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Abstract. Neural networks are vulnerable to adversarial examples,
which are malicious inputs crafted to fool pre-trained models. Adver-
sarial examples often exhibit black-box attacking transferability, which
allows that adversarial examples crafted for one model can fool another
model. However, existing black-box attack methods require samples from
the training data distribution to improve the transferability of adversar-
ial examples across different models. Because of the data dependence,
fooling ability of adversarial perturbations is only applicable when train-
ing data are accessible. In this paper, we present a data-free method for
crafting adversarial perturbations that can fool a target model without
any knowledge about the training data distribution. In the practical set-
ting of black-box attack scenario where attackers do not have access to
target models and training data, our method achieves high fooling rates
on target models and outperforms other universal adversarial perturba-
tion methods. Our method empirically shows that current deep learning
models are still at a risk even when the attackers do not have access to
training data.

Keywords: Adversarial machine learning · Black-box adversarial
perturbations

1 Introduction

In recent years, deep learning models demonstrate impressive performance on
various machine learning tasks [2,5,6]. However, recent works show that deep
neural networks are highly vulnerable to adversarial perturbations [4,16]. Adver-
sarial examples are small, imperceptible perturbations crafted to fool target
models. The inherent weakness of lacking robustness to adversarial examples
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for deep neural networks brings out security concerns, especially for security-
sensitive applications which require strong reliability [10].

With the knowledge of the structure and parameters of a given model, many
methods can successfully generate adversarial examples in the white-box man-
ner [4,16]. A more severe issue is that adversarial examples can be transferred
across different models, known as black-box attack [4]. This transferability allows
for adversarial attacks without the knowledge of the structure and parameters
of the target model. Existing black-box attack methods focus on improving the
transferability of adversarial examples across different models under the assump-
tion that attackers can obtain the training data on which the target models are
trained [3,4,7]. Attackers firstly train a substitute model on the same training
data, and then generate adversarial examples in the white-box manner. The per-
turbations crafted for substitute model can thus fool target model, since different
models learn similar decision boundaries on the same training set [4,7].

In practice, however, attackers can hardly obtain the training data for target
model, even the number of categories. For example, the Google Cloud Vision
API2 (GCV) only outputs scores for a number of top classes. On this real-world
black-box setting, most of existing black-box attack methods can not be applied.

In this paper, we present a data-free approach for crafting adversarial per-
turbations to address the above issues. Our method is to craft data-free pertur-
bations that can fool the target model without any knowledge about the data
distribution (e.g., the number of categories, type of data, etc.). We utilize such
a property that the features extracted from different models are usually similar,
since most models are fine-tuned from common pre-trained model weights [8].
Therefore, we establish a mapping connection between fine-tuned model and
pre-trained model. Instead of optimizing an objective that reduces the score of
the predicted labels [3,4], we propose to learn adversarial perturbations that
can disturb the internal representation. Our proposed attack method views the
logit outputs of pre-trained model as the extracted internal representation, and
iteratively maximizes the divergence between clean images and their adversar-
ial examples measured in this representation space. Because of the mapping
connection, pre-trained model and fine-tuned model are similar in the internal
representation and adversarial examples will successfully mislead target model
with high probability.

We evaluate the proposed method on two public datasets: CIFAR-10 [9] and
Caltech-101 [11] and one private dataset with various models including state-of-
the-art classifiers (e.g., ResNet [14], DenseNet [6], etc.). Experimental results show
that on the real-world black-box setting, our method achieves significant attacking
success rates. In this practical setting of black-box attack scenario, only univer-
sal adversarial perturbation methods can be applied since they are image-agnostic
methods. Compared with universal adversarial perturbations (UAP) [12] and gen-
eralizable data-free universal adversarial perturbations (GD-UAP) [13], the pro-
posed method has the following advantages. First, our method outperforms UAP
and GD-UAP by 8.05% and 6.00%. Second, UAP requires a number of training
samples to converge when crafting an image-agnostic perturbation and GD-UAP
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also need to know the distribution of training data to achieve better performance.
In contrast, our method generates adversarial perturbations without knowing the
data distribution. Third, the proposed method does not need training phase. The
perturbation can be obtained by a single back-propagation, whereas UAP and GD-
UAP need to train universal perturbation until it converges.

2 Related Work

White-Box Attack. With the knowledge of the structure and parameters of
a given model, many methods can successfully generate adversarial examples in
the white-box manner. Most white-box algorithms generate adversarial exam-
ples based on the gradient of loss function with respect to the inputs. Szegedy
et al. [16] first introduce adversarial examples generation by analyzing the insta-
bility of deep neural networks. Goodfellow et al. [4] further explain the phe-
nomenon of adversarial examples by analyzing the linear behavior of deep neu-
ral network and propose a simple and efficient adversarial examples generating
method. Recently, Yinpeng Dong et al. [3] integrate the momentum term into
the iterative process for fast gradient sign to achieve better attack performance.

Black-Box Attack. The existing black-box attacks can be classified as query-
based and transfer-based. In query-based methods, the attacker iteratively
queries the outputs of target model and estimates the gradient of target
model [1]. As for transfer-based methods, the existing methods mainly focus on
improving the transferability of adversarial examples across different models [7].
They assume the adversary can obtain the training data without the knowledge
of the structure and parameters of target model. Because query-based method
requires thousands of queries, it is hard to be used in practical attack. In this
paper, we focus on transfer-based black-box attack.

Recent work by Moosavi-Dezfooli et al. [12] presents the existence of image-
agnostic perturbations, called universal adversarial perturbations (UAP) that
can fool the state-of-the-art recognition models on most clean images. Mopuri
et al. [13] further proposed a generalizable approach for crafting universal adver-
sarial perturbations, called generalizable data-free universal adversarial pertur-
bations (GD-UAP). These two image-agnostic universal adversarial perturba-
tions can effectively attack under real-world black-box setting. Instead of seek-
ing universal adversarial perturbations, our method is to generate image-specific
perturbations without knowing data distribution.

3 Data-Free Adversarial Perturbations

Based on the motivation presented in the introduction, we propose the data-
free attack framework. We combine the idea of feature-level attack with the
mapping connection between fine-tuned model and pre-trained model to facili-
tate black-box attacking on target model without knowing the data distribution.
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Specifically, we use the output of pre-trained model as internal representation to
measure the difference between clean image and adversarial example. By itera-
tively maximizing the divergence with respect to our objective function Eq. (1),
the internal representation becomes much more different. Finally, because of the
mapping connection, adversarial examples will successfully mislead target model
with high probability. We briefly show our attack framework in Algorithm1.

Algorithm 1. Data-free adversarial attack algorithm.
Input:

A clean image x;
The target model f(x);
The pre-trained model t(x);

Output:
The adversarial perturbations x∗ which misleads target model f(x).

1: Initialize x∗ with x;
2: Compute the objective function Equation (1) with respect to t(x) for x;
3: Use numerical optimization to iteratively maximize the divergence between x and

x∗ by Equation (1);
4: Get the adversarial perturbations x∗ generated by t(x);
5: x∗ misleads target model f(x);

3.1 Problem Definition

Let x denote the clean image from a given dataset, and ytrue denote the class.
A target model is a function f(x) = y that accepts an input x ∈ X and and
produces an output y ∈ Y . f(x) is the outputs of target model including the
softmax function, define fl(x) = z to be the output of final layer before the soft-
max output(z are also called logits), and f(x) = softmax(fl(x)) = y. The goal
of adversarial attack is to seek an example x∗ with the magnitude of adversarial
perturbation ε which is misclassified by the target model.

3.2 Black-Box Setting

In this paper, we use the definition of real-world black-box: the adversary can
not obtain the structure and parameters of target model as well as its data
distribution (e.g., the number of categories, type of data, etc.). Moreover, the
target model is fine-tuned on pre-trained model. Let t(x) : x ∈ X

′ → y ∈ Y ′

denote the pre-trained model, where X
′ �= X,Y

′ �= Y . Our objective is to
establish a mapping connection between f(x) and t(x) and utilize t(x) to craft
data-free perturbations that can fool f(x).
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3.3 Mapping Connection

For general image classification tasks, the extracted features are similar. Instead
of initializing the model with random weights, initializing it with the pre-trained
model can boost performance and reduce training time. Therefore, it is common
to use pre-trained model to fine-tune on new tasks [8]. In this paper, we estab-
lish the relationship between fine-tuned model f(x) and pre-trained model t(x),
called mapping connection. As shown in Fig. 1, even though the training data
distribution between f(x) and t(x) is different (X �= X

′
), we consider the log-

its output between these two models contain the ’mapping’ connection: given an
input x, each neuron in fl(x) may be obtained by weighted summation of neurons
in tl(x). We will give some experimental explanations in Sect. 4.5. Therefore, by
generating the adversarial perturbations from t(x), it will successfully mislead
f(x) with high probability.

Fig. 1. Mapping connection between fine-tuned model f(x) and pre-trained model t(x).
Logits output fl(x) and tl(x) may contain mapping relationship.

3.4 Maximizing Divergence

Note in Sect. 3.1 and Sect. 3.2, f(x) : x ∈ X → y ∈ Y is target model and
t(x) : x ∈ X

′ → y ∈ Y ′ is pre-trained model. Because f(x) is fine-tuned from
t(x), the data distribution is different from each other (X �= X

′
and Y �= Y

′
).

Given a clean image x ∈ X, our goal is to utilize t(x) to generate corresponding
adversarial example x∗ which can mislead target model as f(x∗) �= ytrue.

Our objective is to craft data-free perturbations that can fool the target
model without any knowledge about the data distribution (e.g., the number
of categories, type of data, etc.). Therefore, instead of optimizing an objective
that reduces the score to the predicted label or flip the predicted label [3,4], we
propose to learn perturbations that can maximize feature divergence between
clean images and adversarial examples.

More precisely, x∗ is formulated as a constrained optimization problem:

x∗ = arg max
x′

∥
∥
∥
∥
|tl(x)| ∗ tl(x)

tl(x
′)

∥
∥
∥
∥

2

2

subject to ‖x − x∗‖∞ < ε (1)



132 Z. Huan et al.

where tl(x) is the output at logits (pre-softmax) layer. Eq. (1) measures the
divergence between the logits output of x and x

′
. |tl(x)| represents magnitude

of each element in tl(x) and tl(x)

tl(x
′ )

represents the difference between tl(x) and

tl(x
′
). Intuitively, our objective function in Eq. (1) increases or decreases tl(x

′
)

according to the direction of tl(x). And the magnitude of the change depends on
weight |tl(x)|. We will show the effectiveness of our objective function in Sect. 4.6.
The constraint on the distance between x and x∗ is formulated in terms of the
L∞ norm to limit the maximum deviation of single pixel to ε. The goal is to
constrain the degree to which the perturbation is perceptible.

Previous adversarial examples generation methods [3,4,16] aim to increase
the loss function according to the gradient of f(x) (softmax output). However,
due to the deep hierarchy of architectures, the gradients of loss with respect to
input may vanish during propagation. To address this issue, we aim to maximize
the divergence of logits output fl(x) between input x and adversarial example
x∗. Empirically, we found that it is inappropriate to directly use objective func-
tions such as Kullback–Leibler divergence to measure the divergence, since the
optimization can be hard to converge.

3.5 Implementation Details

For implementation details, we first scale the input x into [−1, 1] and initialize
x

′
= x. Then, we compute the gradients of objective (1) with respect to input

x. The adversarial examples will be updated by multiple steps. In each step, we
take the sign function of the gradients and clip the adversarial examples into
[−1, 1] to make valid images. Algorithm 2 presents the details of perturbations
generation.

Algorithm 2. Implementation details for data-free perturbations.
Input:

The clean image x;
The maximum deviation of single pixel ε;
The number of iterations n;

Output:
The adversarial perturbations x∗ generated by pre-trained model t(x);

1: Initialize: x
′
= x, ε

′
= ε

n
, i = 0;

2: while i < n do
3: Maximize divergence between x and x

′
by Equation (1):

x
′
i+1 = clip(x

′
i + ε

′
sign(�x

∥
∥
∥|tl(x)| ∗ tl(x)

tl(x
′
)

∥
∥
∥

2

2
), −1, 1)

4: end while
5: return x∗ = clip(x + εsign(x − x

′
n), −1, 1);
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4 Experiments

In this section, we present the experimental results to demonstrate the effective-
ness of our data-free adversarial perturbation method.

4.1 Experimental Settings

Throughout experiments, target models are fine-tuned based on ImageNet [2]
pre-trained models. We first fine-tune the target model on different datasets to
simulate a practical training scenario. Then we only use pre-trained models to
generate adversarial perturbations without knowing the training data distribu-
tion or the architecture of target models by Algorithm1.

We explore four mainstream deep models: GoogleNet [15], VGG-16 [14],
ResNet-152 [5] and DenseNet-169 [6]. We compare our method to UAP [12]
and GD-UAP [13]. Although some classic attack algorithms such as FGSM [4]
and MI-FGSM [3] are data dependence which are not directly comparable to
ours, we evaluate their attack performance under this black-box attack scenario.
For all the following experiments, perturbation crafted by our method is termed
as DFP . The maximum perturbation ε is set to 10 among all experiments, with
pixel value in [0, 255], and the number of iterations is 10.

4.2 Datasets

CIFAR-10. The CIFAR-10 dataset [9] consists of 60,000 colour images across
10 classes, with size of 32×32. We use training images to fine-tune target models
which are pre-trained on ImageNet and use test images to evaluate attack per-
formance. Since UAP and GD-UAP are high resolution perturbations (usually in
224×224), directly using low-resolution images from CIFAR-10 is inappropriate.
Before fine-tuning target models, we resize images to 224 × 224 without losing
recognition performance.

Caltech101. Caltech101 [11] consists of objects belonging to 101 categories.
The size of each image is roughly 300 × 200 pixels. Compared with CIFAR-10,
Caltech101 is more complicated with higher resolution.

Cosmetic Insurance Dataset. To fully illustrate the effectiveness of our
attack method, we construct another private real-world dataset, called cosmetic
insurance dataset. This dataset consists of credentials for customer who are
allergic to cosmetic products, including cosmetic products, allergic skin, medical
record, etc. This dataset does not involve any Personal Identifiable Information
(PPI). The data is only used for academic research and processed by sampling.
During the experiment, we conduct adequate data protection to prevent the risk
of data leakage and destroy it after the experiment.
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4.3 Data-Free Attack Ability

Table 1 presents the attack performance achieved by our objective on various
network architectures on three datasets. Baseline means the model’s error rate on
clean image (without perturbation). Fooling rate is the percentage of test images
for which our crafted perturbations successfully alter the predicted label. Each
row in the table indicates one target model and the columns indicate different
attack methods. Since UAP and GD-UAP do not provide the perturbation on
Densenet-169, we use “\” in the table. Our perturbations result in an average
fooling rate of 29.23% on Caltech101 which is 8.05% and 6.00% higher than UAP
and GD-UAP. Moreover, compared with UAP and GD-UAP, our method crafts
perturbation by one single back propagation without knowing any training data
distribution which is much more efficient in practical scenario.

Table 1. Data-free attack results on CIFAR-10, Caltech101 and cosmetic insurance
datasets. Each row in the table shows fooling rates (%) for perturbation generated by
different attack methods when attacking various target models (columns). Fooling rate
is the percentage of test images for which the crafted perturbations successfully alter
the predicted label. Baseline in table means the model’s error rate on clean images

Model Baseline GD-UAP [13] UAP [12] FGSM [4] MIFGSM [3] DFP

CIFAR-10 GoogleNet 10.08 18.81 14.13 11.01 12.32 25.26

VGG-16 9.81 17.23 13.21 10.23 11.57 24.37

ResNet-152 8.23 18.09 15.12 9.89 10.28 28.73

DenseNet-169 8.05 \ \ 8.97 10.00 25.64

Caltech101 GoogleNet 15.31 23.41 21.16 16.21 16.68 28.47

VGG-16 15.27 24.17 22.00 15.76 16.00 29.61

ResNet-152 13.71 22.13 20.38 14.58 15.86 28.77

DenseNet-169 13.68 \ \ 15.01 10.00 30.09

Cosmetic GoogleNet 13.28 18.78 16.53 14.27 15.25 22.73

VGG-16 12.69 17.60 15.27 13.83 14.77 22.41

ResNet-152 10.63 18.97 14.49 12.21 13.39 23.01

DenseNet-169 8.43 \ \ 10.93 11.01 21.84

Although previous attack methods such as FGSM [4] and MI-FGSM [3] are
training-data dependent which are not directly comparable to ours, we evaluate
their attack performance under this black-box attack scenario shown in Table 1.
It is clear that the fooling rates of FGSM and MI-FGSM under this practical
scenario are significant lower than DFP . Because of the data dependence, fooling
ability of the crafted perturbations in FGSM and MI-FGSM is limited to the
available training data.

Figure 2 shows example data-free perturbations crafted by the proposed
method. The top row shows the clean and bottom row shows the corresponding
adversarial images. The perturbed images are visually indistinguishable form
their corresponding clean images. All the clean images shown in the figure are
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correctly classified and are successfully fooled by the added perturbation. Corre-
sponding label predicted by the model is shown below each image. The correct
labels are shown in black color and the wrong ones in red.

Fig. 2. Original and adversarial image pairs from Caltech101 dataset generated for
ResNet. First row shows original images and corresponding predicted labels, second
row shows the corresponding perturbed images with their wrong predictions. (Color
figure online)

4.4 Black-Box Attack Transferability

In Sect. 4.3, we report the attack performance without knowing the training
data distribution. In this section, we evaluate the fooling rates of black-box
attack across different models. Each row in the Table 2 indicates the target model
which generates perturbations and the columns indicate various models attacked
using the learned perturbations. The diagonal fooling rates indicate the data-free
white-box attack noted in Sect. 4.3, where all the information about the model is
known to the attacker except training data distribution. The off-diagonal rates
indicate real-world black-box attack, where no information about the model’s
architecture or training data distribution under attack is revealed to the attacker.
Our perturbations cause a mean white-box fooling rate of 25.91% and a mean
black-box fooling rate of 15.04%. Given the data-free nature of the optimization,
these fooling rates are alarmingly significant.

4.5 Empirical Demonstration of Mapping Connection

As a further analysis, we reveal the mapping connection between fine-tuned
model and pre-trained model noted in Sect. 3.3. Since the categories of cosmetic
insurance dataset have no overlap with ImageNet [11], we evaluate test images
from cosmetic insurance dataset with ImageNet pre-trained DenseNet-169 and
calculate the frequency occurrence shown in Fig. 3. The horizontal axis represents
categories in ImageNet, and vertical axis represents the proportion of test images
in the cosmetic insurance dataset that is classified as categories in horizontal axis.
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Table 2. The transferability of our attack method on CIFAR-10, Caltech101 and cos-
metic insurance datasets. Each row in the table shows fooling rates (%) for perturba-
tion learned on a specific target model when attacking various other models (columns).
Diagonal rates indicate data-free white-box attack and off-diagonal rates represent real-
world black-box attack scenario.

Model GoogleNet VGG-16 ResNet-152 DenseNet-169

CIFAR-10 GoogleNet 25.26 15.37 12.23 12.47

VGG-16 13.83 24.37 11.63 11.50

ResNet-152 13.43 14.41 28.73 19.65

Densenet-169 14.01 14.65 17.72 25.64

Caltech101 GoogleNet 28.47 17.23 14.40 15.21

VGG-16 18.88 29.61 16.63 16.01

ResNet-152 15.53 16.98 28.77 17.75

DenseNet-169 14.29 14.71 17.26 30.09

Cosmetic GoogleNet 22.73 15.20 14.17 14.48

VGG-16 14.49 22.41 13.67 13.88

ResNet-152 14.40 13.97 23.01 17.08

DenseNet-169 15.21 13.59 15.63 21.84

For example, by evaluating test images belonging to chat record category, there
are 35% images classified as category “caldron” in ImageNet, which has no rela-
tionship with chat record.

The frequency occurrence of each category in Fig. 3 is higher than 20%. This
phenomenon demonstrates that even though fine-tuned model has different cat-
egories of pre-trained model, the logits outputs between these two models still
contain relationship. Therefore, by disturbing the logits outputs of pre-trained
model, it will successfully disturb the logits output of target model with high
probability, which can cause the wrong prediction.

4.6 Effectiveness of Objective Function

To demonstrate the effectiveness of our objective function (1), we compare the
logits outputs between a clean image tl(x) (left) and the corresponding adversar-
ial example tl(x∗) (right) after optimizing Eq (1), shown in Fig. 4. The horizontal
axis represents each category in ImageNet (tl(x)i, i = 1, 2, · · · , 1000), and verti-
cal axis represents the value of logits. It can be seen from the figure that tl(x)
and tl(x∗) have a significant divergence in magnitude and direction. Combined
with mapping connection, it make sense that our objective function dose craft
effective data-free perturbations illustrated in Sect. 4.3 and Sect. 4.4.
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Fig. 3. Experimental explanation of mapping connection. The horizontal axis repre-
sents categories in ImageNet, and vertical axis represents the proportion of test images
in the cosmetic insurance dataset that is classified as categories in horizontal axis.

Fig. 4. The left image is tl(x) and right image is tl(x
∗). The horizontal axis represents

each category in ImageNet (tl(x)i, i = 1, 2, · · · , 1000), and vertical axis represents the
value of logits.

5 Conclusion

In this paper, we have proposed a data-free objective to generate adversarial
perturbations. Our objective is to craft data-free perturbations that can fool
the target model without any knowledge about the data distribution (e.g., the
number of categories, type of data, etc.). Our method does not need to utilize
any training data sample, and we propose to generate perturbations that can
disturb the internal representation. Finally, we demonstrate that our objective
of crafting data-free adversarial perturbations is effective to fool target model
without knowing training data distribution or the architecture of models. The
significant fooling rates achieved by our method emphasize that the current deep
learning models are now at an increased risk.
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