
FlowRec: Prototyping Session-Based
Recommender Systems
in Streaming Mode

Dimitris Paraschakis(B) and Bengt J. Nilsson

Malmö University, Nordenskiöldsgatan 1, 211 19 Malmö, Sweden
{dimitris.paraschakis,bengt.nilsson.TS}@mau.se

Abstract. Despite the increasing interest towards session-based and
streaming recommender systems, there is still a lack of publicly available
evaluation frameworks supporting both these paradigms. To address the
gap, we propose FlowRec — an extension of the streaming framework
Scikit-Multiflow, which opens plentiful possibilities for prototyping
recommender systems operating on sessionized data streams, thanks to
the underlying collection of incremental learners and support for real-
time performance tracking. We describe the extended functionalities of
the adapted prequential evaluation protocol, and develop a competitive
recommendation algorithm on top of Scikit-Multiflow’s implementa-
tion of a Hoeffding Tree. We compare our algorithm to other known
baselines for the next-item prediction task across three different domains.

Keywords: Streaming recommendations · Session-based
recommendations · Prequential evaluation · Online learning · Hoeffding
Tree

1 Introduction

In the past few years, the RecSys community has witnessed a paradigm shift from
the traditional matrix completion problem to sequential session-based recom-
mendations [9,15]. The latter approach is dominated by neural methods that are
often evaluated in an online manner, i.e. when the events of a session are sequen-
tially revealed and predicted one-by-one. However, these systems are still trained
in batches on large chunks of recorded data [7,15,19]. To better approximate real-
world scenarios with severe cold-start and concept drifts, streaming recommender
systems [3,18,20] have been designed for incremental online learning from con-
tinuous data streams in the context of limited memory/runtime, and anytime
prediction [17]. However, most of them address the conventional rather than
session-based recommendation problem [6]. Bridging the gap between session-
based and streaming recommender systems has been recently attempted [6,9],
marking an emerging research direction of a high practical value.

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 65–77, 2020.
https://doi.org/10.1007/978-3-030-47426-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_6

66 D. Paraschakis and B. J. Nilsson

Presently, only a few publicly available benchmarking frameworks for stream-
ing recommendations exist. Some of them have been designed for a spe-
cific application domain [9,16], while others lack native support for session
data [5,11]. Scikit-Multiflow [14] has recently been released as a general-
purpose Python framework for stream mining, offering a variety of stream learn-
ers, change detectors, and evaluation methods. To facilitate the research on
streaming session-based recommendations, we propose FlowRec1 — an exten-
sion of Scikit-Multiflow for rapid prototyping of recommender systems. The
proposed framework currently contains several stream-oriented recommenders
and metrics for prequential evaluation. Additionally, we demonstrate a prin-
cipled way of exposing a recommendation interface to an underlying stream
learner class of Scikit-Multiflow (namely, a Hoeffding Tree). We show that
the resulting recommender system has remarkable performance against estab-
lished baselines. FlowRec’s functionality is detailed in the next section.

2 FlowRec

The framework consists of three main entities: a stream, an evaluator, and a
model. This section describes the interplay between these entities.

2.1 Problem Setting

Consider a stream D of (overlapping) user sessions S = s1, . . . , s|S| (Fig. 1). A
session represents an ordered sequence of events of the form (X, y), where X is a
feature vector describing the context for item y. As a bare minimum, X contains
the session identifier for the item. Other common features are timestamp and
event type (e.g. click, purchase, etc.). The scope of our study is limited to the
context of collaborative filtering, which relaxes the assumption of item metadata
in feature vectors (technically, any feature can be encoded as a part of X).

At each time step t = 1, . . . , T , the stream provides a sample (X, y). Based
on the information in X, the model is asked to generate a list of N predictions
Ŷ = (ŷ1, . . . , ŷN) in an attempt to correctly guess the hidden item y. This
corresponds to the next-item prediction task in the RecSys literature [15]. In
practice, only certain features of X are retained for the prediction part, such as
the current session identifier, and possibly the timestamp of the event. After the
prediction, the entire feature vector X together with the label y are revealed to
the model, allowing it to make an incremental update. This iterative, supervised
‘test-then-train’ methodology is known as prequential evaluation [20] (Fig. 2).

In our framework, each processed sample (X, y) is added to the sliding win-
dow of the last n observations, which we refer to as observation window (depicted
as the green box in Fig. 1). Although its use is not required in the ordinary stream
learning, it can ease the development of session-based models by providing a
snapshot of the recent session data on demand. The size of the window must be
chosen in consideration of the system’s memory and runtime constraints.
1 https://git.io/flowrec.

https://git.io/flowrec

FlowRec: Prototyping Session-Based Recommendations in Streaming Mode 67

2.2 Metrics

FlowRec implements several evaluation metrics, two of which are commonly used
for next-item prediction [6,7,13,19], namely recall (a.k.a. hitrate) and mean
reciprocal rank (MRR). Recall measures the average number of successful pre-
dictions, whereas MRR measures their average reciprocal ranking, i.e.:

Recall@N =
1
T

T∑

t=1

N∑

i=1

1(yt = ŷi) MRR@N =
1
T

T∑

t=1

N∑

i=1

1
i
1(yt = ŷi) (1)

The framework keeps two sets of measurements: (a) global, where the running
average of each metric is calculated from all the past data; and (b) sliding, where
the average is taken over a sliding window of recent events that we call the
evaluation window (purple box in Fig. 1). The sizes of evaluation and observation
windows are user-adjustable, offering flexibility in simulation setups.

Fig. 1. Streaming sessions (Color figure online) Fig. 2. Prequential protocol

2.3 Prequential Evaluation

The basic workflow for measuring recall using prequential evaluation is presented
in Algorithm 1. The complete functionality of Scikit-Multiflow’s prequential
evaluator is provided in its official documentation2.

FlowRec introduces the following additional parameters3 for the evaluator:

– Indices of data columns holding session, timestamp, and event type identifiers.
The last two columns are optional, and allow for time-aware and event-specific
training and/or evaluation.

– Stream-related configurations, such as the size of the observation window,
and the number of events to skip from the start of the stream.

2 https://scikit-multiflow.github.io/scikit-multiflow/documentation.html.
3 https://flowrec.readthedocs.io/en/latest/eval parameters.html.

https://scikit-multiflow.github.io/scikit-multiflow/documentation.html
https://flowrec.readthedocs.io/en/latest/eval_parameters.html

68 D. Paraschakis and B. J. Nilsson

– Recommendation-specific settings, such as the size of the recommendation
list, and the event types that trigger recommendation requests. There are
also flags for enabling/disabling reminders and repeated recommendations.
Reminders are recommendations of items that were visited earlier by the
user, whereas repeated recommendations are those that were already given
earlier to the user.

Algorithm 1. Basic prequential protocol for measuring recall
Input: D: data stream, N : recommendation cutoff, nkeep: size of the observation win-

dow, M : set of recommendation models
Output: Recall@N of each model
1: W ← create queue(nkeep) � observation window of nkeep latest events
2: rm ← 0, ∀m ∈ M � reward counter
3: n ← 0 � evaluation counter
4: while D.has more samples() do
5: X, y ← D.next sample()
6: if X.session ∈ W.sessions then
7: for all m ∈ M do
8: Ŷ ← m.predict(X)
9: if y ∈ top N(Ŷ) then

10: rm ← rm + 1

11: n ← n + 1

12: for all m ∈ M do
13: m.partial fit(X, y)

14: W.add(X, y)

15: return rm/n, ∀m ∈ M

The size of the evaluation window (as well as other settings) are covered by
the original parameter list of the EvaluatePrequential class in Scikit-Multiflow.
Note that the stream provides samples in the order as they appear in the dataset.
The last column of the dataset should always contain the item identifiers.

3 Prototyping

Prototyping incremental session-based recommendation models in FlowRec is
straightforward. First, a streaming model is built by extending the BaseSKMOb-
ject class of Scikit-Multiflow with the appropriate mixin. It is natural to treat
the recommendation task as a multi-class classification problem, where each class
corresponds to an item. Hence, the suitable mixin for this type of problems is
ClassifierMixin4. What remains is to implement the following abstract methods:

4 https://scikit-multiflow.github.io/scikit-multiflow/user-guide.core-concepts.
architecture.html.

https://scikit-multiflow.github.io/scikit-multiflow/user-guide.core-concepts.architecture.html
https://scikit-multiflow.github.io/scikit-multiflow/user-guide.core-concepts.architecture.html

FlowRec: Prototyping Session-Based Recommendations in Streaming Mode 69

partial fit(X, y) — Incrementally train a stream model.
predict(X) — Generate top-N predictions for the target’s class.
predict proba(X) — Calculate the probabilities of a sample pertaining to each of

the available classes (implementing this method is optional).

Every stream model developed in FlowRec has access to useful shared
resources, such as observation window, current session vector, and item
catalog.

3.1 Session-Based Streaming Models

Presently, FlowRec contains the following streaming models for session-based
recommendations:

Rule-Based Models. The first three models are rule-based recommenders that
capture one-to-one relationships between items. These methods rely on the very
last item of a session to make their predictions for the next item. Despite their
simplicity, rule-based models have proven surprisingly effective in the domains
of music and e-commerce [13], and have very low computational complexity. We
briefly outline these methods below (refer to [13] for details).

Association Rules (AR). The rules are derived from co-occurrences of two
items in a session (e.g. ‘those-who-bought-also-bought’). A co-occurrence
forms rules in both directions, i.e. yt ↔ yt′ , t �= t′.

Markov Chains (MC). The rules are derived from a first-order Markov Chain,
describing the transition probability between items that appear in two con-
tiguous events in a session, i.e. yt → yt+1.

Sequential Rules (SR). The rules are derived from sequential patterns
between two items in a session, but not necessarily in successive events, i.e.
yt → yt′ , t′ > t. The sequential association is assigned the weight 1/(t′ − t).

In FlowRec, the above algorithms can be made event-specific by provid-
ing event column index. For instance, predictors of type purchase ↔ purchase,
click → purchase, etc. can be useful in e-commerce applications as components
of an ensemble recommender [2].

Session kNN. This is a specialized version of the k-Nearest Neighbors (kNN)
algorithm that operates on session data. It is a strong baseline with performance
comparable to that of certain deep neural methods [8,13]. Being model-free, the
algorithm is incremental by nature. S-kNN recommends items from other user
sessions that are similar to the current session (a.k.a. neighbors). Given the
active session S, the score of the candidate item ŷ is calculated as follows:

score(ŷ | ŷ /∈ S) =
∑

S′∈N (S)

sim(S, S′) · 1(ŷ ∈ S′) (2)

70 D. Paraschakis and B. J. Nilsson

where N (S) is the k-sized neighborhood of session S, and sim(S, S′) is a measure
of similarity between two sessions.

FlowRec implements Cosine, Jaccard, Dice, and Tanimoto similarity. In the
future, we plan to implement other kNN variants described in [13].

BEER[TS]. This is a bandit ensemble designed for streaming recommenda-
tions, which employs Thompson Sampling for the model selection. In [2], event-
specific rule-based models were used as behavioral components of the ensemble.
In FlowRec, any model implementing the predict proba(X) method can be added
as a component of BEER[TS]. For each recommendation slot, the ensemble picks
a model m with the highest sample θm ∼ Beta(αm +1, βm +1), where αm is the
number of past successes, and βm is the number of past failures. The method is
adaptable to non-stationary data (e.g. occurring due to concept drift), which is
achieved via exploration-exploitation. In addition, BEER[TS] supports compo-
nent splitting into (relatively) stationary partitions (see [2] for details), which
is achieved in FlowRec by setting the boundaries for probabilities returned by
the predict proba(X) method. Further, the components of the ensemble can com-
plement each other in case of poor coverage, which helps to attack sparsity and
cold-start issues.

Popularity Baseline. This is the traditional baseline that outputs the top-N
most popular items in descending order.

The above methods can be incrementally trained either on the global scale, or
within the observation window. The latter option acts as a forgetting mechanism
for older data, which aids model scalability and adaptability to recent trends.

3.2 Hoeffding Tree Wrapper

Prototyping streaming session-based recommenders can be facilitated by employ-
ing the rich collection of incremental algorithms offered by Scikit-Multiflow,
including Bayesian methods, lazy learners, ensembles, neural networks, tree-
based methods, and more [14]. Utilizing any of these methods for recommenda-
tion tasks is achieved via a wrapper, which is a middle layer that handles the
inputs and the outputs of an underlying learner. Some of the common tasks
performed by wrappers include:

– transforming a sample to the desired input format accepted by a learner.
– calling the predict proba(X) method of a learner, and manipulating its return

values to generate top-N recommendations.

Using the above approach, we develop a recommender system by ‘wrapping’
the HoeffdingTree classifier provided by Scikit-Multiflow.

FlowRec: Prototyping Session-Based Recommendations in Streaming Mode 71

Hoeffding Tree (HT). Also known as a Very Fast Decision Tree (VFDT) [4],
a HT is an incremental, anytime decision tree inducer designed for learning from
data streams. Its key idea lies in the fact that only a small subset of samples
passing through a node may be sufficient for deciding on the split attribute.
For estimating the minimum number of samples needed, the method employs
the Hoeffding bound, which offers sound theoretical guarantees of performance
(see [4] for details), asymptotically comparable to that of a batch decision tree.

HT Wrapper Architecture. The Scikit-Multiflow’s implementation of a
HT supports Naive Bayes prediction at the leaves of the tree, and the possibility
of assigning a weight to each fitted sample. We take advantage of both capa-
bilities in the proposed HT recommender. The core idea of our algorithm is to
encode all item-to-item associations employed by rule-based methods (see above)
in a unified learner. This allows HT to capture both sequential and co-occurrence
patterns in a session. The idea is conceptually similar to the BEER[TS] frame-
work [2], but instead of treating between-items associations as separate predic-
tors explored by a bandit, we fit them to a single decision tree classifier using a
specific weighting scheme, as explained below. We hence formulate the recom-
mendation task as a multi-class classification problem. Due to the nature of the
problem, HT is reduced to a decision stump, whose nodes represent input items,
and the leaves contain item predictions obtained via Naive Bayes classification.

Training the Model. The incremental training of a HT in Scikit-
Multiflow can be done by calling the method partial fit(X, y, sample weight).
The first two parameters specify the input feature vector and the output label,
respectively, with an associated (optional) sample weight. We use these param-
eters to encode the sequential relation between two items, by letting the fea-
ture vector contain the antecedent item and the label represent the consequent
item. For the ease of notation, we use the item in place of a feature vector in
Algorithm 2 (y or y′, lines 7 and 8). Internally, each antecedent is represented
as a node of the tree.

Algorithm 2. HT Wrapper training procedure
Input: (X, y): sample from the stream; wMC ≥ 1: importance weight for Markov

Chain sequences; winv ∈ [0, 1]: importance weight for inverse sequences.
1: S ← (y′

1, . . . , y
′
|S|) � item vector (in time order) for the session id encoded in X

2: for i ← 1, . . . , |S| do
3: if i = |S| then
4: w ← wMC � weight for the ‘next-item’ sequence
5: else
6: w ← 1/(|S| − i + 1) � weight for a non-contiguous sequence

7: ht.partial fit(y′
i, y, w) � fit observed sequence

8: ht.partial fit(y, y′
i, w · winv) � fit inverse (unobserved) sequence

72 D. Paraschakis and B. J. Nilsson

After fetching the current session vector S from the observation window,
the wrapper learns all sequential patterns involving item y by fitting a series
of samples (y′

i, y, w),∀i = 1, . . . , |S|, where the sample weight is inversely pro-
portional to the distance between two items. Clearly, these fits utilize the same
patterns as captured in Sequential Rules (SR) described above. Among these
patterns, y|S| → y pertains to the Markov Chain (MC). The corresponding sam-
ple, (y′

|S|, y, wMC), uses a separate weight reflecting the perceived importance of
the ‘next-item’ sequence. Finally, encoding co-occurrence patterns captured by
Association Rules (AR) is achieved via a series of the so-called inverse fits, i.e.
(y, y′

i, w · winv),∀i = 1, . . . , |S|, which complete the bidirectional associations.
The fixed weight winv ∈ [0, 1] is used to inform the influence of inverse (hence
unobserved) sequential patterns on the classification.

Making Predictions. Unlike rule-based methods, where the predictions are
made solely on the basis of the latest item in a session, our HT wrapper makes
predictions in an ensemble-like manner by combining the responses of all the
relevant nodes of the tree. The prediction procedure is detailed in Algorithm 3.

Algorithm 3. HT Wrapper prediction procedure
Input: X: feature vector containing session id; wMC ≥ 1: importance weight for

Markov Chain sequences; winv ∈ [0, 1]: importance weight for inverse sequences;
N : recommendation cutoff

Output: Ŷ : top-N recommendations
1: S ← (y′

1, . . . , y
′
|S|) � fetch item vector for the current session id encoded in X

2: P ← (P(y1), . . . ,P(y|P |)), set P(yi) ← 0, ∀i, . . . , |P | � init class probabilities
3: for i ← 1, . . . , |S| do
4: Pi ← ht.predict proba(y′

i) � predict class probabilities from item y′
i

5: if i = |S| then
6: Pi ← Pi · wMC

7: else
8: Pi ← Pi/(|S| − i + 1)

9: P ← P + Pi

10: return Ŷ ← (y1, . . . , yN), ∀P(yi) ∈ top-N(P)

For each item y′
i in the current session vector, the wrapper calls the pre-

dict proba(y′
i) method of a HT. This method returns a class probability vector

that expresses the likelihood of each candidate item to follow item y′
i. The prob-

ability vectors Pi are then weighted with the recency of item y′
i. Predictions

obtained from the most recent item, y′
|S|, receive the highest weight specified

by wMC . All weighted probability vectors are then added to produce the final
scores for the candidate items, top-N of which are returned.

FlowRec: Prototyping Session-Based Recommendations in Streaming Mode 73

4 Simulation Results

4.1 Datasets

We use public datasets containing sessionized browsing logs. The datasets orig-
inate from three recommendation contests representing news, travel, and e-
commerce domains. They are summarized in Table 1.

Table 1. Datasets summary (1M events each)

Dataset Contest Domain (Action) Items Sessions Avg. session size

Clef NewsReel’15 [10]a News (impressions) 109 305703 3.27 events

Yoochoose RecSys’15 [1] E-commerce (clicks) 21300 255166 3.92 events

Trivago RecSys’19 [12] Travel (clickouts) 243714 521677 1.92 events
aWe use the subset of the dataset provided in [13].

4.2 Prequential Evaluation Setup

We consider the task of online next-item recommendation, where the goal is to
suggest the list of most probable items to appear in the next session event. We
track Recall@10 and MRR@10 during the entire run of the simulation using the
real-time visualizer provided by the framework, which reports the global and the
current (sliding) averages. Time horizon for each simulation is set to 1M events,
with evaluation and observation window sizes of 10K and 50K events, respec-
tively. The latter size was chosen in consideration of sufficient (sliding) session
history and a reasonable memory/runtime overhead. We use a separate valida-
tion set of 100K events (preceding those of the simulation) for hyperparameter
tuning. The evaluation itself is performed from pure cold-start, with no model
pre-training involved. Sessions of size 1 are excluded from the evaluation. For
our simulations, we use Intel Core i7 CPU @ 2.80 GHz and 16 Gb RAM.

4.3 Model Setup

We evaluate the models presented in Sect. 3, with an addition of a Random
classifier that sets the lower bound for performance. Below we briefly outline the
optimal model configurations after the hyperparameter tuning step.

Rule-based (AR, MC, SR) models operate on a global scale, whereas the
popularity-based one (POP) works within a sliding window. S-kNN uses Cosine
similarity, and k = 100 (Trivago), k = 200 (Clef), k = 300 (Yoochoose). We also
use recent session sub-sampling [8], with sub-sample sizes of 500 (Clef), 1000
(Trivago), and 1500 (Yoochoose). BEER[TS] includes AR, MC, SR, POP, and
S-kNN as components of the ensemble. The HT wrapper uses weights wMC = 3
(Yoochoose), wMC = 5 (Clef, Trivago), and winv = 0.01 (Clef), winv = 0.9 (Yoo-
choose, Trivago). The HoeffdingTree class of Scikit-Multiflow is instantiated
with leaf prediction=‘nb’ to enable Naive Bayes prediction at the leaves. The pre-
configured experiments are provided in FlowRec’s code base for reproducibility.

74 D. Paraschakis and B. J. Nilsson

Fig. 3. Performance charts for Clef (top), Yoochoose (middle), and Trivago (bottom)

FlowRec: Prototyping Session-Based Recommendations in Streaming Mode 75

4.4 Results

The results of the simulation for the three datasets are presented in Fig. 3. The
top performing model in each case is marked with an asterisk. Note that the
column ‘Sliding’ contains the averages of the very last evaluation window.

The HT wrapper consistently achieves higher recall and MRR than the other
baselines on all three datasets. This proves the effectiveness of combining item-to-
item sequential patterns, and utilizing the entire user session at prediction time
in an ensemble-like manner. The HT wrapper also happens to be noticeably
faster than its main rival, BEER[TS] (in its current configuration). The total
running times for each model are recorded by the framework. As a point of
reference, we consider the upper limit of 100 ms per recommendation prescribed
by the CLEF NewsReel challenge [10]. Table 2 reports average response times
per recommendation request for each model. We observe that all runtimes fall
within the recommended limit. The real-time visualization offers the possibility
to diagnose potential issues at an early stage. For instance, the performance
charts for Yoochoose and Trivago make it obvious that the inclusion of POP to
BEER[TS] is not justified, and hence it can be dropped from the ensemble to gain
speed. The live monitoring of model evolution helps to see how algorithms behave
relative to each other on various segments of the dataset, as well as to better
understand the peculiarities of the dataset itself. For example, the above two
charts clearly show the stagnation of S-kNN after leaving the initial cold-start
segment (≈0–50K), while other models continue to learn. We also see that Clef
exhibits a more dynamic domain (news) with more profound concept drift, which
makes learning more challenging. It is the only dataset where the popularity
recommender has decent performance, surpassing other models on certain data
segments. The Clef chart also reveals the ‘easy’ portion of the dataset (≈600K–
800K), where most algorithms (but not POP) boost their performance.

Table 2. Average recommendation time (msec) per model

Dataset Model

AR SR MC POP RAND S-kNN BEER[TS] HT

Clef 0.270 0.213 0.204 0.187 0.204 26.543 27.858 2.542

Yoochoose 0.744 0.623 0.476 3.365 0.313 2.434 13.331 9.629

Trivago 4.276 4.093 4.082 11.380 1.150 5.675 85.163 23.036

5 Conclusion

We introduce FlowRec — a new recommendation framework for streaming ses-
sion data developed on top of Scikit-Multiflow. It serves as a testbed for
streaming recommendation models by offering prequential evaluation with real-
time performance monitoring. One advantage of prototyping in FlowRec is the

76 D. Paraschakis and B. J. Nilsson

ability to ‘wrap’ various stream learners provided by Scikit-Multiflow, thus
treating them as black boxes. We demonstrate how to develop such a wrapper
for the HoeffdingTree class, capable of generating accurate session-based recom-
mendations on evolving data streams. The framework will be further extended
with additional evaluation protocols, metrics, and algorithms.

References

1. Ben-Shimon, D., Tsikinovsky, A., Friedmann, M., Shapira, B., Rfokach, L., Hoerle,
J.: Recsys challenge 2015 and the yoochoose dataset. In: Proceedings of the 9th
ACM Conference on Recommender Systems (RecSys 2015), pp. 357–358. ACM
(2015)

2. Brodén, B., Hammar, M., Nilsson, B.J., Paraschakis, D.: A bandit-based ensemble
framework for exploration/exploitation of diverse recommendation components: an
experimental study within e-commerce. ACM Trans. Interact. Intell. Syst. 10(1),
4:1–4:32 (2019)

3. Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., Nejdl, W.: Real-time top-n
recommendation in social streams. In: Proceedings of the Sixth ACM Conference
on Recommender Systems (RecSys 2012), pp. 59–66. ACM (2012)

4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2000), pp. 71–80. ACM (2000)

5. Frigó, E., Pálovics, R., Kelen, D., Kocsis, L., Benczúr, A.: Alpenglow: open source
recommender framework with time-aware learning and evaluation. In: 2017 Poster
Track of the 11th ACM Conference on Recommender Systems (Poster-Recsys
2017), pp. 1–2. CEUR-WS.org (2017)

6. Guo, L., Yin, H., Wang, Q., Chen, T., Zhou, A., Quoc Viet Hung, N.: Streaming
session-based recommendation. In: Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining (KDD 2019), pp.
1569–1577. ACM (2019)

7. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. CoRR abs/1511.06939 (2015)

8. Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood
for session-based recommendation. In: Proceedings of the 11th ACM Conference
on Recommender Systems (RecSys 2017), pp. 306–310. ACM (2017)

9. Jugovac, M., Jannach, D., Karimi, M.: Streamingrec: a framework for benchmark-
ing stream-based news recommenders. In: Proceedings of the 12th ACM Conference
on Recommender Systems (RecSys 2018), pp. 269–273. ACM (2018)

10. Kille, B., et al.: Stream-based recommendations: online and offline evaluation as
a service. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 497–517.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24027-5 48

11. Kitazawa, T.: Flurs: a python library for online item recommendation. https://
takuti.me/note/flurs/ (2017). Accessed 03 November 2019

12. Knees, P., Deldjoo, Y., Moghaddam, F.B., Adamczak, J., Leyson, G.P., Monreal,
P.: Recsys challenge 2019: session-based hotel recommendations. In: Proceedings of
the 13th ACM Conference on Recommender Systems (RecSys 2019), pp. 570–571.
ACM (2019)

13. Ludewig, M., Jannach, D.: Evaluation of session-based recommendation algo-
rithms. User Model. User Adapt. Interact. 28(4–5), 331–390 (2018). https://doi.
org/10.1007/s11257-018-9209-6

https://doi.org/10.1007/978-3-319-24027-5_48
https://takuti.me/note/flurs/
https://takuti.me/note/flurs/
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1007/s11257-018-9209-6

FlowRec: Prototyping Session-Based Recommendations in Streaming Mode 77

14. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output
streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018)

15. Quadrana, M.: Algorithms for sequence-aware recommender systems. Ph.D. Thesis,
Politecnico di Milano (2017)

16. Scriminaci, M., et al.: Idomaar: a framework for multi-dimensional benchmarking
of recommender algorithms. In: Guy, I., Sharma, A. (eds.) RecSys Posters. CEUR
Workshop Proceedings, CEUR-WS.org (2016)

17. Srimani, P., Patil, M.M.: Performance analysis of hoeffding trees in data streams
by using massive online analysis framework. Int. J. Data Min. Model. Manage.
7(4), 293–313 (2015)

18. Subbian, K., Aggarwal, C., Hegde, K.: Recommendations for streaming data. In:
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM 2016), pp. 2185–2190. ACM (2016)

19. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems (DLRS 2016), pp. 17–22. ACM (2016)

20. Vinagre, J., Jorge, A.M., Gama, J.: Evaluation of recommender systems in stream-
ing environments. In: ACM RecSys Workshop on Recommender Systems Evalua-
tion: Dimensions and Design (REDD 2014), pp. 393–394. ACM (2014)

	FlowRec: Prototyping Session-Based Recommender Systems in Streaming Mode
	1 Introduction
	2 FlowRec
	2.1 Problem Setting
	2.2 Metrics
	2.3 Prequential Evaluation

	3 Prototyping
	3.1 Session-Based Streaming Models
	3.2 Hoeffding Tree Wrapper

	4 Simulation Results
	4.1 Datasets
	4.2 Prequential Evaluation Setup
	4.3 Model Setup
	4.4 Results

	5 Conclusion
	References

