ Qp is the start state, Fp ⊆ Qp is the set of final states, and δp

is the transition function, i.e. δp : Qp × Σp → Qp. Without loss of generality we
may concentrate on deterministic FSMs (see [10, Prop.1]).

2.1 Composition of Peers

A composition of a P2P system over M and P will be another automaton, the
alphabet of which will be either M or s(M) ∪ r(M).

The rendez-vous composition of a P2P system {Pp}1≤p≤n with Pp =
(Qp, Σp, q0p, Qp, δp) is the FSM Crv = (Q,M, q0, Q, δ) with Q = Q1 × · · · ×
Qn, q0 = (q01, . . . , q0n), and δ((q1, . . . , qn), i m→ j) = (q′

1, . . . , q
′
n) holds if

δi(qi, !mi→j) = q′
i and δj(qj , ?mi→j) = q′

j hold, and qx = q′
x for all x /∈ {i, j}.

The mailbox composition of a P2P system {Pp}1≤p≤n with Pp =
(Qp, Σp, q0p, Qp, δp) is the automaton Cm = (Q,Σ, q0, Q, δ) satisfying the fol-
lowing conditions:

– The set of states is Q = Q1 × · · · × Qn × (cj)1≤j≤n, where each cj is a finite
queue with elements in M .

– The alphabet is Σ = s(M) ∪ r(M).
– The initial state is q0 = (q01, . . . , q0n, ([])1≤j≤n), i.e. initially all channels are

empty.
– The transition function δ is defined by δ((q1, . . . , qn, (cj)1≤j≤n), e) =

(q′
1, . . . , q

′
n, (c′

j)1≤j≤n) if there exists i such that δi(qi, e) = q′
i holds, qx = q′

x

for all x �= i, and
• either e =!mi→j for some j, c′

j = cj
�[i m→ j], and ck = c′

k for all k �= j

• or e =?mj→i for some j and ci = [j m→ i]�c′
i and ck = c′

k for all k �= i.

As above we call a state (q1, . . . , qn, (cj)1≤j≤n) stable if and only if all channels
cj are empty.

Peers as well as any composition of a P2P system are defined by automata,
so their semantics is well defined by the notion of language accepted by them. It
is common to consider just sequences of sending events, i.e. for a word w ∈ M∗

let σ(w) denote its restriction to its sending events. Formally, we have σ(ε) = ε,
σ(i m→ j) = !mi→j , and σ(w1 · w2) = σ(w1) · σ(w2), where · denotes concatena-
tion. Analogously, for words in (s(M) ∪ r(M))∗ we have σ(ε) = σ(?mi→j) = ε,
σ(!mi→j) = !mi→j , and σ(w1 · w2) = σ(w1) · σ(w2).

If L is the language accepted by an FSM A with alphabet M or Σ = s(M)∪
r(M), then L(A) = σ(L) is the trace language of A. This applies for the cases
where A is a peer Pp or a composition Crv or Cm. We use the notation L0(P) =
L(Crv), Lω(P) = L(Cm).

If we restrict final states to be stable, we obtain a different language L̂(Cm) ⊆
L(Cm), which we call the stable trace language of Cm.
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A P2P system P = {Pp}1≤p≤n is called language-synchronisable, if L0(P) =
Lω(P) holds. P = {Pp}1≤p≤n is called synchronisable, if L0(P) = Lω(P) =
L̂ω(P) holds.

2.2 Choreography-Defined P2P Systems

Let us now look into choreographies. We define a choreography by an FSM C =
(Q,M, q0, F, δ), where M is again a set of messages. As before we ignore final
states and assume F = Q. Then every rendez-vous composition of a P2P system
P = {Pp}1≤p≤n defines a choreography.

Let C = (Q,M, q0, Q, δ) be a choreography with messages M and peers P . For
p ∈ P the projection πp(C) is the FSM (Q,Σ, q0, Q, δp) with Σ = s(M) ∪ r(M)
and δp(q, e) = q′ if e = !mp→j for some j with δ(q, p m→ j) = q′, e = ?mi→p for
some i with δ(q, i m→ p) = q′ or e = ε for δ(q, i m→ j) = q′ with p /∈ {i, j}.

The peer Pp defined by C is the FSM without ε-transitions corresponding to
πp(C). A P2P system P = {Pp}1≤p≤n is choreography-defined if there exists a
choreography with peers Pp for all p.

There is a close relationship between rendez-vous compositions and
choreography-defined P2P systems. In [10] we proved that each choreography
C coincides (up to isomorphism) with the rendez-vous composition of its peers.
Thus, not all P2P systems are choreography-defined. In fact, if a P2P system is
choreography-defined, then it must consist of the peers defined by its rendez-vous
composition.

For choreography-defined P2P systems the synchronisability problem is much
simpler than in the general case. In [10] we proved that a choreography-defined
P2P system P = {Pp}1≤p≤n is synchronisable if and only if it is language-
synchronisable.

Therefore, we may focus only on language-synchronisability: if a trace is
accepted, then it will be accepted in a stable configuration. We may also identify
the rendez-vous composition with the given choreography. Therefore, a chore-
ography C is called realisable, if L0(P) = Lω(P) holds for the P2P system P
defined by the projections of C.

2.3 Characterisation of Realisability

The main result from [10] states that there are two necessary conditions for
realisability, which together are sufficient. The sequence condition expresses that
if two messages appear in a sequence, the sender of the second message must
coincide with either the sender or the receiver of the preceding message. The
choice condition expresses that if there is a choice of continuation with two
different messages, then these messages must have the same sender.

Sequence Condition. Whenever there are states q1, q2, q3 ∈ Q with δ(q1, i
m1→

j) = q2 and δ(q2, k
m2→ �) = q3 for non-independent messages i

m1→ j and
k

m2→ �, we must have k ∈ {i, j}.
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Choice Condition. Whenever there are states q1, q2, q3 ∈ Q with δ(q1, i
m1→ j) =

q2, δ(q1, k
m2→ �) = q3 and q2 �= q3 for non-independent messages i

m1→ j and
k

m2→ �, we must have k = i.

Both conditions establish constraints on δ for two messages i
m1→ j and k

m2→ �,
but in both cases we need to exclude that these two messages are independent
in the sense that they may appear in any order, i.e. we request that if there are
states q1, q2, q3 with δ(q1, i

m1→ j) = q2 and δ(q2, k
m2→ �) = q3, then we cannot

have both δ(q1, k
m2→ �) = q2 and δ(q2, i

m1→ j) = q3. The following theorem is the
main result in [10].

Theorem 1. A choreography C is a realisable with respect to P2P, queue or
mailbox composition if and only if it satisfies the sequence and choice conditions.

3 Correctness by Construction

We now address the construction of realisable choreographies. For this we will
first introduce several composition operators in Subsect. 3.1. We can easily define
conditions on the constructors to ensure that all choreographies obtained by com-
position will satisfy the choice and sequence conditions and thus are realisable
by Theorem 1. However, following [3,4] we will actually redo the (sufficiency)
proof using specifications of the constructors in Event-B and the Rodin prover.

3.1 Composition Operators

In the following we use the notation CP to refer to a choreography, and we
add indices to distinguish different choreographies, whenever the need arises.
Without loss of generality we also introduce distinguished final states qf

CP , which
ease the proofs. We define three composition operators:sequence composition
⊗(�, qf

CP ), branching composition ⊗(+, qf
CP ), and loop composition ⊗(�, qf

CP ).
Each expression of the form ⊗(op, qf

CP )
(CP ,CPb) assumes that the initial

state of CPb is fused with the final state sf
CP . Informally, we can say that CPb

is appended to CP at state sf
CP .

Definition 1 (Sequential Composition). Given a choreograhy CP with
final state qCP ∈ Qf

CP and a choreography CPb with a single transi-
tion δCPb

(qCPb
, lCPb

) = q′
CPb

, the sequential composition CP� = ⊗(�, sCP )

(CP ,CPb) is defined by QCP� = QCP ∪ {q′
CPb

}, MCP� = MCP ∪ {mCPb
},

Qf
CP� = (Qf

CP \ {qCP}) ∪ {q′
CPb

} and δCP� = δCP ∪ {((qCP , lCPb
), q′

CPb
)}.

Definition 2 (Branching Composition). Given a choreography CP with
final state qCP ∈ Qf

CP and a family of choreographies {CPbi}1≤i≤n, each com-
prising a single transition δCPbi

(qCPbi
, lCPbi

) = q′
CPbi

, the branching composition
CP+ = ⊗(+, qCP )(CP , {CPbi}) is defined by
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– QCP+ = QCP ∪ {q′
CP1

, . . . , q′
CPbn

| δCPbi
(qCPbi

, lCPbi
) = q′

CPbi
},

– MCP+ = MCP ∪ {lCPbi
, . . . , lCPbn

}
– δCP+ = δCP ∪ {((qCP , lCPbi

), q′
CPbi

) | 1 ≤ i ≤ n}, and

– Qf
CP+

= (Qf
CP \ {qCP}) ∪ {q′

CPb1
, . . . , q′

CPbn
}.

Definition 3 (Loop Composition). Given a choreography CP with final
state qCP ∈ Qf

CP and a choreography CPb with a single transition
δCPb

(qCPb
, lCPb

) = q′
CPb

such that q′
CPb

∈ QCP holds, the loop composition
CP� = ⊗(�, sCP )(CP ,CPb) is defined by QCP� = QCP , MCP� = MCP ∪{lCPb

},
δCP� = δCP ∪ {((qCP , lCPb

), q′
CPb

)}, and Qf
CP� = Qf

CP .

Clearly, according to Theorem 1 we must require that in a sequence the sender
of the added message equals the sender or receiver of any message associated with
a transition to qCP ∈ Qf

CP . The same must hold for the new messages introduced
by a branching composition. In addition, the senders associated with the new
messages must be pairwise different. In case of a loop composition we must in
addition require that the sender of any message associated with a transition from
q′
CPb

∈ QCP equals the sender or receiver of the newly introduced message.

3.2 Correctness Proof

We use Event-B to prove the correctness of the compositions thereby giving an
alternative Rodin-based proof of Theorem 1. An Event-B model (see Table 1) is
defined to encode this incremental process.

Table 1. An excerpt of the LTS model.

INITIALISATION�
EVENTS

Add Seq �
Any Some cp b

Where

grd1: Some cp b ∈ cps b

grd2: MESSAGE(Some cp b) �= End

grd3: Some cp b ∈ ISeqF

grd4: SOURCE STATE(Some cp b) ∈ CP Final states

. . .
Then

act1: BUILT CP := BUILT CP ∪ {Some cp b}
act3: CP Final states := (CP Final states ∪

{DESTINATION STATE(Some cp b)})\
{SOURCE STATE(Some cp b)}

. . .
End

Add Choice � . . .

Add Loop � . . .

Add End � . . .

End

Once initialisation (INITIALISATION) is performed, three events (Add
Sequence, Add Choice and Add Loop) for sequence, choice and loop are inter-
leaved to build a choreography CP . All these events are guarded by the identified
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Table 2. An excerpt of the LTS CONTEXT.

LTS CONTEXT

SETS PEERS, MESSAGES , CP STATES.
CONSTANTS CPs B, DC, ISeqF, NDC, . . .
AXIOMS

axm1: CPs B ⊆ CP STATES × PEERS × MESSAGES× PEERS × CP STATES×N

– Determinstic CP definition DC

axm2 Cond1: NDC ⊆ CPs B

axm3 Cond1: ∀Trans2, Trans1·(Trans1 ∈ CPs B ∧ Trans2 ∈ CPs B∧
SOURCE STATE(Trans1) = SOURCE STATE(Trans2)∧
LABEL(Trans1) = LABEL(Trans2)∧
DESTINATION STATE(Trans1) �= DESTINATION STATE(Trans2))

⇒{Trans1, Trans2} ⊆ NDC

axm4 Cond1: DC = CPs B \ NDC

– Independent sequence freeness definition ISEQF

axm5 Cond2: ISeqF ⊆ CPs B

axm6 Cond2: ∀ cp b · ( cp b ∈ CPs B ∧
(PEER SOURCE(cp b) = LAST SENDER PEERS(SOURCE STATE(cp b)) ∨
PEER SOURCE(cp b) = LAST RECEIVER PEERS(SOURCE STATE(cp b))))

⇒ {cp b} ⊆ ISeqF

– Parallel Choice freeness PCF

axm7 Cond3: PCF ⊆ CPs B
axm8 Cond3: ∀ cp b· (cp b ∈ CPs B ∧

{PEER SOURCE(cp b)} = BRANCHES PEERS SOURCE(cp b) )
⇒ {cp b} ⊆ PCF

. . .
End

conditions deterministic, sequence and choice conditions defined in the context
LTS CONTEXT of Table 2.

In this context (see Table 2), we introduce using sets and constants, the
whole basic definitions of messages, choreography states, basic choreographies
(i.e. choreographies with a single transition as used in the definitions of the com-
position operators), etc. A set of axioms is used to define the relevant properties
of these definitions. For example, in Axiom axm1, a choreography CP is defined
as a set of transitions with a source and target state, a message and a source and
target peers. Axiom axm3 Cond1 defines that a non-deterministic choreography
is using the NDC set. This NDC set characterises all the non-deterministic
choices in a choreography CP . Note that Axiom axm4 Cond1 defines the
assumed deterministic choice condition. The capture of sequence conditions is
given by Axioms axm5 Cond2 and axm6 Cond2. It compares the source peer
PEER SOURCE(cp b) with the sender peer LAST SENDER PEERS or
with the receiver peer LAST RECEIV ER PEERS of the last transition of
the choreography.

Similarly, to define the choice condition, in Axioms axm7 Cond3 and
axm8 Cond3 the sender peers PEER SOURCE(Trans) of the transitions
involved in a branch are compared.

The correctness proof rebuilds the three decisive parts of the proof of
Theorem 1:

1. It shows that the trace language of the choreography coincides with the one of
the rendez-vous composition of its projected peers. This property was called
equivalence in earlier work [2].
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2. It shows the language synchronisability between the rendez-vous composition
and the mailbox composition, which was referred to as synchonisability in [2].

3. It shows that all accepted sequence of messages of the mailbox composition
system are accepted in a state, where the mailboxes are empty. This property
was called well-formedness in earlier work [2].

4 Completeness Proof: A Correct-by-Construction
Approach with Event-B

To prove that all the choreographies CP built using the previously defined events,
encoding the composition operators, we rely on refinement offered by Event-B.
As indicated above we can decomposed the realisability property into three prop-
erties, namely equivalence, synchronisability and well-formedness. The Event-B
context in Table 3 defines these properties.

Table 3. An excerpt of the LTS SYNC CONTEXT.

LTS SYNC CONTEXT, EXTENDS LTS CONTEXT

SETS ACTIONS. CONSTANTS CPs B , EQUIV, . . .

AXIOMS

axm1: CPs SY NC B ⊆ CP STATES × ACTIONS × MESSAGES × PEERS×
PEERS × ACTIONS × MESSAGES × CP STATES × N

axm2: CPs ASY NC B ∈ (A STATES × ETIQ × N) �→ A STATES

– Equivalence of CP and Synchronous projection

axm 1.a: EQUIV ∈ CPs B �� CPs SYNC B

axm 1.a1: EQUIV = { Trans �→ S Trans | Trans ∈ CPs B ∧ S Trans ∈ CPs SYNC B ∧
SOURCE STATE(Trans) = S SOURCE STATE(S Trans) ∧
DESTINATION STATE(Trans) = S DESTINATION STATE(S Trans) ∧
PEER SOURCE(Trans) = S PEER SOURCE(S Trans) ∧
PEER DESTINATION(Trans) = S PEER DESTINATION(S Trans) ∧
MESSAGE(Trans) = S MESSAGE(S Trans) ∧
INDEX(Trans) = S INDEX(S Trans) }

– Synchronisability property

axm 1.b: SYNCHRONISABILITY ∈ CPs SYNC B �� R TRACE B
axm 1.b1: SYNCHRONISABILITY = {S Trans�→ R Trans | S Trans ∈ CPs SYNC B ∧

R Trans ∈ R TRACE B ∧ S INDEX(S Trans) = R INDEX(R Trans) ∧
S SOURCE STATE(S Trans) = R SOURCE STATE(R Trans) ∧
S PEER SOURCE(S Trans) = R PEER SOURCE(R Trans) ∧
S MESSAGE(S Trans) = R MESSAGE(R Trans) ∧
S PEER DESTINATION(S Trans) = R PEER DESTINATION(R Trans) ∧
S DESTINATION STATE(S Trans) = R DESTINATION STATE(R Trans)}

– Well formedness property

axm 1.c: WF ∈ A TRACES → QUEUE
axm 1.c1: ∀ A TR,queue · ( A TR ∈ A TRACES ∧ queue ∈ QUEUE ∧ queue = ∅ )
⇒ A TR �→ queue ∈ WF

. . .
End

Each property is formalised by a set of choreographies satisfying the cor-
responding property. These definitions use the rendez-vous composition CPrv

defined as set CPs SY NC B and the mailbox composition CPm defined as set
CPs ASY NC B in context LTS SY NC CONTEXT of Table 3.
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4.1 An Event-B Context for the Realisability Property

The definition of the state-transitions system corresponding to the synchronous
projection is given by the set CPs SY NC B defined by Axiom axm1 in Table 3.
Actions (send ! and receive ?) are introduced. Then two other important axioms,
namely axm 1.a and axm 1.a1, are given to define the equivalence between
a choreography CP and its synchronous projection. The EQUIV relation is
introduced. It characterises the set of CP s that are equivalent to their syn-
chronous projection. Axiom axm 1.a1 formalises equivalence. The properties
related to synchronisability are captured by Axioms axm 1.b and axm 1.b1. Well-
formedness is captured by Axioms axm 1.c and axm 1.c1.

4.2 Refinement

We exploit the characterisation of realisability by three properties in a refine-
ment strategy, which establishes the necessity step-by-step. These properties are
introduced as invariants and inductively proven for each composition operator
(sequence, choice and loop). That is, two refinements of the initial machine of
Table 1 are defined:

– The first refinement introduces the equivalence property by defining the (syn-
chronous) rendez-vous projection of the initial choreography CP .

– Synchronisability and well-formedness properties are proven in the second
refinement.

Below we present a sketch of this development focusing on the definition of
the sequence operator. The complete development can be accessed from http://
yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf.

Table 4. An excerpt of the LTS Synchronous model.

INITIALISATION

. . .

EVENTS

Add Seq Refines Add Seq �
Any

S Some cp b, Some cp sync b

Where

grd1: Some cp sync b ∈ cps sync b

grd3: S SOURCE STATE(Some cp sync b) ∈ CP Final states

grd4: S Some cp b ∈ ISeq

grd8: MESSAGE(S Some cp b) �= End

grd9: MESSAGE(S Some cp b) = S MESSAGE(Some cp sync b)
. . .

With Some cp b: Some cp b = S Some cp b

Then

act1: BUILT CP := BUILT CP ∪ {S Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {Some cp sync b}

. . .

End

http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf
http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf
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First Refinement: Equivalence. The first refinement introduces the syn-
chronous projection of the BUILT CP defined by variable BUILT SY NC in
Table 4.

The event Add Seq or sequence operator (Table 4) refines the same event of
the root model of Table 1. It introduces the BUILT SY NC set corresponding
to the synchronous projection as given in Sect. 2.1. Here, again, the Add Seq
applies only if the conditions in the guards hold. The With clause provides a
witness to glue Some cp b CP with its synchronous version.

Second Refinement: Synchronisability and Well-Formedness. The sec-
ond refinement introduces the asynchronous projection with sending and receiv-
ing peers actions.

Well-formedenss and synchronisability remain to be proven in order to com-
plete realisability preservation. At this level each event corresponding to a com-
position operator is refined by three events: one to handle sending of messages
(Add Seq send), one for receiving messages (Add Seq receive), and a third one
(Add Seq send receive) refining the abstract Add seq event. Queues are intro-
duced as well.

Table 5 defines these events. Sending and receiving events are interleaved
in an asynchronous manner. Once a pair of send and receive events has been
triggered, the event Add Seq send receive records that the emission-reception
is completed. This event increases the number of received messages (Action
act5). Traces are updated accordingly by the events, they are used for proving
the invariants.

4.3 Completeness Proof

The proof of completeness consists in proving a choreography is realisable if
and only if it is built using the defined composition operators. The Rodin-based
proofs exploits that realisability can be equivalently expressed by equivalence,
synchronisability and well-formedness. Note that the proof strategy with the
sufficiency and necessity parts is quite similar, as the same development and
refinement steps are used in both cases. The main difference resides in the def-
inition of two invariants, which correspond to each direction of the implication
corresponding to the necessity and sufficiency conditions.

Sufficiency. Sufficiency consists in proving that, if a choreography is built using
the defined composition operator, then it is realisable. This property has been
proven by proving the invariants described in Table 6.

These invariants state that for each CP built using the composition oper-
ators, the obtained CP fulfils Equivalence, Synchronisability and WF by set
belonging property. Table 6 introduces the equivalence property through invari-
ant inv 1.a. The invariant requires equivalence between a CP and its syn-
chronous projection. inv 1.b and inv 1.c introduce respectively the synchro-
nisability and well-formedness properties.
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Table 5. An excerpt of the LTS Asynchronous model.

Event Add Seq Send �
Any

send, lts s, lts d,msg, index

Where

grd1: ∃send st src, send st dest·((lts s �→ send st src) ∈ A GS ∧ ((send st src �→
(Send �→ msg �→ lts d) �→ index) �→ send st dest) ∈ CPs ASY NC B∧ . . .
. . .

Then

act1: A TRACE := A TRACE ∪ {Reduces Trace states �→ St Num �→
Send �→ lts s �→ msg �→ lts d �→ Reduces Trace states �→
(St Num + 1) �→ A Trace index}
act2: queue, back := queue ∪ {lts d �→ msg �→ back}, back + 1
act3: A GS := A Next States({send} �→ A GS �→ queue)
. . .

End

Event Add Seq Receive �
Any

send, receive, lts s, lts d,msg, index

Where

grd1: queue �= ∅ ∧ lts d �→ msg �→ front ∈ queue

grd2: ∃receive st src, receive st dest·(((lts d �→ receive st src) ∈ A GS)∧
((receive st src �→ (Receive �→ msg �→ lts s) �→ index) �→ receive st dest)
∈ CPs ASY NC B ∧ . . .

. . .
Then

act1: A TRACE := A TRACE ∪ {Reduces Trace states �→ St Num �→
Receive �→ lts s �→ msg �→ lts d �→ Reduces Trace states �→ (St Num + 1)
�→ A Trace index}
act2: queue := queue \ {lts d �→ msg �→ front}
. . .

End

Event Add Seq Send − Receive Refines Add Seq �
Any

A Some cp b, A Some cp sync b, Send cp async b, Receive cp async b, R trace b

Where

grd1: A MESSAGE(Send cp async b) = A MESSAGE(Receive cp async b)
grd2: ACTION(Receive cp async b) = Receive ∧ ACTION(Send cp async b) = Send

grd3: A Some cp b ∈ ISeq

grd4: MESSAGE(A Some cp b) = A MESSAGE(Send cp async b)
. . .

With S Some cp b : S Some cp b = A Some cp b,

Some cp sync b : Some cp sync b = A Some cp sync b

Then

act1: BUILT CP := BUILT CP ∪ {A Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {A Some cp sync b}
act3: BUILT ASY NC := BUILT ASY NC ∪ {Send cp async b} ∪ {Receive cp async b}
act4: REDUCED TRACE := REDUCED TRACE ∪ {R trace b}
. . .

End

. . .
End

Necessity. Necessity consists in proving that if a CP is realisable, then it is
built using the defined composition operator.

This property has been established by proving the invariants described in
Table 7. Invariant inv2.a states that any CPbelonging to the equivalence set is
a peer to peer CP , inv2.b states that any synchronisable CP belongs to the set
of built CP and finally inv2.c states that all the well formed CP exchanging
the ending message is built at the asynchronous level.

Proof Statistics. Table 8 gives the results of our experiments. We can observe
that all the proof obligations (POs) have been proved. A large amount of these
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Table 6. An excerpt of sufficient model invariants.

Invariants

inv1: BUILT SY NC ⊆ CPs SY NC B

inv2 BUILT ASY NC ⊆ CP ASY NC B

inv3 REDUCED TRACE ⊆ R TRACE B

inv4 A TRACE ⊆ A TRACES

inv 1.a: ∀Trans·∃S Trans·(Trans ∈ BUILT CP ∧ S Trans ∈ BUILT SY NC∧
BUILT CP 
= ∅)⇒ Trans �→ S Trans ∈ EQUIV

inv 1.b ∀S Trans·∃R Trans·(S Trans ∈ BUILT SY NC ∧ R Trans ∈
REDUCED TRACE) ⇒

S Trans �→ R Trans ∈ SYNCHRONISABILITY

inv 1.c ∀A Trans·(A Trans ∈ A TRACES ∧ MESSAGE(Last cp trans) = End∧
A TRACE 
= ∅)⇒ A Trans �→ queue ∈WF

. . .

Table 7. An excerpt of necessary and sufficient model invariants.

Invariants

inv2.a ∀Trans.∃S Trans.(Trans �→ S Trans ∈ EQUIVALENCE ∧ BUILT CP �= ∅)
⇒ Trans ∈ BUILT CP ∧ S Trans ∈ BUILT SY NCHRONE

inv2.b ∀S Trans.∃R Trans.(S Trans �→ R Trans ∈ SYNCHRONISABILITY∧
BUILT SY NCHRONE �= ∅ ∧ REDUCED TRACE �= ∅)
⇒ S Trans ∈ BUILT SY NCHRONE ∧ R Trans ∈ REDUCED TRACE

inv2.c ∀A Trans.(A Trans �→ queue ∈ WF) ⇒ (A Trans ∈ A TRACES ∧
queue = ∅ ∧ MESSAGE(Last cp trans) = End message)

. . .

Table 8. Rodin proofs statistics

Event-B model Interactive proofs Automatic proofs Proof Obligations

Abstract context 06 (100%) 0 (0%) 06 (100%)

Synchronous context 02 (100%) 0 (0%) 02 (100%)

Asynchronous context 01 (33,33%) 02 (66,67%) 03 (100%)

Abstract model 28 (58,33%) 20 (41,67%) 48 (100%)

Synchronous model 43 (41,34%) 61 (58,65%) 104 (100%)

Asynchronous model 81 (41,32%) 115 (58,67%) 196 (100%)

Total 161 (100%) 198 (100%) 359 (100%)

POs has been proved automatically using the different provers associated to the
Rodin platform. Interactive proofs of POs required to combine some interactive
deduction rules and the automatic provers of Rodin. Few steps were required in
most of the cases, and a maximum of 15 steps was reached.

5 Conclusion

In this article we extended the Event-B-based approach to the construction of
realisable choreographies [4,5] based on recent new insights into choreography-
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defined P2P systems. In [10] we proved that under the presence of a choreog-
raphy that prescribes the rendez-vous synchronisation of the peers there are
two necessary conditions on realisable choreographies which together guaran-
tee realisability. A consequence is decidability of realisability in the presence
of a choreography. We removed unnecessary assumptions in the Event-B-based
proofs and extended them to cover also necessity of the conditions. In doing
so we demonstrated the power of the Rodin tool. All the models are accessible
through http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf.

Naturally, using Event-B in this context provides an open invitation for
a refinement-based approach taking choreographies to communicating systems
that do not just emphasise the flow of messages. As we are now able to detect
violations of a necessary condition, it allows us to find minimal repairs to the
choreography to restore realisability. Such repairs have to be validated by a
designer. In addition, we need a systematic investigation of refinements based
on Event-B. In this context an analysis of the realisation of the messaging chan-
nels is due, for which we expect the most natural semantics using mailboxes to
be the simplest to be realised. This refinement method provides an open invi-
tation for the continuation of this research towards a verifiable method for the
specification and refinement of correct P2P systems.
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NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77935-5 1

5. Benyagoub, S., Ouederni, M., Singh, N.K., Ait-Ameur, Y.: Correct-by-construction
evolution of realisable conversation protocols. In: Bellatreche, L., Pastor, Ó.,
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