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Abstract. In k Nearest Neighbor (kNN) classifier, a query instance
is classified based on the most frequent class of its nearest neighbors
among the training instances. In imbalanced datasets, kNN becomes
biased towards the majority instances of the training space. To solve
this problem, we propose a method called Proximity weighted Eviden-
tial kNN classifier. In this method, each neighbor of a query instance is
considered as a piece of evidence from which we calculate the probabil-
ity of class label given feature values to provide more preference to the
minority instances. This is then discounted by the proximity of the neigh-
bor to prioritize the closer instances in the local neighborhood. These
evidences are then combined using Dempster-Shafer theory of evidence.
A rigorous experiment over 30 benchmark imbalanced datasets shows
that our method performs better compared to 12 popular methods. In
pairwise comparison of these 12 methods with our method, in the best
case, our method wins in 29 datasets, and in the worst case it wins in
least 19 datasets. More importantly, according to Friedman test the pro-
posed method ranks higher than all other methods in terms of AUC at
5% level of significance.

Keywords: Classifier · Imbalanced learning · kNN · Evidence theory

1 Introduction

Classification is one of the most important tasks in machine learning. Numerous
classification approaches, such as k Nearest Neighbor (kNN) [9], Decision Tree
(DT), Näıve Bayes (NB), and Support Vector Machine, have been well developed
and applied in many applications. However, most of the classifiers face serious
trouble for imbalanced class distribution and thus learning from the imbalanced
dataset is one of the top ten challenging problems in data mining research [20].
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To solve class imbalance problem, various strategies have already been pro-
posed which can be grouped into two broad categories namely data oriented and
algorithm oriented approaches. Data oriented approaches use sampling tech-
niques. In order to make dataset balanced, the sampling techniques either over-
sample the minority instances or select instances (under-sample) from the major-
ity class. A sampling technique namely Synthetic Minority Over-sampling TEch-
nique (SMOTE) has been proposed that increases the number of minority class
instances by creating artificial and non-repeated samples [4].

In contrast, algorithm oriented approaches are the modifications of tradi-
tional algorithms such as DT and kNN. The modified DTs for imbalanced clas-
sification are Hellinger Distance DT (HDDT) [5], Class Confidence Proportion
DT (CCPDT) [13] and Weighted Inter-node Hellinger Distance DT (iHDwDT)
[1]. These DTs use different splitting criteria while selecting a feature in split
point.

kNN is one of the simplest classifiers. Despite its simplicity, kNN is considered
as one of the top most influential data mining algorithms [19]. Traditional kNN
finds the k closest instances from the training data to a query instance and treats
all neighbors equally. Dudani has proposed a distance based weighted kNN which
provides more weights to closer neighbors [8]. Another variant of kNN approach,
Generalized Mean Distance based kNN (GMDKNN) [10], has been presented by
introducing multi-generalized mean distance and the nested generalized mean
distance. All these variants of kNN are sensitive to the majority instances and
thus perform poorly for imbalanced datasets.

Considering this imbalance problem, several researchers extended kNN for
imbalanced datasets [7,11,12]. In Exemplar-based kNN (kENN) [11], Li and
Zhang expand the decision boundary for the minority class by identifying the
exemplar minority instances. A weighting algorithm namely Class Confidence
Weighted kNN (CCWKNN) has been presented in [12] where the probability of
feature values given the class labels is considered as weight. Dubey and Pudi have
proposed a weighted kNN (WKNN) [7] which considers the class distribution in a
wider region around a query instance. The class weight for each training instance
is estimated by taking the local class distributions into account.

The purpose of these existing studies is to improve the overall performance for
imbalanced data. However, these methods overlook the problem of uncertainty
which is prevalent in almost all datasets [18]. The reason behind this uncertainty
is that the complete statistical knowledge associated with the conditional density
function of each class is hardly available [6]. To address this problem, kNN has
been extended using Dempster-Shafer Theory of evidence (DST) to better model
uncertain data named Evidential kNN (EKNN) [6]. In EKNN, each neighbor
assigns basic belief on classes based on a distance measure. Nevertheless, this
approach again does not take consideration of the class imbalance problem.

To address these aforementioned problems, we propose a Proximity weighted
Evidential kNN (PEkNN) classifier and make the following contributions. Firstly,
we have proposed a confidence (posterior) assignment procedure on each neigh-
bor of a query instance. Secondly, we have also proposed to use proximity of a
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neighbor as a weight to discount the confidence of a neighbor. It is shown that,
this weighted confidence increases the likelihood of classifying a minority class.
Thirdly, DST framework is used to combine decisions from different neighbors.

2 Dempster-Shafer Theory of Evidence

Dempster-Shafer theory of evidence is a generalized form of Bayesian theory.
It assigns degree of belief for all possible subsets of the hypothesis set. Let,
C = {C1, . . . , CM} be a finite hypothesis set of mutually exclusive and exhaustive
hypotheses. The belief in a hypothesis assigned based on a piece of evidence is
ranged numerically as [0, 1]. A Basic Belief Assignment (BBA) is a function
m : 2C → [0, 1] which satisfies the following properties:

m(∅) = 0 and
∑

A⊆C

m(A) = 1 (1)

where m(A) is a degree of belief (referred as mass) which reflects how strongly
A is supported by the piece of evidence. m(C) represents the degree of ignorance.

Several pieces of evidence characterized by their BBAs can be fused using
Dempster’s rule of combination [16]. For two BBAs m1(.) and m2(.) which are
not totally conflicting, the combination rule can be expressed using Eq. (2).

m(A) =
∑

B∩C=A m1(B)m2(C)
1 − ∑

B∩C=∅ m1(B)m2(C)
A �= ∅ (2)

where A,B,C ∈ 2C and
∑

B∩C=∅ m1(B)m2(C) < 1.
For decision making, Belief, Plausibility and betting Probability (Pbet) are

usually used. For a singleton class A, Pbet(A) is derived in Eq. (3) where |B|
represents the cardinality of the element B.

Pbet(A) =
∑

A⊆B

|A ∩ B|
|B| × m(B) (3)

3 Proximity Weighted Evidential kNN (PEkNN)

kNN faces difficulty in imbalanced datasets as it treats all neighbors of the query
instance equally and most of the neighbors will be of the majority class. To deal
with this issue, the proposed algorithm attempts to provide more importance to
neighbors with a higher proximity weighted confidence. Here, confidence of an
instance indicates a conditional probability of that instance based on training
data. Algorithms such as NB also uses conditional probability while classifying
a query instance. However, the performance of NB degrades due to the poor
estimation of the conditional density of the query instance associated with each
class. In contrast, PEkNN computes conditional probability of neighborhood
instances rather than query instance. Furthermore, as uncertainty is prevalent in



74 Md. E. Kadir et al.

almost all datasets [18]. This is more significant for imbalanced datasets where
little information is available for the minority class. To deal with this issue,
PEkNN uses DST to combine the evidences provided by each neighbor.

For a new query instance (xt), PEkNN first finds k closest neighbors accord-
ing to some distance measurement (e.g. Euclidean distance). Let, S(xt, k) be the
set of k closest neighbors of xt and each member of S(xt, k) is considered as a
piece of evidence which assigns mass values for each subset of C known as BBA.

Now, consider xi as the i-th neighbor of xt belonging to class Cq. As xi is a
piece of evidence belonging to Cq, some part of its belief will be committed to
Cq. The rest of the belief can not be distributed to any other subset of C except
itself. The BBA provided by xi can be represented by Eq. (4), (5) and (6) where
0 < β0 < 1.

mi({Cq}) = β = β0 × Ψ(xi, xt) (4)

mi(A) = 0 ∀A ∈ 2C\{C, {Cq}} (5)

mi(C) = 1 − β (6)

Now, we will discuss about two of our intuitions. First, a piece of evidence
belonging to Cq will assign a larger belief to Cq when the evidence is more reliable
which we call confidence. An evidence having higher posterior probability should
get more confidence than the one which is in lower posterior probability region.
The second intuition is that a neighbor will assign more belief to a specific class
when the neighbor and the query instance are more proximate. The function
defined in Eq. (7), Ψ(.) satisfies the two aforementioned intuitions where pi is
the confidence of xi represented by the probability of class label (yi) given xi

and prx(xi, xt) represents the proximity between xi and xt.

Ψ(xi, xt) = prx(xi, xt) × pi (7)

The procedure how PEkNN algorithm classifies a query instance is presented
in Algorithm 1. The confidence assignment, proximity estimation and decision
making steps are presented in detail in Sects. 3.1, 3.2 and 3.3 respectively.

3.1 Estimation of Confidence

The confidence (pi) of an instance xi (xi ∈ R
l) belonging to yi is assigned in the

following manner derived in Eq. (8).

pi = P (yi | xi) =
P (yi) × P (xi | yi)∑M

j=1 P (Cj) × P (xi | Cj)
(8)

where yi ∈ {C1, C2, . . . , CM}, P (Cj) represents the prior of Cj in training space
and P (xi|Cj) represents the likelihood in Bayes’ theorem. Here, two approaches
of estimating class-wise Probability Density Function (PDF) is presented. First
one is using Single Gaussian Model (SGM) and another one is using Gaussian
Mixture Model (GMM). When PEkNN uses confidence derived from SGM, we
call it sPEkNN, and mPEkNN when it uses confidence derived from GMM.
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Algorithm 1: PEkNN Algorithm
Input : Training data (X), Training data labels (Y ), Neighborhood size (k),

Query instance (xt)
Output: Predicted class label (yt)

1 conf , dmax ← fitModel(X, Y )

2 s ← indices of k nearest neighbors of xt

3 Initialize a list bba of mass values
4 for i = 1 to k do
5 index ← s[i]
6 confidence ← conf [index]
7 d ← distance(xt, X[index])
8 proximity ← calculate proximity using Eq. (11) from d, dmax

9 bba[i] ← assign mass value using Eq. (4), (5), (6) and (7) from confidence,
proximity

10 end
11 m ← combine mass values from bba using Eq. (2)
12 Pbet ← calculate betting probabilities for all classes using Eq. (3) from m
13 yt ← calculate decision using Eq. (12) from Pbet

14 function fitModel(X,Y ):
15 Initialize Array, conf
16 dmax ← 0
17 for i = 1 to |X| do
18 conf [i] ← Calculate confidence using Eq. (8) from X[i], Y [i]
19 for j = i+1 to |X| do
20 d ← distance(X[i], X[j])
21 dmax ← max(d, dmax)

22 end

23 end
24 return conf , dmax

Single Gaussian model assumes that all the features are independent and the
continuous values associated with each class follow a normal distribution. Under
these assumptions, the likelihood function can be represented as Eq. (9).

P (x) =
l∏

j=1

P (xj) =
l∏

j=1

f(xj ;μj , σj
2) =

l∏

j=1

1√
2πσj

× exp(− (xj − μj)2

2σ2
j

) (9)

where xj denotes the j-th feature of x and f(.) represents the normally dis-
tributed PDF parameterized by mean (μ) and variance (σ2).

On the other hand, GMM can also be used to estimate PDF from multivariate
data. The class-wise PDF using m-component mixture model is given in Eq. (10).

P (x) =
m∑

i=1

αiP (x | Zi) (10)

The procedure of finding complete set of parameters (Z1, . . . , Zm, α1, . . . , αm)
specifying the mixture model is briefly described in [14].
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3.2 Estimation of Proximity

To capture the proximity between two instances, some distance measurement can
be used. The proximity between two instances (xi and xj) from training samples
will be maximum when xi and xj are identical. One the other hand, it will be
lowest when they are the farthest two instances in the feature space. To measure
this proximity, a normalization is applied as Eq. (11) so that prx(xi, xj) ∈ [0, 1].
Here, dmax is the distance between two farthest training instances.

prx(xi, xj) = 1 − d(xi, xj)
dmax

(11)

3.3 Decision Making

According to Eq. (7), Ψ(.) will return a larger value when a neighbor is more
confident and more closer to the query instance. Now, for each of the k nearest
neighbors, the BBAs are defined using Eq. (4), (5) and (6). In order to classify
xt, these BBAs are combined using DST. The betting probability (Pbet) for each
singleton class from this combined decision will be then calculated using Eq. (3).
Finally, the decision from this Pbet is taken using Eq. (12).

ŷ = arg max
c∈{C1,...,CM}

Pbet(c) (12)

where c is a singleton class so that the cardinality of c is 1.

Properties of β: Value of β is bounded between 0 to 1.

Proof. From Eq. (4), (7) and (8), it can be derived that,

β = β0 × P (yi | xi) × prx(xi, xt) (13)

Here, β0 is a user given constant satisfying 0 < β0 < 1. The second term,
P (yi | xi), represents the posterior probability. The last term, prx(xi, xt) is at
most equal to 1 and at least equal to zero. As can be seen from Eq. (13), β is
a product of three terms and all these terms are bounded between 0 to 1. It is
sufficient to claim that, the value of β must be bounded between 0 to 1.

3.4 An Illustrative Example

Figure 1 shows the instances of a two-class imbalance problem where (+)s and
(•)s represent the minority (Class-A) and majority class instances (Class-B)
instances respectively. The class boundaries are represented as dotted lines and
three query instances (t1, t2, t3) are marked with (�)s. Here, first query instance
t1 is situated in a majority class region bounded by minority instances. Both
kNN and PEkNN can successfully classify t1. Traditional algorithms such as
C4.5 and NB face difficulties in this situation.
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(a) Training space (b) A1 region

Fig. 1. A synthetic imbalanced dataset

The two other query instances t2 and t3 associated with a region namely A1

(see Fig. 1b). Here, for both t2 and t3, the four neighbors are xa, xb, xc and xd.
Traditional kNN with k = 4, will classify both t2 and t3 as Class-B. PEkNN, on
the other hand, considers the confidence of each neighbor. Here, xd will provide a
higher confidence compared to majority class instances (xa, xb and xc). Assume,
the confidence of xa, xb, xc, and xd are 0.30, 0.40, 0.30, and 0.75 respectively.
And the proximity with respect to t2 are 0.90, 0.95, 0.85 and 0.95 respectively.
Then BBAs assigned by PEkNN for these neighbors are ma({B}) = 0.2565,
ma({A,B}) = 0.7435, mb({B}) = 0.3610, mb({A,B}) = 0.6390, mc({B}) =
0.2423, mc({A,B}) = 0.7577 and md({A}) = 0.6769, md({A,B}) = 0.3231.
Here, β0 is set to 0.95. Now, combing these BBAs using DST, we get Pbet(A) =
0.5325 and Pbet(B) = 0.4675 which indicates that t2 will be correctly classified
as Class-A.

On the other hand, for the query instance t3, the proximity of xa, xb, xc and
xd are 0.85, 0.95, 0.95 and 0.85 respectively. We, therefore, get Pbet(A) = 0.4661
and Pbet(B) = 0.5339 indicating that t3 will be classified as Class-B. Therefore,
t3 is correctly classified as a majority class instance even though the neighbors
of t2 and t3 are same.

Instead of DST, let us reconsider simpler techniques to combine evidences
such as summing and taking the maximum of the proximity weighted confi-
dences. If we simply sum class-wise proximity weighted confidences, both t2 and
t3 get a higher value for Class-B as three of the four neighbors belong to that
class. To avoid this bias, a query can be simply classified in the class for which
it gets maximum proximity weighted confidence among the neighbors. But this
method does not consider the local neighborhood priors. For which, it will clas-
sify both t2 and t3 as minority class which is not desired. PEkNN on the other
hand using the DST framework successfully classifies both query instances.
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4 Experiments and Results

Dataset description, implementation details and the performance metrics fol-
lowed by the results obtained from the experiments with discussion are given in
the following subsections.

4.1 Dataset Description

The characteristics of the 30 benchmark datasets are shown in Table 1 which
are collected from UCI machine learning repository [3] and KEEL Imbalanced
Datasets [2]. Imbalance Ratio (IR) between the samples of majority class and
minority class of the datasets used in these experiment are at least 1.5 and values
of all the features are numeric. A dataset is highly imbalanced when the value
of IR is very high.

Table 1. Descriptions of Imbalanced Datasets. Idx, #Inst, #Cl and #Ftr represent
index of a dataset, number of instances, classes and features respectively.

Idx Name #Ftr #Cl #Inst IR Idx Name #Ftr #Cl #Inst IR

01 Appendicitis 7 2 106 4.05 16 Shuttle-c0-vs-c4 9 2 1829 13.87

02 Ecoli1 7 2 336 3.36 17 Vehicle0 18 2 846 3.25

03 Ecoli2 7 2 336 5.46 18 Vehicle1 18 2 846 2.90

04 Ecoli3 7 2 336 8.60 19 Vehicle2 18 2 846 2.88

05 Ecoli4 7 2 336 15.80 20 Vehicle3 18 2 846 2.99

06 Glass-0-1-2-3 vs 4-5-6 9 2 214 3.20 24 Yeast-1 vs 7 7 2 459 14.30

07 Glass1 9 2 214 1.82 21 Vowel0 13 2 988 9.98

08 Glass4 9 2 214 15.46 22 Wisconsin 9 2 683 1.86

09 Glass6 9 2 214 6.38 23 Yeast-0-5-6-7-9 vs 4 8 2 528 9.35

10 Haberman 3 2 306 2.78 25 Yeast-1-2-8-9 vs 7 8 2 947 30.57

11 Ionosphere 34 2 351 1.79 26 Yeast-2 vs 8 8 2 482 23.10

12 New-thyroid1 5 2 215 5.14 27 Yeast1 8 2 1484 2.46

13 Page-blocks0 10 2 5472 8.79 28 Yeast3 8 2 1484 8.10

14 Pima 8 2 768 1.87 29 Yeast5 8 2 1484 32.73

15 Segment0 19 2 2308 6.02 30 Yeast6 8 2 1484 41.40

4.2 Implementation Details and Performance Metrics

PEkNN is benchmarked against other algorithms including traditional learn-
ing algorithms (kNN, C4.5, NB), oversampling strategy (SMOTE), recent algo-
rithms in the kNN family (EKNN, WKNN, CCWKNN, kENN, GMDKNN) and
few tree based recent algorithms for imbalanced classification (CCPDT, HDDT,
iHDwDT). For PEkNN, we use β0 = 0.95 in this experiment. For kENN, the
confidence level is set 0.1 and we set p = 1 for GMDKNN.

We have conducted 10-fold stratified cross validation to evaluate the per-
formance of the proposed method. The Receiver Operating Characteristic
(ROC) curve [17] is widely used to evaluate imbalanced classification. We use
Area Under the ROC Curve (AUC) for evaluating the classifier performance.
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For comparison, all the classifiers are ranked on each dataset in terms of AUC,
with ranking of 1 is the best. We also perform Friedman tests on the ranks.
After rejecting the null hypothesis using Friedman test that all the classifiers
are equivalent, a post-hoc test called Nemenyi test [15] is used to determine the
performance of which classifier is significantly better than the others.

4.3 Result and Discussion

Table 2 represents the comparison of 14 classifiers over 30 imbalanced datasets.
The average ranks of these classifiers indicate that kNN is better performing algo-
rithm compared to other traditional classifiers on imbalanced datasets. Though
kNN performs better than C4.5, modifications of tree based algorithms for imbal-
anced datasets perform better than kNN. Moreover, kNN on SMOTE sampled
datasets performs slightly better than kNN without sampling.

Now, if we compare kNN with its different variants, it can be observed that
kENN and WKNN improve the overall performance of traditional kNN although
another variant CCWKNN fails to improve the performance in most cases over
the experimented datasets. Moreover, it is investigated that, the recent general-
ized mean based kNN approach GMDKNN performs worse than kNN on imbal-
anced datasets. In contrast, we can observe from Table 2 that, EKNN performs
better than all other classifiers except the proposed sPEkNN and mPEkNN.
It indicates that, handling uncertainty can improve the performance of kNN
on imbalanced datasets. Finally, average ranks show that mPEkNN is the best
performing classifier compared to others in the imbalanced datasets.

In addition, Table 2 summarizes the counts of Win-Tie-Loss (W-T-L) of
sPEkNN and mPEkNN against other classifiers which indicates that mPEkNN
performs better than other classifiers in most cases. From Win-Tie-Loss, it is
observed that mPEkNN wins in at most 29 datasets with no loss against C4.5
and GMDKNN classifiers. In the least case, mPEkNN performs better in 19
datasets and worse in 7 datasets compared to EKNN.

The results of Friedman test (Fr. Test) with two base classifiers (sPEkNN and
mPEkNN) are shown in the last two lines of the Table 2. From Friedman test with
14 classifiers and 30 datasets, we can conclude that, all the fourteen classifiers
are not equivalent. After rejecting that all fourteen classifiers perform equivalent,
Nemenyi test is performed to determine which classifier performs significantly
better than the others. A tick(�) sign under a classifier indicates that Nemenyi
test suggests the performance of that classifier is significantly different from
the base classifier in pairwise comparison at 95% confidence level. Nemenyi test
states that, sPEkNN performs significantly better than all compared classifiers
except EKNN, CCPDT and HDDT. More importantly, the test suggests that
mPEkNN is the best performing classifier among twelve classifiers.
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4.4 Effects of Neighborhood Size and Imbalance Ratio

Here, we show the effects of neighborhood size and Imbalance Ration (IR) on the
performance of the proposed method compared to other kNN variants. Due to
page limitations, only one dataset (Ionosphere) is used to present the comparison
in terms of AUC with different the values of k ranging from 1 to 20. It is clear
from Fig. 2a that sPEkNN and mPEkNN consistently perform better than the
other algorithms and are less sensitive to the value of k.

(a) Effects of neighborhood size, k (b) Effects of Imbalance Ratio, IR

Fig. 2. Performance comparison among the algorithms belonging in kNN family

To visualize the effect of IR, we use a synthetic dataset of two-class problem
in a two-dimensional space where instances of each class are taken from two
Gaussian distributions. The characteristics of the dataset is given below where
class-A is the minority class and Class-B is the majority class.

ηA
1 = 0.6, ηA

2 = 0.4, μA
1 =

[
3 3

]T , μA
2 =

[−2 −2
]T , ΣA

1 = 3I and ΣA
2 = I

ηB
1 = 0.9, ηB

2 = 0.1, μB
1 =

[
0 0

]T , μB
2 =

[
4 3

]T , ΣB
1 = 8I and ΣB

2 = I

Here η represents the mixture proportion and I is the identity matrix. Different
datasets of 1500 samples are generated varying the class imbalance ratio ranging
from 2 to 10. It is observable from Fig. 2b that, although the imbalance ratio
increases, the performance of mPEkNN remains more steady compared to other
kNN variants indicating less sensitivity of mPEkNN in these synthetic datasets.

5 Conclusion

This paper proposes an extended kNN algorithm to increase the performance of
existing kNN by making it vigorous to imbalance class problem. In PEkNN, for
a query instance, we calculate a confidence for each neighbor instance from the
posterior probability of that instance which is then discounted by the proximity
of that instance from the query instance. We show that this proximity weighted
confidence increases the likelihood of classifying a minority class instance. To
calculate the confidence we used two methods one using single Gaussian model
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(sPEkNN) and other using Gaussian mixture model (mPEkNN). Results over
30 datasets provide the evidence that the proposed approach is better than
twelve relevant methods in imbalanced datasets. However, one limitation of the
proposed method is that we assume all the feature values as numeric. As future
research direction, we have plan to extend the work for categorical features.
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