
TCN-ATT: A Non-recurrent Model
for Sequence-Based Malware Detection

Junyao Huang1, Chenhui Lu1, Guolou Ping1, Lin Sun1, and Xiaojun Ye1,2(B)

1 School of Software, Tsinghua University, Beijing, China
{junyao-h17,luch18,pgl19}@mails.tsinghua.edu.cn,

yexj@mail.tsinghua.edu.cn
2 National Engineering Laboratory for Big Data System Software,

Tsinghua University, Beijing, China

Abstract. Malware detection based on API call sequences is widely used
for the ability to model program behaviours. But RNN-based models
for this task usually have bottlenecks in efficiency and accuracy due to
their recurrent structure. In this paper, we propose a Temporal Convo-
lutional Network with ATTention (TCN-ATT) architecture, which pro-
cesses sequences with high parallelization and is robust to sequence length.
The proposed TCN-ATT consists of three components: (1) a TCN module
which processes sequence with convolutional structure, (2) an attention
layer to select effective features and (3) a split-and-combine mechanism
to fit inputs with various size. A formalized deduplication method is also
proposed to reduce redundancy with less information loss. According to
our experiments, the proposed model reaches an accuracy of 98.60% and
reduces time cost by over 60% compared with existing RNN-based models.

Keywords: Malware detection · API call sequence · Deep neural
network · Temporal Convolutional Network · Attention mechanism

1 Introduction

In recent years, more and more entities are storing their valuable information
in places reachable through networks, which in some way makes themselves
potential victims of malicious applications (malwares). Malware attacks have
also increased greatly in both quantities and categories. Malware detectors based
on signature database [1,6,17] or static analysis [14] are faced with increasing
difficulty because they are often vulnerable to obfuscation methods [11]. So many
researchers put effort into dynamic analysis and develop algorithms to identify
malicious programs through their behaviors. In dynamic analyses, system API
call sequences are most frequently used to represent the behaviors of programs.
Data mining and traditional machine learning methods are often employed to
handle malware detection tasks based on API call sequences [7,15,19]. These
methods usually require low dimensional statistical features as the input and
thus expertise-based feature engineering is necessary. These requirements lead
to a bottleneck in accuracy.
c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 178–190, 2020.
https://doi.org/10.1007/978-3-030-47436-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_14


TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection 179

With the development of deep learning models, many new models have been
proposed to detect malware based on raw API call sequences and most of them
are using recurrent neural network (RNN) models [12,13,16,18]. These RNN-
based models reach better accuracy than data mining and traditional machine
learning methods but challenges still exist. The recurrent architecture causes
inevitable low parallelization when processing and brings uncertainty in receptive
field size on input sequences. Furthermore, recently published models become
increasingly complicated and are combined with various other analysis methods.
In this situation, we propose a Temporal Convolutional Network with ATTen-
tion (TCN-ATT) architecture, which is a relatively simple and effective non-
recurrent model, to detect malwares based on API call sequences. Noticing that
the length of API call sequences varies from 100 to 20000, these whole sequences
are not proper inputs for either recurrent or convolutional models. So a split-
and-combine method is proposed in the TCN-ATT model.

Our contributions are:

– For the first time, TCN is introduced to malware detection based on API
call sequences (Sect. 3.2) bringing considerable accuracy and high efficiency.
To further improve the accuracy, a specifically designed attention layer is
employed in our architecture (Sect. 3.3).

– We propose a sequence splitting method together with a corresponding loss
function for the detection task in view of API call sequences characteristics
(Sects. 3.1 and 3.4). They control the model size and hold the accuracy no
matter how the length of input sequences varies. They can also be applied to
other models on sequence-based malware detection task.

– We give a deduplication method to improve the performance of our model
as well as other sequence-based models (Sect. 2.2). We define two parameters
for the method to control the deduplication intensity. This method helps to
reduce redundancy while retaining some repetition behavior information.

2 Data Preprocessing

Before introducing the TCN-ATT model, we give a brief introduction about
procedures that are implemented in front of the model, including the content
of input sequences and the proposed deduplication method. Firstly, API call
sequences are extracted from programs by running them in virtual environments.
Then the sequence data go through some preprocessing to make them fit for the
model. Finally, these preprocessed data are fed to TCN-ATT model, which will
give a decision about whether the program is benign or malicious.

2.1 Malware Behavior Representation

For each executable file, an API call sequence is extracted from sandbox to
represent the behavior and the function name of each API call is used. Each
API function is represented by a specific integer which is finally transformed to
a one-hot vector in training and testing steps.



180 J. Huang et al.

2.2 Duplicate API Sequences Processing

After analyzing API call sequences, we find out that one API is often called mul-
tiple times consecutively and this kind of repetition also happens to some subse-
quences consisting of several APIs. This happens to both benign and malicious
softwares, because the program sometimes do some similar tasks consecutively.
In order to reduce the length of sequences fed to the model, Kolosnjaji et al. [10]
and Xiaofeng et al. [18] mentioned some methods to remove continuous same
API functions in sequences. [10] dose not consider the case of repetition of an
API group and [18] simply removes all the duplicates. In this paper we propose
a deduplication method which is similar to theirs but more flexible.

In our consideration, the duplicates of an API call subsequence pattern should
be reduced to avoid information redundancy but should not be totally removed
because the repetition itself contains program behavior information. So, we
define two parameters for the duplicate reducing method: lm, the max length of
a target pattern; k, the max number of consecutive duplicates kept for a pattern.
For example, given a sequence A1A2A3A1A2A3A1A2A3: when we set lm = 3 and
k = 2, the de-duplicated sequence is A1A2A3A1A2A3; when we set lm = 2 and
k = 2, A1A2A3 is not regarded as a pattern with len(A1A2A3) = 3 > lm and
therefore this sequence stays unchanged after deduplication.

As described above, this design removes less valuable duplicates and keeps
some repeating behavior information. This deduplication method is proved to
bring accuracy improvement for models, according to experiments in Sect. 4.2.

3 TCN-ATT Model

As shown in Fig. 1, the whole preprocessed sequence from each sample is firstly
split into several subsequences with a fixed size. Each subsequence is fed into a
network containing the TCN module [2], an attention layer and a fully connected
(FC) layer. Then the network produces a sub-prediction for the subsequence.
Finally, these sub-predictions are fed into a task-specific loss function to train
the whole model in the training phase and analyzed by specific rules to give a
sample-level prediction in the practicing phase.

3.1 Sequence Splitting

The length of dynamic extracted API call sequences is usually rather big and
varies a lot among different samples, even after deduplication preprocessing.
For both the TCN-ATT model and recurrent models, it does not lead to good
results to feed each sequence into the model without splitting it. So we split
each sequence into parts of a fixed size. Thus the input of the TCN model will
be the subsequences instead of the whole API call sequence. Sequence splitting
also brings a benefit that the size of the model only depends on the subsequence
length setting regardless of whole sequence size. A proper subsequence length n
for the model is chosen by experiments, which will be described in Sect. 4.4.



TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection 181

Fig. 1. Process of each sample’s sequence in TCN-ATT model

Although this method solves the issue of sequence length variation, it brings
some difficulties in combining partial results into a sample-level classification con-
clusion. Therefore, a task-specific loss for training phase and a result-combining
method for predicting phase are designed to cooperate with splitting method,
which will be described in Sect. 3.4.

3.2 Temporal Convolutional Network

RNN models have a bottleneck in accuracy and efficiency when faced with mass
data due to its recurrent structure. So we introduce a non-recurrent model to
take the place of RNNs.

Temporal Convolutional Network (TCN) is a network architecture proposed
by Bai et al. [2]. This fully convolutional network produces an output of the same
length as the input, similar to RNNs. With the utilization of dilated convolutions
and residual connections, the TCN is able to allow very long effective history
with a rather shallow network. And it is worth mentioning that the ability is of
great importance to a malware detector based on API call sequences.

A simple convolution only has an input reception field with size linear in the
depth of the network. This makes it challenging to apply it to sequence tasks,
especially those requiring longer history. So dilated convolutions are employed to
enable a larger receptive field with size exponential in the depth of the network.
To put it formally, for a 1-D sequence input x ∈ R

n and a convolutional filter
f : {0, ..., k − 1} → R, the dilated convolution operation F on elements end with
index s of the sequence is defined as:

F (s) = (x ∗d f)(s) =
k−1∑

i=0

f(i) · xs−d·i (1)

where d is the dilation factor, k is the filter size, and each (s − d · i) is index of
an element from the ‘past’ part in the input x. Using this type of convolution,



182 J. Huang et al.

the effective history of one such layer is (k − 1)d. Furthermore, d is increased
exponentially with the depth of the network (i.e., d = O(2i) at level i).

With above designs, the TCN model is able to take similar inputs and produce
similar outputs as RNNs while it is efficient taking advantage of convolution
architectures. In our architecture, we use the sequence-to-sequence (seq2seq)
mode of TCN. To be specific, it works as described below.

For a 1-D sequence input x ∈ R
n representing an API call sequence, x′ is its

corresponding one-hot-encoded form with a size of n × m, where n is the length
of the sequence and m is the total number of involved API functions. Then x′

is fed into the TCN and the module finally produce an output H with a size of
n× c, where c is the size of the output feature that TCN produces for each time
of the sequence. We choose this mode because we expect the network to produce
more suggestive results and to have more interpretabilities with the attention
layer described in the next subsection.

3.3 Attention Layer

Models with attention mechanism are now the state-of-art for multiple tasks
[3]. Attention mechanism is usually able to improve the performance as well as
the interpretability of various models. In the TCN-ATT model, we also design
an attention layer between the TCN and the FC layer. This attention layer
helps to reduce the size of the feature matrix produced from TCN while keeps
important information in it and therefore improves the model performance. For
the aforementioned output H ∈ R

n×c, the operation of the attention layer is:

α = softmax
(
tanh(H)μT

)
(2)

w = αTH (3)

where μ ∈ R
1×c is the attention factor that we expect the model to learn, and

w ∈ R
1×c is the final vector that represents the feature of the input x. We can

see α ∈ R
n×1 as a coefficient vector calculated from H and μ representing the

importance of feature vectors produced from all the n time steps.
Through this attention layer, the original feature H with size n × c is com-

pressed to the final feature w with size of 1 × c. Furthermore, we can analyze
the importance of subsequences for an input x via the calculated α.

3.4 Task-Specific Loss

Each subsequence x with fixed length n is transformed to a feature vector
w ∈ R

1×c through the TCN model and the attention layer. Then w is fed
into a FC layer and a softmax layer to produce a prediction result p ∈ R

2,
and ŷ = argmax(p) is the label that the model predicts (0 as benign and 1 as
malicious). For each sequence sample, which is split into a set of subsequence
X = {x1,x2, ...,xk}, the model will give a set of predictions P = {p1,p2, ...,pk}
and Ŷ = {ŷ1, ŷ2, ..., ŷk}. While in other classification tasks the model is usually



TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection 183

expected to make all sub-predictions of one sample close to the ground truth
label, it works differently in this task.

One malware may not run maliciously all the time and the API call sequences
extracted can also have benign parts. Thus, the part-combining procedure on
this task is different. In the predicting phase, we regard a sample with all sub-
sequences predicted to 0 as benign, while regarding a sample with at least one
subsequence predicted to 1 as malicious. Under this consideration, we should
avoid pushing the model too hard and allow the model to produce some benign
sub-predictions for malicious samples. Therefore, we give a task-specific loss func-
tion L(y,P ) to calculate the total loss of a prediction set P = {p1,p2, ...,pk}
from a sample s:

L(y,P ) =χy=0|max Ŷ=0

k∑

i=0

L(y,pi)

+
(
1 − χy=0|max Ŷ=0

) k∑

i=0

((1 − β · χŷ=0) L(y,pi))

(4)

L(y,pi) = − (
y log pi,0 + (1 − y) log pi,1

)
(5)

ŷ = argmax(p) (6)

Ŷ = {ŷ1, ŷ2, ..., ŷk} (7)

where y is the ground truth label of the sample, ŷi is the predicted label for
each subsequence, and β ∈ [0, 1] is a hyper-parameter designed to reduce the
loss from specific subsequences. χ is an indicator function. χg equals 1 when g

is true and 0 otherwise. To put it simply, L(y,P ) equals
∑k

i=0 L(y,pi) when
the sample is labeled benign or when the model predicts no subsequences of a
malicious sample to be malicious. When there are some subsequences predicted
to be malicious in a malicious sample, the hyper-parameter β will restrict the
loss function to reduce the punishment on benign sub-predictions, since they
may be actually correct.

4 Experiments

In this section, we evaluate the effectiveness of TCN-ATT model on the malware
detection task as well as the influence of the proposed designs and settings,
including API sequence deduplication method, the attention layer itself and
hyper-parameters. The efficiency of the proposed model is also evaluated.

4.1 Dataset and Evaluation Metrics

We collect over 6900 malicious PE files from Malekal website1, CILPKU08
dataset and Henchiri-Dataset2. Also, over 2700 benign PE files are acquired
1 http://www.malekal.com.
2 http://www.cil.pku.edu.cn/resources/.

http://www.malekal.com
http://www.cil.pku.edu.cn/resources/


184 J. Huang et al.

from Windows system files or downloaded from several websites (e.g. completely
free software, softonic). We then check these files by uploading them to the
VirusTotal3 website in order to keep some mislabeled samples out of the dataset.
According to VirusTotal results, the final dataset contains malware from families
including Backdoor, Trojan-Downloader, Trojan-Ransom, AdWare and Worm.
In general, our dataset contains 2497 malicious samples and 2497 benign sam-
ples. We use 5-fold cross validation to evaluate different methods. Thus at each
time, 80% samples are used for training and 20% are for testing.

To evaluate the performance of different mechanisms, the following evaluation
metrics are used: accuracy (ACC), precision (PR), recall (RC), receiver operating
characteristic (ROC) curve and area under curve (AUC).

These files are run in Cuckoo sandbox, which can extract API call sequences
while files are running in a Windows 7 virtual environment. After being prepro-
cessed as descried in Sect. 2, these sequences are fed into TCN-ATT model.

We implement the TCN-ATT model and other models envolved in experi-
ments by python 3.6.5 with Tensorflow and Scikit-Learn. We train and test these
models in a Ubuntu system with 8 GTX-1080Ti GPUs.

4.2 Effect of Deduplication

We first conduct an experiment to evaluate the effect of the proposed dedu-
plication method. Original sequences and shortened sequences converted from
original ones are used to train several models respectively. Then we evaluate
trained models by accuracy. We choose RNN, LSTM from RNN family, LSTM
with the attention layer, as well as TCN and our TCN-ATT model. The set-
ting {lm = 5, k = 2} are proved to work best in pre-experiments and thus only
results under this setting are shown in Table 1 for simplicity. From Table 1 we can
see an evident increase in the ACC of each model fed with shortened sequences,
which indicates that the proposed deduplication method is effective in improving
the performance of a diverse range of models in this task. So we use shortened
sequences as the input in all the following experiments.

Table 1. Accuracy using different input sequences

Model ACC(%)

Original sequence Reduced sequence

RNN 92.02 93.84

LSTM 94.23 95.19

LSTM+attention 96.46 97.59

TCN 96.69 97.78

TCN-ATT 97.59 98.60

3 https://www.virustotal.com/.

https://www.virustotal.com/


TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection 185

4.3 Malware Detection

In this part, we compare the TCN-ATT model with traditional machine learning
methods and some deep learning models:

– Decision Tree/Naive Bayes/SVM/Random Forest. Popular tradi-
tional machine learning methods. Directly feeding sequences or subsequences
into these models leads to poor results. So a transition probability matrix is
calculated as the feature vector for each sample.

– RNN/LSTM/GRU. Widely-used recurrent models in sequence tasks [4,8]
under split-and-combine method without attention layer.

– TCN. The original TCN model under split-and-combine method without the
attention layer.

– LSTM/GRU with attention. LSTM/GRU model under split-and-combine
method with the attention layer.

– GRU attention and TCN attention without sequence splitting. Mod-
els of this group are fed with whole sequences and they make predictions
directly with no combining method.

– CNN+LSTM. A model containing two convolutional layers and one LSTM
layer proposed by Kolosnjaji et al. [10].

– Bi-Residual LSTM. A LSTM-based model containing two bidirectional
layers with residual connection proposed by Xiaofeng et al. [18].

– TCN-ATT. The proposed model in this paper.

The dropout rate is 0.5 and single feature size (c in Sect. 3) is 128
for RNNs/LSTMs/GRUs/TCNs envolved. For models under split-and-combine
method, the input sequences are split with window size 600 and β in loss the

Table 2. Accuracy of different models in malware detection

No Model PR(%) RC(%) ACC(%)

1 Decision Tree 77.99 93.50 83.68

2 Naive Bayes 67.83 77.60 70.37

3 SVM 83.13 93.60 87.28

4 Random Forest 90.62 92.21 91.29

5 RNN 94.45 93.30 93.84

6 LSTM 93.40 96.94 95.19

7 GRU 96.59 97.37 96.98

8 TCN 96.67 98.99 97.78

10 GRU+attention (no split) 95.98 96.16 96.05

11 TCN+attention (no split) 96.90 97.13 97.01

12 LSTM+attention 97.41 97.78 97.59

13 GRU+attention 97.35 98.73 98.04

14 CNN+LSTM [10] 92.76 93.55 93.15

15 Bi-Residual LSTM [18] 96.14 96.59 96.26

16 TCN-ATT(ours) 98.02 99.18 98.60



186 J. Huang et al.

function is 0.25. For non-attention deep models, all the H ∈ R
n×c is fed into the

FC layer. The dilations setting is [1, 2, 4, 8, 16, 32] in all TCNs. Hyper-parameter
values of other methods are also carefully selected to reach their best accuracy.

Table 2 shows detection accuracy, precision and recall of above models. Com-
paring models 1∼4 with models 5∼16, we can conclude that deep models perform
better than traditional machine learning models when using API call sequences
as the input. Results of models 5∼8 show build-in abilities of original models
under the split-and-combine structure. The model containing TCN outperforms
other three recurrent models. From models 6∼8 and models 12, 13, 16, it is
observed that the attention layer brings a significant improvement to original
models. This layer allows the model to selectively focus on important parts of
the whole output feature and thus help obtain better results. Similarly, results of
model 10, 11 and model 13, 16 indicate that our split-and-combine method brings
considerable performance improvement to these models. From above results, we
can draw a conclusion that the TCN-ATT model outperforms other models in
Table 2, since it reaches the highest accuracy, precision and recall.

4.4 Hyper-parameters

We also conduct experiments to choose hyper-parameter values of the TCN-
ATT model. We evaluate different settings by accuracy and AUC. The results
are presented in Table 3 and Fig. 2.

Table 3. Effect of different hyper-parameters

Hyper-parameter Value ACC(%) AUC

Window size 150 97.29 0.9901

300 97.70 0.9914

600 98.60 0.9955

900 98.35 0.9925

1200 97.92 0.9915

Dilations [1, 2, 4, 8] 97.00 0.9857

[1, 2, 4, 8, 16] 97.88 0.9938

[1, 2, 4, 8, 16, 32] 98.60 0.9954

[1, 2, 4, 8, 16, 32, 64] 98.29 0.9949

Dropout rate 0.0 98.19 0.9916

0.25 98.40 0.9938

0.5 98.60 0.9954

0.75 98.40 0.9941

Overlap rate 0.75 98.29 0.9931

0.5 98.29 0.9931

0.25 98.45 0.9952

0 98.60 0.9955



TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection 187

The window size (i.e. subsequence length) is an important hyper-parameter
of the TCN-ATT model. With a bigger window size, the TCN module is able to
take a longer subsequence as its input, which brings less sequence splitting but
more training cost. As shown in Table 3, the accuracy and AUC do not always
increase when the window size grows and 600 reaches the best result.

The dilations setting defines the parameter d in each dilated convolution layer
(see Sect. 3.2) and the number of layers. It also highly affects the proposed model.
As the dilations go deeper, the receptive field of the top cell becomes larger, while
training becomes more difficult. Similar to the window size hyper-parameter, the
best result comes from a middle value and we regard dilations = [1, 2, 4, 8, 16, 32]
as the trade-off between the receptive field and the training cost.

Fig. 2. ROC of some hyper-parameters

According to our experiments, the dropout rate seems to have little influence
on the model. The accuracy is over 98.2% whichever value we choose from 0.0
to 0.75. And the best dropout rate is 0.5.

The overlap rate represents how much one subsequence overlaps its neighbors.
We did not mention this setting in Sect. 3 because it is indicated that the best
result is reached when there is no overlap.

For brevity, other hyper-parameters of less importance are not discussed here.

4.5 Efficiency

We also conduct experiments to evaluate the efficiency of TCN-ATT model. A set
of 1000 samples is randomly selected from our dataset and is expanded to 10000
by repeating samples. Experiments are conducted in both training phase and
testing phase on this dataset and the time cost of each model is recorded. This
is performed on TCN-ATT model as well as RNN/LSTM/GRU with splitting
and attention mechanism. In these experiments, only one GPU is used in case
that TCN can run on multi-GPU mode while recurrent models are not able to.
All models involved use settings that can reach the best accuracy as described
in Sect. 4.3 and the batch size is set to 32. Table 4 shows the results.



188 J. Huang et al.

Table 4. Time cost of some models

Model Time cost (ms/sample)

Training phase Testing phase

RNN+attention 16.4 8.0

LSTM+attention 20.1 9.2

GRU+attention 23.1 9.0

TCN-ATT 8.8 3.6

As expected, LSTM and GRU cost more time than the original RNN while
reaching higher accuracy. However, taking advantage of convolutional architec-
tures, TCN-ATT outperforms above three recurrent models in terms of time
cost. It saves time by 62% in training and 60% in testing compared with the
GRU+attention model. So it’s indicated that the TCN-ATT model has not only
high accuracy but also excellent efficiency.

5 Related Works

API call information is widely used in malware detection. Static analysis extracts
API calls from portable execution files [5], log files [16] and DEX files on mobile
platforms [9,19]. And API call sequences can be captured dynamically as well.
Based on API call sequences, Ravi et al. [13] use Markov chain to model the
sequences and designed a data mining algorithm to generate the classifica-
tion rules. Some researchers apply machine learning methods for classification.
Hansen et al. [7] utilize random forest algorithm to classify the malware based
on API call sequences and API call frequency.

In recent years, the development of deep learning have greatly influenced
malware detection methods. Pektas et al. [12] construct an API call graph and
used graph embedding methods to generate graph embeddings. The normalized
graph embeddings are forwarded into a deep neural network for classification.
Since recurrent neural networks have good performance in tackling sequence
data, Tobiyama et al. [16] use the RNN to extract feature vectors from the
input API sequence, convert the feature vectors into images and apply a CNN
to classify the images. Kolosnjaji et al. [10] process the API sequences via deep
neural network which is composed of CNN and LSTM. Lu et al. [18] utilize the
Bidirectional Residual LSTM to process the API sequence data and use machine
learning methods based on API statistic features. Most of these sequence-based
models rely on recurrent structures, which process long inputs sequentially and
thus limit their performance.

6 Conclusion

In this paper, we present a convolutional network architecture called TCN-ATT
for malware detection based on API call sequences. A temporal convolutional



TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection 189

module and an attention layer are employed for stronger feature extraction abil-
ity. We also design a sequence splitting method and a task specific loss to enhance
robustness for long sequences while controlling the model size. For sequence pre-
processing, a formalized deduplication method with two parameters is proposed.
It brings accuracy rise for our architecture and other sequence-based models. With
above techniques, the proposed architecture obtains an accuracy of 98.60% and
reduces time cost by over 60% compared with recurrent models. Experimental
results indicate that the proposed approach is an effective classifier for automatic
malware detection task. In the future, a sub-prediction combining method with
more intelligence technique can be designed to bring more robustness and adapt-
ability. Furthermore, analyses on attention layer values can be conducted to find
out what the model focuses on and help to improve the performance.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Program of China (No. 2019QY1402).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
(2018)

3. Chaudhari, S., Polatkan, G., Ramanath, R., Mithal, V.: An attentive survey of
attention models. arXiv preprint arXiv:1904.02874 (2019)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

5. Fan, Y., Ye, Y., Chen, L.: Malicious sequential pattern mining for automatic mal-
ware detection. Expert Syst. Appl. 52, 16–25 (2016)

6. Faruki, P., et al.: Android security: a survey of issues, malware penetration, and
defenses. IEEE Commun. Surv. Tutorial. 17(2), 998–1022 (2014)

7. Hansen, S.S., Larsen, T.M.T., Stevanovic, M., Pedersen, J.M.: An approach for
detection and family classification of malware based on behavioral analysis. In:
2016 International Conference on Computing, Networking and Communications
(ICNC), pp. 1–5. IEEE (2016)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: Maldozer: automatic frame-
work for android malware detection using deep learning. Digital Invest. 24, S48–
S59 (2018)

10. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification
of malware system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS
(LNAI), vol. 9992, pp. 137–149. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50127-7 11

11. Kuzurin, N., Shokurov, A., Varnovsky, N., Zakharov, V.: On the concept of soft-
ware obfuscation in computer security. In: Garay, J.A., Lenstra, A.K., Mambo, M.,
Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 281–298. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75496-1 19

http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1904.02874
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1007/978-3-540-75496-1_19


190 J. Huang et al.

12. Pektaş, A., Acarman, T.: Deep learning for effective android malware detection
using API call graph embeddings. Soft Comput. 24(2), 1027–1043 (2020)

13. Ravi, C., Manoharan, R.: Malware detection using windows api sequence and
machine learning. Int. J. Comput. Appl. 43(17), 12–16 (2012)

14. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. In: 2015 10th International Conference on Mali-
cious and Unwanted Software (MALWARE), pp. 11–20. IEEE (2015)

15. Shijo, P., Salim, A.: Integrated static and dynamic analysis for malware detection.
Procedia Comput. Sci. 46, 804–811 (2015)

16. Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., Yagi, T.: Malware detection
with deep neural network using process behavior. In: 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 577–
582. IEEE (2016)

17. Wu, S., Manber, U., et al.: A fast algorithm for multi-pattern searching. Technical
report TR-94-17 (1994)

18. Xiaofeng, L., Fangshuo, J., Xiao, Z., Shengwei, Y., Jing, S., Lio, P.: ASSCA: API
sequence and statistics features combined architecture for malware detection. Com-
put. Netw. 157, 99–111 (2019)

19. Zhao, C., Zheng, W., Gong, L., Zhang, M., Wang, C.: Quick and accurate android
malware detection based on sensitive APIs. In: 2018 IEEE International Conference
on Smart Internet of Things (SmartIoT), pp. 143–148. IEEE (2018)


	TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection
	1 Introduction
	2 Data Preprocessing
	2.1 Malware Behavior Representation
	2.2 Duplicate API Sequences Processing

	3 TCN-ATT Model
	3.1 Sequence Splitting
	3.2 Temporal Convolutional Network
	3.3 Attention Layer
	3.4 Task-Specific Loss

	4 Experiments
	4.1 Dataset and Evaluation Metrics
	4.2 Effect of Deduplication
	4.3 Malware Detection
	4.4 Hyper-parameters
	4.5 Efficiency

	5 Related Works
	6 Conclusion
	References




