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Abstract. Knowledge graph embedding models aim to represent enti-
ties and relations in continuous low-dimensional vector space, benefit-
ing many research areas such as knowledge graph completion and web
searching. However, previous works do not consider controlling informa-
tion flow, which makes them hard to obtain useful latent information
and limits model performance. Specifically, as human beings, predictions
are usually made in multiple steps with every step filtering out irrel-
evant information and targeting at helpful information. In this paper,
we first integrate iterative mechanism into knowledge graph embedding
and propose a multi-step gated model which utilizes relations as queries
to extract useful information from coarse to fine in multiple steps. First
gate mechanism is adopted to control information flow by the interaction
between entity and relation with multiple steps. Then we repeat the gate
cell for several times to refine the information incrementally. Our model
achieves state-of-the-art performance on most benchmark datasets com-
pared to strong baselines. Further analyses demonstrate the effectiveness
of our model and its scalability on large knowledge graphs.

Keywords: Knowledge graph embedding · Gate mechanism ·
Multi-step

1 Introduction

Large-scale knowledge graphs(KGs), such as Freebase [1], YAGO3 [2] and DBpe-
dia [3], have attracted extensive interests with progress in artificial intelligence.
Real-world facts are stored in KGs with the form of (subject entity, relation,
object entity), denoted as (s, r, o), benefiting many applications and research
areas such as question answering and semantic searching. Meanwhile, KGs are
still far from complete with missing a lot of valid triplets. As a consequence,
many researches have been devoted to knowledge graph completion task which
aims to predict missing links in knowledge graphs.

Knowledge graph embedding models try to represent entities and relations
in low-dimensional continuous vector space. Benefiting from these embedding
models, we can do complicated computations on KG facts and better tackle the
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Fig. 1. Example of link prediction in knowledge graph. An entity has much latent
information entailed in its embedding, but with a given relation, only part of them are
helpful for predicting.

KG completion task. Translation distance based models [4–8] regard predicting
a relation between two entities as a translation from subject entity to tail entity
with the relation as a media. While plenty of bilinear models [9–13] propose dif-
ferent energy functions representing the score of its validity rather than measure
the distance between entities. Apart from these shallow models, recently, deeper
models [14,15] are proposed to extract information at deep level.

Though effective, these models do not consider: 1. Controlling information
flow specifically, which means keeping relevant information and filtering out use-
less ones, as a result restricting the performance of models. 2. The multi-step
reasoning nature of a prediction process. An entity in a knowledge graph contains
rich latent information in its representation. As illustrated in Fig. 1, the entity
Michael Jordon has much latent information embedded in the knowledge graph
and will be learned into the representation implicitly. However, when given a
relation, not all latent semantics are helpful for the prediction of object entity.
Intuitively, it is more reasonable to design a module that can capture useful latent
information and filter out useless ones. At the meantime, for a complex graph,
an entity may contain much latent information entailed in an entity, one-step
predicting is not enough for complicated predictions, while almost all previous
models ignore this nature. Multi-step architecture [16,17] allows the model to
refine the information from coarse to fine in multiple steps and has been proved
to benefit a lot for the feature extraction procedure.

In this paper, we propose a Multi-Step Gated Embedding (MSGE) model
for link prediction in KGs. During every step, gate mechanism is applied several
times, which is used to decide what features are retained and what are excluded
at the dimension level, corresponding to the multi-step reasoning procedure. For
partial dataset, gate cells are repeated for several times iteratively for more fine-
grained information. All parameters are shared among the repeating cells, which
allows our model to target the right features in multi-steps with high parameter
efficiency. We do link prediction experiments on 6 public available benchmark
datasets and achieve better performance compared to strong baselines on most
datasets. We further analyse the influence of gate mechanism and the length of
steps to demonstrate our motivation.
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2 Background

2.1 Link Prediction in Knowledge Graphs

Link prediction in knowledge graphs aims to predict correct object entities given
a pair of subject entity and relation. In a knowledge graph, there are a huge
amount of entities and relations, which inspires previous work to transform the
prediction task as a scoring and ranking task. Given a known pair of subject
entity and relation (s, r), a model needs to design a scoring function for a triple
(s, r, o), where o belongs to all entities in a knowledge graph. Then model ranks
all these triples in order to find the position of the valid one. The goal of a model
is to rank all valid triples before the false ones.

2.2 Knowledge Graph Embedding

Knowledge graph embedding models aim to represent entities and relations in
knowledge graphs with low-dimensional vectors (es ,er ,et). TransE [4] is a typ-
ical distance-based model with constraint formula es + er − et ≈ 0. Many other
models extend TransE by projecting subject and object entities into relation-
specific vector space, such as TransH [5], TransR [6] and TransD [18]. TorusE [7]
and RotatE [8] are also extensions of distance-based models. Instead of measur-
ing distance among entities, bilinear models such as RESCAL [9], DistMult [10]
and ComplEx [11] are proposed with multiplication operations to score a triplet.
Tensor decomposition methods such as SimplE [12], CP-N3 [19] and TuckER [13]
can also be seen as bilinear models with extra constraints. Apart from above
shallow models, several deeper non-linear models have been proposed to further
capture more underlying features. For example, (R-GCNs) [15] applies a specific
convolution operator to model locality information in accordance to the topology
of knowledge graphs. ConvE [14] first applies 2-D convolution into knowledge
graph embedding and achieves competitive performance.

The main idea of our model is to control information flow in a multi-step
way. To our best knowledge, the most related work to ours is TransAt [20] which
also mentioned the two-step reasoning nature of link prediction. However, in
TransAt, the first step is categorizing entities with Kmeans and then it adopts
a distance-based scoring function to measure the validity. This architecture is
not an end-to-end structure which is not flexible. Besides, error propagation will
happen due to the usage of Kmeans algorithm.

3 Methods

3.1 Notations

We denote a knowledge graph as G = {(s, r, o)} ⊆ E × R × E , where E and
R are the sets of entities, relations respectively. The number of entities in G is
ne, the number of relations in G is nr and we allocate the same dimension d
to entities and relations for simplicity. E ∈ R

ne∗d is the embedding matrix for



MSGE: A Multi-step Gated Model for Knowledge Graph Completion 427

Fig. 2. The schematic diagram of our model with length of step 3. es and er represent
embedding of subject entity and relation respectively. eir means the query relation are
fed into the i-th step to refine information. ẽs is the final output information, then
matrix multiplication is operated between ẽs and embedding matrix of entities E. At
last, logistic sigmoid function is applied to restrict the final score between 0 and 1.

entities and R ∈ R
nr∗d is the embedding matrix for relations. es , er and eo are

used to represent the embedding of subject entity, relation and subject entity
respectively. Besides, we denote a gate cell in our model as C.

3.2 Multi-step Gate Mechanism

In order to obtain useful information, we need a specific module to extract
needed information from subject entity with respect to the given relation, which
can be regarded as a control of information flow guided by the relation. To
model this process, we introduce gate mechanism, which is widely used in data
mining and natural language processing models to guide the transmission of
information, e.g. Long Short-Term Memory (LSTM) [21] and Gated Recurrent
Unit (GRU) [22]. Here we adopt gating mechanism at dimension level to control
information entailed in the embedding. To make the entity interact with relation
specifically, we rewrite the gate cell in multi-steps with two gates as below:

z = σ(Wz [er ,es ] + bz )
r = σ(Wr [er ,es ] + br )

(1)

Two gates z and r are called update gate and reset gate respectively for
controlling the information flow. Reset gate is designed for generating a new e

′
s

or new information in another saying as follows:

e
′
s = tanh(Ws [r � es ,er ] + b) (2)

Update gate aims to decide how much the generated information are kept
according to formula (3):

ẽs = (1 − z) � e
′
s + z � es (3)



428 C. Tan et al.

Fig. 3. The differences between traditional RNN-like model and our model. In RNN-
like model (left), h0 is initialized randomly, x represents a sequence. In our model(right),
h0 comes from subject entity and x is transformed from relation x0.

Hardmard product is performed to control the information at a dimension
level. The values of these two gates are generated by the interaction between
subject entity and relation. σ-Logistic sigmoid function is performed to project
results between 0 and 1. Here 0 means totally excluded while 1 means totally
kept, which is the core module to control the flow of information. We denote the
gate cell as C.

Besides, to verify the effectiveness of gate mechanism, we also list the formula
of a cell that exclude gates as below for ablation study:

ẽs = tanh(W [er ,es ] + b) (4)

With the gate cell containing several gating operations, the overall architec-
ture in one gate cell is indeed a multi-step information controlling way.

3.3 Iterative Multi-step Architecture

In fact, a single gate cell can generate useful information since the two gating
operations already hold great power for information controlling. However, for a
complex dataset, more fine and precise features are needed for prediction. The
iterative multi-step architecture allows the model to refine the representations
incrementally. During each step, a query is fed into the model to interact with
given features from previous step to obtain relevant information for next step.
As illustrated in Fig. 2, to generate the sequence as the input for multi-step
training, we first feed relation embedding into a fully connected layer:

e
′
r = Wer + b (5)

We reshape the output as a sequence [e0r ,e1r , ...,ekr ] = Reshape(e
′
r ) which

are named query relations. This projection aims to obtain query relations of dif-
ferent latent aspects such that we can utilize them to extract diverse information
across multiple steps. Information of diversity can increase the robustness of a
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model, which further benefits the performance. Query relations are fed sequen-
tially into the gate cell to interact with subject entity and generate information
from coarse to fine. Parameters are shared across all steps so multi-step training
are performed in an iterative way indeed.

Our score function for a given triple can be summarized as:

φ = (Ck(es , [e0r ,e1r , ...,ekr ]))eo (6)

where Ck means repeating gate cell for k steps and during each step only
the corresponding eir is fed to interact with output information from last step.
See Fig. 2 for better understanding. After we extract the final information, it
is interacted with object entity with a dot product operation to produce final
score.

Differences with RNN-like Model. In previous RNN-like models, a cell is
repeated several times to produce information of an input sequence, where the
repeating times are decided by the length of the input sequence. Differently, we
have two inputs es and er with totally different properties, which are embeddings
of subject entity and relation respectively, which should not be seen as a sequence
as usual. As a result, a gate cell is used for capturing interactive information
among entities and relations iteratively in our model, rather than extracting
information of just one input sequence. See Fig. 3 for differences more clearly.

Training. At last, matrix multiplication is applied between the final output
information and embedding matrix E, which can be called 1-N scoring [14] to
score all triples in one time for efficiency and better performance. We also add
reciprocal triple for every instance in the dataset which means for a given (s, r, t),
we add a reverse triple (t, r−1, s) as the previous work. We use binary cross-
entropy loss as our loss function:

L(p, y) = − 1
N

∑

i

(yi · log(pi) + (1 − yi) · log(1 − pi)) (7)

We add batch normalization to regularise our model and dropout is also
used after layers. For optimization, we use Adam for a stable and fast training
process. Embedding matrices are initialized with xavier normalization. Label
smoothing [23] is also used to lessen overfitting.

4 Experiments

In this section we first introduce the benchmark datasets used in this paper, then
we report the empirical results to demonstrate the effectiveness of our model.
Analyses and ablation study are further reported to strengthen our motivation.
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Table 1. Statistics of datasets.

Dataset #Entity #Rel #Train #Valid #Test

WN18 40943 18 141442 5000 5000

WN18RR 40943 11 86835 3034 3134

FB15k 14951 1345 483142 50000 59071

FB15k-237 14541 237 212115 17535 20466

UMLS 135 49 5216 652 661

KINSHIP 104 26 8544 1068 1074

4.1 Datasets

Six datasets are used in our experiments:

• WN18 [4] is extracted from WordNet describing the hierarchical structure
of words, consisting relations such as hyponym and hypernym.

• WN18RR [4,14] is a subset of WN18 which removes inverse relations. Inverse
relation pairs are relations such as (hyponym, hypernym). Inverse relations
may cause severe test leakage: a lot of test triples can be obtained from train
data simply by inverting them. That means a simple rule-based model can
easily figure out the right o given a (s, r), only if it has seen (o, r

′
, s) in the

train data and it knows r
′
is the reverse of r.

• FB15k [4] is extracted from Freebase describing mostly relations about
movies, actors, awards, sports and so on.

• FB15k-237 [24] is a subset of FB15k which removes inverse relations and
the triples involved in train, valid and test data.

• UMLS [25] comes from biomedicine. Entities in UMLS (Unified Medical
Language System) are biomedical concepts such as disease and antibiotic.

• Kinship [25] contains kinship relationships among members of the Alyawarra
tribe from Central Australia.

The details of these datasets are reported in Table 1.

4.2 Experiment Setup

The evaluation metric we use in our paper includes Mean Reciprocal
Rank(MRR) and Hit@K. MRR represents the reciprocal rank of the right triple,
the higher the better of the model. Hit@K reflects the proportion of gold triples
ranked in the top K. Here we select K among {1, 3, 10}, consistent with previous
work. When Hit@K is higher, the model can be considered as better. All results
are reported with ’Filter’ setting which removes all gold triples that have existed
in train, valid and test data during ranking. We report the test results according
to the best performance of MRR on validation data as the same with previous
works.
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Table 2. Link prediction results on WN18, WN18RR, FB15k and FB15k-237. † denotes
the results are taken from [14]; - denotes the results are not provided; The results of
RotatE [8] are reported without self-adversial negative sampling, this sampling trick
is irrelevant with the model itself; Other results are all taken from the original paper.
Best results are in bold. The second best are underlined.

Model WN18 WN18RR FB15k FB15k-237

MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

TransE (2013) - 0.892 - - - 0.471 - -

DistMult† (2015) 0.822 0.936 0.430 0.490 0.654 0.824 0.241 0.419

ComplEx† (2016) 0.941 0.947 0.440 0.510 0.692 0.840 0.247 0.428

R-GCN (2017) 0.814 0.964 - - 0.696 0.842 0.248 0.417

TransAt (2018) - 0.951 - - - 0.782 - -

MINERVA (2018) - - 0.448 0.513 - - 0.293 0.456

ConvE (2018) 0.943 0.956 0.430 0.520 0.657 0.831 0.325 0.501

TorusE (2018) 0.947 0.954 - - 0.733 0.832 - -

RotatE (2019) - - - - - - 0.297 0.480

SimplE (2018) 0.942 0.947 - - 0.727 0.838 - -

TuckER (2019) 0.953 0.958 0.470 0.526 0.795 0.892 0.358 0.544

MSGE(Ours) 0.951 0.961 0.464 0.547 0.806 0.894 0.357 0.545

Table 3. Link prediction results on UMLS and Kinship.

Model UMLS Kinship

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ComplEx � (2016) 0.894 0.995 0.962 0.824 0.838 0.980 0.910 0.754

ConvE � (2018) 0.933 0.992 0.964 0.894 0.797 0.974 0.886 0.697

NTP (2017) 0.872 0.970 0.906 0.817 0.612 0.777 0.700 0.500

NeuralLP (2017) 0.778 0.962 0.869 0.643 0.619 0.912 0.707 0.475

MINERVA (2018) 0.825 0.968 0.900 0.728 0.720 0.924 0.812 0.605

MSGE(Ours) 0.946 0.993 0.973 0.914 0.865 0.988 0.941 0.785

For different datasets, the best setting of the number of iterations varies a lot.
For FB15k and UMLS the number at 1 provides the best performance, however
for other datasets, iterative mechanism is helpful for boosting the performance.
The best number of iterations is set to 5 for WN18, 3 for WN18RR, 8 for FB15k-
237 and 2 for Kinship.

4.3 Link Prediction Results

We do link prediction task on 6 benchmark datasets, comparing with several
classical baselines such as TransE [4], DistMult [10] and some SOTA strong
baselines such as ConvE [14], RotatE [8] and TuckER [13]. For smaller datasets
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Table 4. Influence of number of iterations on FB15k-237.

Length FB15k-237

MRR Hit@10 Hit@3 Hit@1

1 0.349 0.536 0.384 0.255

3 0.354 0.539 0.389 0.261

5 0.354 0.541 0.391 0.261

8 0.357 0.544 0.392 0.264

10 0.355 0.540 0.391 0.263

(a) FB15k-237 (b) WN18RR

Fig. 4. Convergence study between TuckER and MSGE(ours) on FB15k-237 and
WN18RR.

UMLS and Kinship, we also compare with some non-embedding methods such
as NTP [26] and NeuralLP [27] which learn logic rules for predicting, as well as
MINERVA [28] which utilizes reinforcement learning for reasoning over paths in
knowledge graphs.

The results are reported in Table 2 and Table 3. Overall, from the results we
can conclude that our model achieves comparable or better performance than
SOTA models on datasets. Even with datasets without inverse relations such
as WN18RR, FB15k-237 which are more difficult datasets, our model can still
achieve comparable performance.

4.4 Analysis on Number of Iterations

To study the effectiveness of the iterative multi-step architecture, we list the
performance of different number of steps on FB15k-237 in Table 4. The model
settings are all exactly the same except for length of steps. From the results on
FB15k-237 we can conclude that the multi-step mechanism indeed boosts the
performance for a complex knowledge graph like FB15k-237, which verify our
motivation that refining information for several steps can obtain more helpful
information for some complex datasets.

4.5 Convergence Study

We report the convergence process of TuckER and MSGE on FB15k-237 dataset
and WN18RR dataset in Fig. 4. We re-run TuckER with exactly the same settings
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Table 5. Parameter counts comparison.

Dataset ConvE TuckER MSGE

WN18 10.32M 9.39M 8.48M

WN18RR 10.31M 9.39M 8.84M

FB15k 6.16M 11.53M 3.81M

FB15k-237 5.19M 11.00M 3.57M

Table 6. Ablation study on FB15k-237.

Model FB15k-237

MRR Hit@10 Hit@3 Hit@1

MSGE 0.357 0.544 0.392 0.264

No gate 0.301 0.459 0.327 0.222

Concat 0.349 0.534 0.384 0.256

Replicate 0.351 0.537 0.388 0.257

claimed in the paper. All the results stand for the performance on valid dataset.
For MSGE, we also report the result of one step for comparison. It is obvious that
MSGE can converge rapidly compared to TuckER with nearly the same or better
final performance. From the analysis of model architecture, TuckER needs an extra
core tensor W to capture interactive information. While in MSGE, entities and
relations are directly interacted with each other through a gate cell. On dataset
WN18RR, we can find that the convergence process of TuckER is not as steady as
MSGE, which demonstrates the efficiency of our model.

4.6 Efficiency Analysis

In Table 5, we report the parameter counts of ConvE, TuckER and our model for
comparison. Our model can achieve better performance on most datasets with
much less parameters, which means our model can be more easily migrated to
large knowledge graphs. As for TuckER, which is the current SOTA method, the
parameter count is mainly due to the core interaction tensor W , whose size is
de ∗ dr ∗ de. As the grow of embedding dimension, this core tensor will lead to a
large increasing on parameter size. However, note that our model is an iterative
architecture therefore only a very few parameters are needed apart from the
embedding, the complexity is O(ned + nrd). For evaluating time efficiency, we
re-run TuckER and our model on Telsa K40c. TuckER needs 29 s/28 s to run an
epoch on FB15k-237/WN18RR respectively, MSGE needs 17 s/24 s respectively,
which demonstrate the time efficiency due to few operations in our model.
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4.7 Ablation Study

To further demonstrate our motivation that gate mechanism and multi-step
reasoning are beneficial for extracting information. We do ablation study with
the following settings:

• No gate: Remove the gates in our model to verify the necessity of controlling
information flow.

• Concat: Concatenate information extracted in every step together and feed
them into a fully connected layer to obtain another kind of final information,
which is used to verify that more useful information are produced by the
procedure of multi-step.

• Replicate: Replicate the relation to gain k same query relations for training.
This is to prove that extracting diverse information from multi-view query
relations is more helpful than using the same relation for k times.

The experiment results are reported in Table 6. All results demonstrate our moti-
vation that controlling information flow in a multi-step way is beneficial for link
prediction task in knowledge graphs. Especially a gated cell is of much benefit
for information extraction.

5 Conclusion and Future Work

In this paper, we propose a multi-step gated model MSGE for link prediction
task in knowledge graph completion. We utilize gate mechanism to control infor-
mation flow generated by the interaction between subject entity and relation.
Then we repeat gated module to refine information from coarse to fine. It has
been proved from the empirical results that utilizing gated module for multiple
steps is beneficial for extracting more useful information, which can further boost
the performance on link prediction. We also do analysis from different views to
demonstrate this conclusion. Note that, all information contained in embeddings
are learned across the training procedure implicitly. In future work, we would
like to aggregate more information for entities to enhance feature extraction, for
example, from the neighbor nodes and relations.
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