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Abstract. With the advances of graph analytics, preserving privacy
in publishing graph data becomes an important task. However, graph
data is highly sensitive to structural changes. Perturbing graph data for
achieving differential privacy inevitably leads to inject a large amount
of noise and the utility of anonymized graphs is severely limited. In
this paper, we propose a microaggregation-based framework for graph
anonymization which meets the following requirements: (1) The topolog-
ical structures of an original graph can be preserved at different levels of
granularity; (2) e-differential privacy is guaranteed for an original graph
through adding controlled perturbation to its edges (i.e., edge privacy);
(3) The utility of graph data is enhanced by reducing the magnitude of
noise needed to achieve e-differential privacy. Within the proposed frame-
work, we further develop a simple yet effective microaggregation algo-
rithm under a distance constraint. We have empirically verified the noise
reduction and privacy guarantee of our proposed algorithm on three real-
world graph datasets. The experiments show that our proposed frame-
work can significantly reduce noise added to achieve e-differential privacy
over graph data, and thus enhance the utility of anonymized graphs.

Keywords: Privacy-preserving graph data publishing - Differential
privacy + Graph data utility - dK-graphs + Graph anonymization

1 Introduction

Graph data analysis has been widely performed in real-life applications. For
instance, online social networks are explored to analyze human social relation-
ships, election networks are studied to discover different opinions in a commu-
nity, and co-author networks are used to understand collaboration relationships
among researchers [22]. However, such networks often contain sensitive or per-
sonally identifiable information, such as social contacts, personal opinions and
private communication records. Publishing graph data can thus pose a pri-
vacy threat. To preserve graph data privacy, various anonymization techniques
for graph data publishing have been proposed in the literature [1,11,14,24].
Nonetheless, even when a graph is anonymized without publishing any identity
information, an individual may still be revealed based on structural information
of a graph [11].
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Fig. 1. A high-level overview of the proposed framework (dK-Microaggregation).

In recent years, differential privacy [5] has emerged as a widely recognized
mathematical framework for privacy. A number of studies [10,18] have inves-
tigated the problem of publishing anonymized graphs under guarantee of dif-
ferential privacy. However, graph data is highly sensitive to structural changes.
Directly perturbing graph data often leads to inject a large amount of random
noise and the utility of anonymized graphs is severely impacted. To deal with
this issue, several works [19-22] have explored techniques of indirectly perturb-
ing graph data through a graph abstraction model, such as the dK-graph model
[16] and hierarchical random graph (HRG) model [2], or spectral graph methods.
The central ideas behind these works are to first project a graph into a statistical
representation (e.g., degree distribution and dendrogram), or a spectral repre-
sentation (e.g., adjacency matrix), and then add random noise to perturb such
representations. Although these techniques are promising, they can only achieve
e-differential privacy over a graph by injecting the magnitude of random noise
proportional to the sensitivity of queries, which is fixed to global sensitivity.
Due to the high sensitivity of graph data on structural changes, the utility of
anonymized graphs being published by these works is still limited.

To alleviate this limitation, we aim to develop a general framework of
anonymizing graphs which meets the following requirements: (1) The topological
structures of an original graph can be preserved at different levels of granular-
ity; (2) e-differential privacy is guaranteed for an original graph through adding
controlled perturbation to its edges (i.e., edge privacy [13]); (3) The utility of
graph data is enhanced by reducing the magnitude of noise needed to achieve
e-differential privacy. We observe that the dK-graph model [15,16] for analyzing
network topologies can serve as a good basis for generating structure-preserving
anonymized graphs. Essentially, the dK-graph model generates dK-graphs by
retaining a series of network topology properties being extracted from d-sized
subgraphs in an original graph. In order to reduce the amount of random noise
without compromising e-differential privacy, we incorporate microaggregation
techniques [4] into the dK graph model to reduce the sensitivity of queries. This
enables to apply perturbation on network topology properties at a flexible level
of granularity, depending on the degree of microaggregation.
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Figurel provides a high-level overview of our proposed framework. Given
two neighboring graphs G ~ G’, network topology properties such as dK-
distributions [16] are first extracted from each graph. Then a dK-distribution
goes through a microaggregation procedure, which consists of partition and
aggregation. After that, the microaggregated dK-distribution is perturbed, yield-
ing a e-differentially private dK-distribution. Finally, based on the perturbed dK-
distribution, e-differentially private dK-graphs are generated. That is, for two
neighboring graphs G ~ G’, their corresponding anonymized graphs generated
by this framework are e-indistinguishable.

Contributions. To summarize, our work has the following contributions: (1) We
present a novel framework, called dK-microaggregation, that can leverage a series
of network topology properties to generate e-differentially private anonymized
graphs. (2) We propose a distance constrained algorithm for approximating dK-
distributions of a graph via microaggregation within the proposed framework,
which enables us to reduce the amount of noise being added into e-deferentially
private anonymized graphs. (3) We have empirically verified the noise reduc-
tion of our proposed framework on three real-world networks. It shows that our
algorithm can effectively enhance the utility of generated anonymized graphs by
providing better within-cluster homogeneity and reducing the amount of noise,
in comparison with the state-of-the-art methods.

2 Problem Formulation

Let G = (V, E) be a simple undirected graph, where V is the set of nodes and
E the set of edges in G. We use deg(v) to denote the degree of a node v, and
deg(G) to denote the maximum degree of G.

Definition 1 (NEIGHBORING GRAPHS). Two graphs G = (V,E) and G’ =
(V',E') are said to be neighboring graphs, denoted as G ~ G, iff V. = V',
ECFE and |[E|+1=|F.

The dK-graph model [16] provides a systematic way of extracting subgraph
degree distributions from a given graph, i.e. dK-distributions.

Definition 2 (DK-DISTRIBUTION). A dK-distribution dK(G) over a graph G
1s the probability distribution on the connected subgraphs of size d in G.

Specifically, 1K-distribution captures a degree distribution, 2K-distribution
captures a joint degree distribution, i.e. the number of edges between nodes of dif-
ferent degrees, and 3K-distribution captures a clustering coefficient distribution,
i.e. the number of triangles and wedges connecting nodes of different degrees.
When d = |V|, dK-distribution specifies the entire graph. For larger values of
d, dK-distributions capture more complex properties of a graph at the expense
of higher computational overhead [16]. To describe how a dK-distribution is
extracted from a graph, we define the notion of dK function.
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Definition 3 (DK FUNCTION). Let G = {(V, E')|E' CV x V'} be the set of all
graphs with the set V of nodes. A dK function v : G — D maps a graph in G
to its dK-distribution in D s.t. y45(GQ) = dK(G).

Following the previous work [16], we define dK-graph as a graph that can be
constructed through reproducing the corresponding dK-distribution.

Definition 4 (DK-GRAPH). A dK-graph over dK(G) is a graph in which con-
nected subgraphs of size d satisfy the probability distribution in dK(G).

Conceptually, a dK-graph is considered as an anonymized version of an orig-
inal graph G that retains certain topological properties of G at a chosen level of
granularity. In this paper, we aim to generate dK-graphs with e-differential pri-
vacy guarantee for preserving privacy of structural information between nodes of
a graph (edge privacy). We formally define differentially private dK-graph below.

Definition 5 (DIFFERENTIALLY PRIVATE DK-GRAPHS). A randomized mecha-
nism K provides e-differentially private dK-graphs, if for each pair of neighboring
graphs G ~ G' and all possible outputs G C range(K), the following holds

PriK(G) € G] < e x PriK(G") € Gl. (1)

G is a family of dK-graphs, and ¢ > 0 is the differential privacy parameter.
Smaller values of & provide stronger privacy guarantees [5].

3 dK-Microaggregation Framework

In this section, we present a novel framework dK-Microaggregation for generating
e-differentially private dK-graphs. Without loss of generality, we will use 2K-
distribution to illustrate our proposed framework. This is due to two reasons:
(1) As previously discussed in [15,16], the d = 2 case is sufficient for most
practical purposes; (2) dK-generators for d = 2 have been well studied [9,15],
whereas dK-generators for d > 3 have not been yet discovered [9]. Given a graph
G = (V,E), we have 2K (G) = {(g,9',m)|m = |E(4,4|} where (g,g’) is a degree
pair and E(, oy = {(v,v") € E|g = deg(v) Ng’ = deg(v")} is the set of edges with
the degree pair (g,¢’).

Previous studies [19,20] have shown that, changing a single edge in a graph
may result in one or more changes on tuples in its corresponding dK-distribution.
The following lemma states the maximum number of changes between the 2K-
distributions of two neighboring graphs.

Lemma 1. Let G ~ G’ be two neighboring graphs. Then v (G) and v*£(G")
differ in at most 4 x g+ 1 tuples, where d = 2 and g = maz({deg(G),deg(G")}).

In our work, for each dK-distribution D, we want to generate D. that is
an anonymized version of D satisfying e-differential privacy. Thus, we view the
response to a dK function v*X for d = 2 as a collection of responses to degree
queries, one for each tuple in a 2K distribution.
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Fig. 2. An illustration of our proposed algorithms.

Definition 6 (DEGREE QUERY). A degree query ¢; : G — R maps a degree
pairt = (g1,92) in a graph G € G to a frequency value in R s.t. (g1, g2, ¢:(G)) €
(6.

To guarantee e-differential privacy for each g, we can add random noise into
the real response ¢:(G), yielding a randomized response ¢:(G) + Lap(A(q:)/e),
where A(g) denotes the sensitivity of ¢; and Lap(A(g:)/e) denotes random noise
drawn from a Laplace distribution.

If we query D with a set of degree queries {q:}:cp and the response to
each ¢; satisfies e-differential privacy, by the parallel composition property of
differential privacy [17], we can generate D, that satisfies e-differential privacy.
However, the total amount of random noise being added into the responses can be
very high, particularly when a graph is large. To control the amount of random
noise and thus increase the utility of D., we microaggregate similar tuples in D
before adding noise. Thus, the dK function y¢¥ is replaced by v o M, i.e.,
we run %X on the microaggregated dK-distribution D resulting from running a
microaggregation algorithm M over D. The response to Y% o M is a collection
of responses to microaggregate degree queries, one for each cluster in D.

Definition 7 (MICROAGGREGATE DEGREE QUERY). A microaggregate degree
query g7 : G — R maps a set of degree pairs T in a graph G € G to a fre-
quency value in R s.t. ¢5(G) = sum({@(G)|t = (g1,92),t € T, (91,92, %(G)) €
TH(G)}).

Indeed, we can see that ¢ is a special case of ¢ since ¢:(G) = ¢} (G) holds
for T'= {t}. By Lemma 1, we have the following lemma about ¢; and ¢;.

Lemma 2. The sensitivity of both ¢ and g} on a graph G is upper bounded by
(4 x deg(@) +1).

For each cluster in D that is resulted from running M, only aggregated
frequency value for a cluster of tuples is returned by a microaggregate degree
query. Thus, Y5 o M is less “sensitive” when the number of clusters in D is
smaller. By Lemma 2 and the fact that changing one edge on a graph may lead
to changes on multiple clusters in D, we have the following lemma, about the
sensitivity of v o M.
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Lemma 3. Let Cy,...C, be the clusters in D resulting from running M over
v (G). Then the sensitivity of v o M is upper bounded by (4 x g+ 1) x n.

Generally, dK-microaggregation works in the following steps. First, it extracts
a dK-distribution from a graph. Then, it microaggregates the dK-distribution
and perturbs the microaggregated dK-distribution to generate e-differentially
private dK-distribution. Finally, a dK-graph is generated.

4 Proposed Algorithm

In this section, we discuss algorithms for microaggregating dK-distributions.
Generally, a microaggregation algorithm for dK-distributions M = (C, A) con-
sists of two phases: (a) Partition - similar tuples in a dK-distribution are par-
titioned into the same cluster; (b) Aggregation - the frequency values of tuples
in the same cluster are aggregated. As illustrated in Fig. 2, a 2K-distribution D
is partitioned into multiple clusters by a clustering function C, i.e. C(D) = D'.
Then, the frequency values of tuples in each cluster are aggregated by an aggre-

gate function A, i.e. A(D') = D.

MDAV-dK Algorithm. Given a dK-distribution D = y¥%(G) over a graph
G, a simple way of microaggregating D is to partition D in such a way that
each cluster contains at least k tuples. For this, we use a simple microaggrega-
tion heuristic, called Mazimum Distance to Average Vector (MDAV) [4], which
can generate clusters of the same size k, except one cluster of size between k
and 2k — 1. However, unlike a standard version of MDAV that aggregates each
cluster by replacing each record in the cluster with a representative record, we
perform aggregation to aggregate frequency values of tuples in each cluster into
an aggregated frequency value. To avoid ambiguity, we call our MDAV-based
algorithm for microaggregating dK-distributions the MDAV-dK algorithm.

It is well-known that, for many real-world networks such as Twitter, their
degree distributions are often highly skewed. This often leads to highly skewed
dK-distributions for such networks. However, due to inherent limitations of
MDAV, e.g. the fixed-size constraint, MDAV-dK would suffer significant informa-
tion loss when evenly partitioning a highly skewed dK-distribution into clusters
of the same size. To address this issue, we propose an algorithm called Mazimum
Pairwise Distance Constraint (MPDC-dK).

MPDC-dK Algorithm. Unlike MDAV-dK, MPDC-dK aims to partition a
dK-distribution into clusters under a distance constraint. Specifically, after par-
titioning, the distances between the corresponding degrees in any two tuples
within a cluster should be no greater than a specified distance interval 7. Take
a 2K-distribution D for example. Let t; = (g1, 9}, m1) and t2 = (g2, g5, m2) be
two tuples in a cluster after applying MPDC-dK on D. Then, we say that these
two tuples satisfy a distance constraint 7 iff max(|g1 — g2/, |¢5 — g4]) < 7. The
clustering problem addressed by MPDC-dK is thus to generate the minimum
number of clusters in which every pair of tuples from the same cluster satisfies
such a distance constraint 7.
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Algorithm 1: MPDC-dK

Input: D: dK-distribution; 7: distance interval

Output: D’: set of clusters

D' = ¢;

blist :=[1];

foreach (g,¢') € D do

foreach b; € covering-boxes((g,g'),7) do

L Add b; to b-list (if not exist) and increase the count of b; by 1 in b_list.

D Uk W N

Add (g,9’) to b; in b_list

7 while b_list is not empty do

8 bmaz < the box with the maximum count
9 dmaz < the degree pairs in bpaz
10 D' := D' U{dmas}
11 Remove byqz from b_list.
12 foreach (g,¢') € dmas do
13 foreach b; € covering_-bozes((g,g'),7) do
14 Remove (g,g’) from b; in b_list
15 L Decrease the count of b; in b_list by 1 and remove b; if its count is 0

16 Return D’

The conceptual ideas behind our MPDC-dK algorithm design is to consider
each degree pair (g,¢’) as coordinates in a two dimensional space, and also treat
the above distance constraint 7 as a 7-by-7 box, denoted by ((z,z'),7) and
centered at (z,z’), in the same two dimensional space. Clearly, such a box corre-
sponds to a cluster that satisfies the distance constraint 7, and a box ((z,z’), 7)
covers a degree pair (g,¢') if e —7/2 < g < z+7/2and 2/ —7/2 < ¢’ <2/ +7/2.
MPDC-dK employs a greedy algorithm to find the minimum number of boxes
(i.e., clusters) that cover all degree pairs. MDPC-dK first enumerates all boxes
that cover at least one degree pair and records the corresponding counts as the
number of degree pairs being covered by these boxes. MDPC-dK then recursively
selects a box with the maximum count (i.e., covering the maximum number of
degree pairs) in a greedy manner, assigns these degree pairs in a new cluster, and
removes them from other boxes until all boxes are empty. After that, MDPC-dK
performs aggregation to aggregate the frequency values of tuples in each cluster
into an aggregated frequency value.

Algorithm 1 describes the details of our MPDC-dK algorithm. Given a dK-
distribution D, we start with initializing an empty cluster list D’ (Line 1) and a
list b_list to record each box and its corresponding degree pairs, and the total
number of degree pairs covered by the box (Line 2). For each degree pair (g, g')
in D, we enumerate boxes that cover (g,¢’) using a function covering boxes
(Line 4). For each enumerated box b; we update the list by adding (g,¢’) to
b; and increment the count of b; by 1 (Lines 5-6). After creating b_list, we
iteratively select a box by,q, with the maximum count for degree pairs (Line 8),
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then generate a new cluster of degree pairs in d,,4,, and add it into the cluster
list (Lines 9-10). We further remove b4, and all degree pairs in b, q, from b_list
and update the counts of affected boxes in b_list (Lines 11-15). The algorithm
terminates when b_list is empty and returns a set of generated clusters D’.

5 Theoretical Discussion

Privacy Analysis. Here, we theoretically show that dK-graphs generated in
our proposed framework are differentially private. Firstly, by Lemma 2 and
3, we can obtain a e-differentially dK-distribution D. by microaggregating a
dK-distribution and calibrating the amount of random noise according to the
sensitivity of microaggregated degree queries. As D, only contains aggregated
frequency values for clusters of tuples in a dK-distribution, we perform post-
processing using a randomized algorithm f to randomly select tuples within
each cluster of D, until the aggregated frequency value of the cluster is reached.
Previously, Dwork and Roth [6] proved that differential privacy is immune to
post-processing, i.e., the composition of a randomized algorithm with a differen-
tially private algorithm is differentially private. This leads to the lemma below.

Lemma 4. Let D, be a e-differentially private dK-distribution and f be a ran-
domized algorithm for post-processing D.. Then f(D.) is also a e-differentially
private dK-distribution.

Based on f(D.), a dK-graph can be generated using a dK-graph generator
[15,16]. Following Lemma 4, Definition 5, and the proposition of Dwork and
Roth [6] on post-processing, we have the following theorem for our framework,
which corresponds to a randomized mechanism K = v o M o K o f o 54K
where 7% : D — G is a dK-graph generator.

Theorem 1. K generates e-differentially private dK-graphs.

Complexity Analysis. We analyze the time complexity of the algorithms
MDAV-dK and MPDC-dK. For MDAV-dK with a constraint on the minimum
size k of clusters, given a dK-distribution D as input, the complexity of MDAV-
dK for clustering is similar to MDAV [4], i.e. O(n?). For MPDC-dK with a
constraint on the distance interval 7, in order to generate clusters, MPDC-dK
needs to perform a sequential search over all degree pairs in D. Firstly, MPDC-
dK needs to enumerate boxes for all the degree pairs, and each degree pair is
covered by at most (74 1) boxes (Line 4 of Algorithm 1), hence the cost of enu-
merating boxes is O(7%n) (Line 3-6 of Algorithm 1). Secondly, MPDC-dK sorts
the boxes based on the corresponding degree pairs being covered, and selects
and removes the box with the maximum count iteratively. Although it takes
O(nlogn) to sort and greedily select the box with the maximum count for the
first iteration, each later iteration only costs O(72logn) (Line 8 of Algorithm 1)
because each box overlaps with at most 472 other boxes and removing one box
only affects the count of O(72) boxes (Lines 11-15 of Algorithm 1). Hence, the
cost of selecting and removing boxes is O(7%nlogn) (Lines 7-15 of Algorithm 1).
The overall complexity of MPDC-dK for clustering is O(72nlogn).
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6 Experiments

We have evaluated the proposed framework to answer the following questions:

— Q1. How does dK-microaggregation reduce the amount of noise added into
dK-distributions while still providing e-differential privacy guarantee?

— Q2. How does our microaggregation algorithms perform in providing better
within cluster homogeneity for dK-distributions?

— Q3. What are the trade-offs between utility and privacy when generating
differentially private dK-graphs?

Datasets. We used three network datasets in the experiments: (1) polbooks®
contains 105 nodes and 441 edges. It is a network of books about US politics.
(2) ca-GrQc (see footnote 1) contains 5,242 nodes and 14,496 edges. (3) ca-
HepTh (see footnote 1) contains 9,877 nodes and 25,998 edges. Both ca-GrQc
and ca-HepTh are scientific collaborative networks between authors and papers.

Baseline Methods. In order to evaluate our proposed framework, we consid-
ered the following methods: (1) e-DP, which is a standard e-differential privacy
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Fig. 3. Comparison on the Euclidean distance between original and perturbed dK-
distributions under varying k, 7, and € over three datasets: (a)—(d) polbooks dataset,
(e)—(h) ca-GrQc dataset, and (i)—(1) ca-HepTh dataset.

L polbooks is available at http: / /networkrepository.com/polbooks.php; ca-GrQc and
ca-HepTh are available at http://snap.stanford.edu/data/index.html.


http://networkrepository.com/polbooks.php
http://snap.stanford.edu/data/index.html

200 M. Iftikhar et al.

algorithm in which noise is added using the Laplace mechanism [5]. (2) MDAV-
dK which extends the standard microaggregation algorithm MDAV [4] for han-
dling dK-distributions. (3) MPDC-dK is our proposed dK-microaggregation
algorithm. We used Orbis [15] to generate 2K-distributions.

Evaluation Measures. We used Euclidean distance [19] to measure network
structural error between original and perturbed dK-distributions. For clustering
algorithms, we measure within-cluster homogeneity using the sum of absolute
error [7] defined as SAE = vazl vaﬁci |z; — pi| where ¢; is the set of tuples
in cluster ¢ and p; is the mean of cluster i.

Table 1. Performance of MDAV-dK under different values of k.

Datasets | Measures |k=1|k=3 |k=5 |k=T7 k=9 k=11 k=13 |k=15
polbooks SAE 0 144.6 | 184.67 | 224.84 | 273.6 292.21 | 299.15 | 334.25

# Clusters | 161 |53 32 23 17 14 12 10
ca-GrQc | SAE 0 1073.3 | 1476 | 1810.5|2166.8 | 2313.7 | 2555.5 | 2730

# Clusters | 1233 | 411 246 176 137 112 94 82
ca-HepTh | SAE 0 968.72 | 1304 | 1599.8 | 1893.9 | 2063 | 2232.9 | 2389.7

# Clusters | 1295 | 431 259 185 143 117 99 86

Table 2. Performance of MPDC-dK under different values of 7.

Datasets | Measures |7=1 |7=3 T7T=5 |7=7 |7=9 |7=11 | 7=13 |7=15

polbooks | SAE 90.72 |192.15 | 328.96 | 424.2 | 563.73 | 617.63 | 723.06 | 795.77
# Clusters | 68 25 13 8 7 5 3 3

ca-GrQc | SAE 725.38 | 1732.1 | 2630.6 | 3470.6 | 4262.9 | 5176.7 | 6170.1 | 7037.7
# Clusters | 483 178 98 61 42 35 26 20

ca-HepTh | SAE 841.87 | 1761.8 | 2773.3 | 3721.4 | 4719.2 | 5623.8 | 6402.6 | 7034.2
# Clusters | 412 140 73 37 34 24 19 15

Experimental Results. To verify the overall utility of e-differentially private
dK-distribution, we first conducted experiments to compare the structural error
between original and perturbed dK-distributions generated by our algorithm
MDAV-dK, MPDC-dK and the baseline method e-DP. Figure3 presents our
experimental results. For e-DP, we used the following privacy parameters ¢ =
[0.01,0.1,1.0,10.0], which cover the range of differential privacy levels widely
used in the literature [12]. The results for e-DP is displayed as horizontal lines,
as e-DP does not depend on the parameters k and 7.

From Fig. 3, we can see that, for all three datasets, our proposed algorithms
MDAV-dK and MPDC-dK lead to less structural error for every value of ¢ as
compared to e-DP. This is because, by approximating a query v to v o M via
dk-microaggregation, the errors caused by random noise to achieve e-differential
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privacy are reduced significantly. Thus, dK-microaggregation introduces overall
less noise to achieve differential privacy.

We then conducted experiments to compare the quality of clusters, in terms
of within-cluster homogeneity, generated by MDAV-dK and MPDC-dK. The
results are shown in Tables1 and 2. We observe that, for values of k£ and 7
at which MDAV-dK and MPDC-dK generate almost the same number of clus-
ters, as highlighted in bold, MPDC-dK outperforms MDAV-dK by producing
clusters with less SAE over all three datasets. This is consistent with the pre-
vious discussion in Sect.4. As MPDC-dK always partitions degree pairs under
a distance constraint rather than a fixed-size constraint, thus it generates more
homogeneous clusters as compared to MDAV-dK.

Discussion. We analyze the trade-offs between utility and privacy of dK-graphs
generated in the proposed framework. To enhance the utility of differentially
private dK-graphs, we approximated an original query v to v o M. This thus
introduces two kinds of errors: one is random noise to guarantee e-differential
privacy, and the other one is due to microaggregation. We have noticed that, the
second kind of error can be reduced by generating homogeneous clusters during
microaggregation. On the other hand, for the first kind of error which depends on
the sensitivity of v o M, it dominates the impact on the utility of differentially
private dK-graphs generated via dk-microaggregation. By reducing sensitivity
we can increase the utility of dK-graphs without compromising privacy.

7 Related Work

Graph data anonymization has been widely studied in the literature, and
many anonymization techniques [1,11,14,24] have been proposed to enforce
privacy over graph data. These techniques can be broadly categorized into
three areas: nodes and edges perturbation, k-anonymity, and differential pri-
vacy. Perturbation-based approaches follow certain principles to process nodes
and edges, including identity removal [14], edge modification [23], nodes cluster-
ing [11], and so on. Generally, k-anonymity approaches divide an original graph
into at least k-sized blocks so that the probability that an adversary can re-
identify one node’s identity is at most 1/k. Popular k-anonymity approaches for
graph anonymization include k-candidate [11], k-neighborhood anonymity (k-
NA) [24], k-degree anonymity (k-DA) [14], k-automorphism, and k-isomorphism
(k-iso) [1].

Differential privacy on graph data can be roughly divided into two categories,
namely: node differential privacy [3] and edge differential privacy [13]. In general,
unlike k-anonymity, differential privacy approaches have mathematical proofs
of privacy guarantee. Nevertheless, applying differential privacy on graph data
limits utility because graph is highly sensitive to structural changes and adding
noise directly into graph data can significantly degrade its utility. To address
this issue, many approaches [19-22] perturb various statistical information of
a graph by projecting graph data into other domains using feature-abstraction
models [2,16]. This idea is appealing; however it leads to yielding less data utility
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due to injecting random noise based on the global sensitivity to guarantee e-
differential privacy. Our aim is to anonymize graphs under e-differential privacy
using less sensitive queries. In this regard, we proposed a microaggregation-based
framework which reduces the sensitivity via microaggregation, thus reducing the
overall noise needed to achieve e-differentially private graphs.

8 Conclusion

In this paper, we have formalized a general microaggregation-based framework
for anonymizing graphs that preserves the utility of dK-graphs while enforc-
ing e-differential privacy. Based on the proposed framework, we have proposed
an algorithm for microaggregating dK-distributions under a distance constraint.
We have theoretically analyzed the privacy property of our framework and the
complexity of our algorithm. The effectiveness of our work has been empirically
verified over three real-world datasets. Future extensions to this work will con-
sider zero knowledge privacy (ZKP) [8], to release statistics about social groups
in a network while protecting privacy of individuals.
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