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Abstract. Subspace clustering has been gaining increasing attention in
recent years due to its promising ability in dealing with high-dimensional
data. However, most of the existing subspace clustering methods tend
to only exploit the subspace information to construct a single affinity
graph (typically for spectral clustering), which often lack the ability to
go beyond a single graph to explore multiple graphs built in various sub-
spaces in high-dimensional space. To address this, this paper presents a
new spectral clustering approach based on subspace randomization and
graph fusion (SC-SRGF) for high-dimensional data. In particular, a set
of random subspaces are first generated by performing random sampling
on the original feature space. Then, multiple K-nearest neighbor (K-
NN) affinity graphs are constructed to capture the local structures in
the generated subspaces. To fuse the multiple affinity graphs from mul-
tiple subspaces, an iterative similarity network fusion scheme is utilized
to achieve a unified graph for the final spectral clustering. Experiments
on twelve real-world high-dimensional datasets demonstrate the superi-
ority of the proposed approach. The MATLAB source code is available
at https://www.researchgate.net/publication/338864134.

Keywords: Data clustering · Spectral clustering · Subspace
clustering · High-dimensional data · Random subspaces · Graph fusion

1 Introduction

Data clustering is a fundamental yet still very challenging problem in data mining
and knowledge discovery [13]. A large number of clustering techniques have been
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developed in the past few decades [2–6,8–12,14–18,21–24], out of which the
spectral clustering has been a very important category with its effectiveness and
robustness in dealing with complex data [3,6,14,18,22]. In this paper, we focus
on the spectral clustering technique, especially for high-dimensional scenarios.

In high-dimensional data, it is often recognized that the cluster structures of
data may lie in some low-dimensional subspaces [3]. Starting from this assump-
tion, many efforts have been made to enable the spectral clustering for high-
dimensional data by exploiting the subspace information from different technical
perspectives [1,3,4,15,17,21,23]. Typically, a new affinity matrix is often learned
with the subspace structure taken into consideration, upon which the spectral
clustering process is then performed. For example, Liu et al. [17] proposed a low-
rank representation (LRR) approach to learn an affinity matrix, whose goal is to
segment the data points into their respective subspaces. Chen et al. [1] exploited
K-nearest neighbor (K-NN) based sparse representation coefficient vectors to
build an affinity matrix for high-dimensional data. He et al. [4] used informa-
tion theoretic objective functions to combine structured LRRs, where the global
structure of data is incorporated. Li et al. [15] presented a subspace clustering
approach based on Cauchy loss function (CLF) to alleviate the potential noise
in high-dimensional data. Elhamifar and Vidal [3] proposed the sparse subspace
clustering (SSC) approach by incorporating the low-dimensional neighborhood
information, where each data point is represented by a combination of other
points in its own subspace and a new similarity matrix is then constructed.
You et al. [23] extended the SSC approach by introducing orthogonal match-
ing pursuit (OMP) to learn a subspace-preserving representation. Wang et al.
[21] combined SSC and LRR into a novel low-rank sparse subspace clustering
(LRSSC) approach.

Although these methods [1,3,4,15,17,21,23] have made significant progress
in exploiting subspace information for enhancing spectral clustering of high-
dimensional data, most of them tend to utilize a single affinity graph (associated
with a single affinity matrix) by subspace learning, but lack the ability to go
beyond a single affinity graph to jointly explore a variety of graph structures in
various subspaces in the high-dimensional space. To overcome this limitation,
this paper presents a new spectral clustering by subspace randomization and
graph fusion (SC-SRGF) approach. Specifically, multiple random subspaces are
first produced, based on which we construct multiple K-NN affinity graphs to
capture the locality information in various subspaces. Then, the multiple affinity
graphs (associated with multiple affinity matrices) are integrated into a unified
affinity graph by using an iterative similarity network fusion scheme. With the
unified graph obtained, the final spectral clustering result can be obtained by
partitioning the this new affinity graph. We conduct experiments on twelve high-
dimensional datasets, which have shown the superiority of our approach.

The rest of the paper is organized as follows. The proposed approach is
described in Sect. 2. The experimental results are reported in Sect. 3. The paper
is concluded in Sect. 4.
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2 Proposed Framework

In this section, we describe the overall process of the proposed SC-SRGF app-
roach. The formulation of the clustering problem is given in Sect. 2.1. The con-
struction of multiple K-NN graphs (corresponding to multiple affinity matrices)
in a variety of random subspaces is introduced in Sect. 2.2. Finally, the fusion of
the multiple graphs into a unified graph and the spectral clustering process are
described in Sect. 2.3.

2.1 Problem Formulation

Let X ∈ R
n×d be the data matrix, where n is the number of data points and

d is the number of features. Let xi ∈ R
d denote the i-th data point, cor-

responding to the i-row in X. Thus the data matrix can be represented as
X = (x1, x2, · · · , xn)�. Let fj ∈ R

n denote the j-th data feature, correspond-
ing to the j-th column in X. Thus the data matrix can also be represented as
X = (f1, f2, · · · , fd). The purpose of clustering is to group the n data points
into a certain number of subsets, each of which is referred to as a cluster.

2.2 Affinity Construction in Random Subspaces

In this work, we aim to enhance the spectral clustering for high-dimensional
datasets with the help of the information of various subspaces. Before explor-
ing the subspace information, a set of random subspaces are first generated.
Note that each subspace consists of a certain number of features, and thereby
corresponds to a certain number of columns in the data matrix X.

Multiple random subspaces are generated by performing random sampling
(without replacement) on the data features with a sampling ratio r. Let m denote
the number of generated random subspaces. Then the set of random subspaces
can be represented as

F = {F (1), F (2), · · · , F (m)}, (1)

where

F (i) = (f (i)
1 , f

(i)
2 , · · · , f

(i)
d′ ) (2)

denotes the i-th random subspace, f
(i)
j denotes the j-th feature in F (i), and

d′ = �r · d� is the number of features. Each subspace can be viewed as selecting
corresponding columns in the original data matrix. Therefore, the data sub-
matrix in a given subspace F (i) can be represented as

X(i) = (x(i)
1 , x

(i)
2 , · · · , x(i)

n )� (3)

where x
(i)
j ∈ R

d′
denotes the j-th data point in this subspace.
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To explore the locality structures in various subspaces, multiple K-NN graphs
are constructed. Specifically, given a subspace F (i), its K-NN graph can be
defined as

G(i) = {V,E(i)}, (4)

where V = {x1, x2, · · · , xn} is the node set and E(i) is the edge set. The weights
of the edges in the graph are computed as

E(i) ={e
(i)
jk }n×n, (5)

e
(i)
jk =

{
exp(−d(x

(i)
j ,x

(i)
k )

2σ ), if xj ∈ KNN i(xk) or xk ∈ KNN i(xj),
0, otherwise,

(6)

where e
(i)
jk is the edge weight between nodes xj and xk in G(i), d(xj , xk) is the

Euclidean distance between x
(i)
j and x

(i)
k , KNN i(xk) is the set of K-NNs of xk

in the i-th subspace, and the kernel parameter σ is set to the average distance
between all points.

With the m random subspaces, we can construct m affinity graphs (corre-
sponding to m affinity matrices) as follows:

G = {G(1), G(2), · · · , G(m)}. (7)

Note that these affinity graphs share the same node set (i.e., the set of all data
points), but have different edge weights constructed in different subspaces, which
enable them to capture a variety of underlying subspace structure information
in high-dimensional space for enhanced clustering performance.

2.3 Fusing Affinity Graphs for Spectral Clustering

In this section, we proceed to fuse multiple affinity graphs (corresponding to mul-
tiple affinity matrices) into a unified affinity graph for robust spectral clustering
of high-dimensional data.

Specifically, we adopt the similarity network fusion (SNF) [20] scheme to fuse
the information of multiple graphs. For simplicity, the set of the affinity matrices
for the m graphs is represented as E = {E(1), E(2), · · · , E(m)}. The goal here is
to merge the m affinity matrices in E into a unified affinity matrix Ẽ.

By normalizing the rows in the affinity matrix E(i), we have Ē(i) =
{ē

(i)
jk }n×n = (D(i))−1E(i), where D(i) is the degree matrix of E(i). Then the

initial status matrix P
(i)
t=0 can be defined as

P
(i)
t=0 =

Ē(i) + (Ē(i))�

2
, (8)

And the kernel matrix S(i) = {s
(i)
jk }n×n can be defined as

s
(i)
jk =

⎧⎨
⎩

ē
(i)
jk

∑
xl∈KNN(xj)

ē
(i)
jl

, if xk ∈ KNN(xj),

0, otherwise.
(9)
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With the above two types of matrices defined, we can iteratively update
the status matrices by exploiting the information of multiple affinity matrices.
Particularly, in each iteration, the i-th status matrix is updated as follows [20]:

P
(i)
t+1 = S(i) × (

∑
j �=i P

(j)
t

m − 1
) × (S(i))�, i = 1, 2, · · · ,m. (10)

After each iteration, P
(i)
t+1 will be normalized by P

(i)
t+1 = (D(i)

t+1)
−1P

(i)
t+1 with D

(i)
t+1

being the degree matrix of P
(i)
t+1.

When the status matrices converge or the maximum number of iterations is
reached, the iteration process stops and the fused affinity matrix will be com-
puted as

Ẽ =
1
m

m∑
i=1

P (i). (11)

Then the unified matrix Ẽ will be symmetrized by Ẽ = (Ẽ + Ẽ�)/2. With
the unified affinity matrix Ẽ obtained by fusing information of multiple affinity
matrices from multiple subspaces, we can proceed to perform spectral clustering
on this unified matrix to build the clustering result with a certain number of,
say, k′, clusters.

Let D̃ be the degree matrix of Ẽ. Its graph Laplacian can be computed as

L̃ = D̃ − Ẽ. (12)

After that, eigen-decomposition is performed on the graph Laplacian L̃ to obtain
the k′ eigenvectors that correspond to its first k′ eigenvalues. Then the k′ eigen-
vectors are stacked to form a new matrix Ũ ∈ R

n×k′
, where the i-th column

corresponds to the i-th eigenvector. Then, by treating each row as a new feature
vector for the data point, some discretization techniques like k-means [18] can
be performed on the matrix Ũ to achieve the final spectral clustering result.

3 Experiments

In this section, we conduct experiments on a variety of high-dimensional datasets
to compare our approach against several other spectral clustering approaches.

3.1 Datasets and Evaluation Measures

In our experiments, twelve real-world high-dimensional datasets are used,
namely, Armstrong-2002-v1 [19], Chowdary-2006 [19], Golub-1999-v2 [19],
Alizadeh-2000-v2 [19], Alizadeh-2000-v3 [19], Bittner-2000 [19], Bredel-2005
[19], Garber-2001 [19], Khan-2001 [19], Binary-Alpha (BA) [14], Coil20 [14],
and Multiple Features (MF ) [5]. To simplify the description, the twelve bench-
mark datasets are abbreviated as DS-1 to DS-12, respectively (as shown in
Table 1).
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Table 1. Dataset description

Dataset Abbr. #Instance Dimension #Class

Armstrong-2002-v1 DS-1 72 1081 2

Chowdary-2006 DS-2 104 182 2

Golub-1999-v2 DS-3 72 1868 3

Alizadeh-2000-v2 DS-4 62 2093 3

Alizadeh-2000-v3 DS-5 62 2093 4

Bittner-2000 DS-6 38 2201 2

Bredel-2005 DS-7 50 739 3

Garber-2001 DS-8 66 4553 4

Khan-2001 DS-9 83 1069 4

Binary Alpha DS-10 1404 320 36

Coil20 DS-11 1440 1024 20

Multiple Features DS-12 2000 649 10

Table 2. Average NMI over 20 runs by different methods on the benchmark datasets.
The best score in each row is in bold.

Dataset SC KASP SSC SSC-OMP SC-SRGF

DS-1 0.366±0.000 0.263±0.104 0.366±0.000 0.351±0.000 0.546±0.117

DS-2 0.081±0.000 0.171±0.295 0.764±0.000 0.860±0.000 0.849±0.022

DS-3 0.596±0.000 0.404±0.245 0.690±0.000 0.700±0.000 0.801±0.049

DS-4 0.605±0.000 0.851±0.164 0.734±0.000 0.620±0.000 0.913±0.000

DS-5 0.560±0.000 0.614±0.061 0.442±0.001 0.441±0.007 0.626±0.002

DS-6 0.032±0.000 0.032±0.027 0.035±0.000 0.035±0.000 0.053±0.003

DS-7 0.249±0.000 0.367±0.089 0.102±0.000 0.115±0.000 0.311±0.075

DS-8 0.082±0.005 0.139±0.055 0.086±0.004 0.172±0.011 0.161±0.024

DS-9 0.604±0.000 0.328±0.073 0.835±0.000 0.533±0.009 0.881±0.014

DS-10 0.503±0.005 0.591±0.009 0.580±0.006 0.260±0.006 0.613±0.007

DS-11 0.780±0.000 0.860±0.022 0.864±0.005 0.517±0.201 0.888±0.001

DS-12 0.655±0.000 0.866±0.018 0.824±0.001 0.556±0.002 0.871±0.030

Avg. score 0.425 0.457 0.527 0.430 0.626

Avg. rank 3.83 3.17 3.00 3.50 1.25

0 1 2 3 4 5 6 7 8 9 10

SC
KASP

SSC
SSC-OMP
SC-SRGF

0
1

0
2

9

Fig. 1. Number of times being ranked in the first position in Table 2.
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To quantitatively evaluate the clustering results of different algorithms, two
widely-used evaluation measures are used, namely, normalized mutual informa-
tion (NMI) [7] and adjusted Rand index (ARI) [7]. Note that larger values of
NMI and ARI indicate better clustering results.

In terms of the experimental setting, we use m = 20, K = 5, and r = 0.5
on all the datasets in the experiments. In the following, the robustness of our
approach with varying values of the parameters will also be evaluated in Sect. 3.3.

Table 3. Average ARI over 20 runs by different methods on the benchmark datasets.
The best score in each row is in bold.

Dataset SC KASP SSC SSC-OMP SC-SRGF

DS-1 0.268±0.000 0.152±0.058 0.268±0.000 0.238±0.000 0.578±0.181

DS-2 0.066±0.000 0.168±0.340 0.851±0.000 0.924±0.000 0.916±0.015

DS-3 0.656±0.000 0.378±0.270 0.707±0.000 0.729±0.000 0.844±0.047

DS-4 0.506±0.000 0.897±0.148 0.796±0.000 0.627±0.000 0.947±0.000

DS-5 0.360±0.003 0.479±0.057 0.261±0.006 0.289±0.005 0.427±0.005

DS-6 0.018±0.000 0.009±0.029 0.020±0.000 0.020±0.000 0.047±0.036

DS-7 0.277±0.000 0.387±0.169 0.105±0.000 0.112±0.000 0.404±0.122

DS-8 0.068±0.010 0.059±0.067 0.0004±0.003 0.103±0.020 0.128±0.024

DS-9 0.466±0.000 0.206±0.056 0.826±0.000 0.433±0.009 0.860±0.011

DS-10 0.210±0.005 0.291±0.011 0.300±0.008 0.051±0.004 0.327±0.008

DS-11 0.638±0.000 0.682±0.055 0.701±0.017 0.260±0.019 0.744±0.002

DS-12 0.559±0.000 0.818±0.029 0.754±0.000 0.445±0.006 0.826±0.056

Avg. score 0.341 0.377 0.466 0.353 0.587

Avg. rank 3.67 3.42 3.08 3.50 1.17

0 1 2 3 4 5 6 7 8 9 10 11

SC
KASP

SSC
SSC-OMP
SC-SRGF

 0
 1

 0
 1

10

Fig. 2. Number of times being ranked in the first position in Table 3.

3.2 Comparison Against the Baseline Approaches

In this section, we compare the proposed SC-SRGF method against four base-
line spectral clustering methods, namely, original spectral clustering (SC) [18],
k-means-based approximate spectral clustering (KASP) [22], sparse subspace
clustering (SSC) [3], and sparse subspace clustering by orthogonal matching pur-
suit (SSC-OMP) [23]. The detailed comparison results are reported in Tables 2,
3, and 4, and Figs. 1 and 2.
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In terms of NMI, as shown in Table 2, the proposed SC-SRGF method obtains
the best scores on the DS-1, DS-3, DS-4, DS-5, DS-6, DS-9, DS-10, DS-11,
and DS-12 datasets. The average NMI score (across the twelve datasets) of our
method is 0.626, which is much higher than the second highest average score of
0.527 (obtained by SSC). The average rank of our method is 1.25, whereas the
second best method only achieves an average rank of 3.00. As shown in Fig. 1, our
SC-SRGF method yields the best NMI scores on nine out of the twelve datasets
in Table 2, whereas the second and third best methods only achieves the best
scores on two and one benchmark datasets, respectively.

Table 4. Average time costs (s) by different methods on the benchmark datasets.

Dataset SC KASP SSC SSC-OMP SC-SRGF

DS-1 0.197 0.215 0.309 0.229 0.296

DS-2 0.193 0.225 0.316 0.219 0.734

DS-3 0.204 0.217 0.376 0.222 0.770

DS-4 0.203 0.226 0.291 0.221 0.298

DS-5 0.205 0.224 0.295 0.223 0.296

DS-6 0.194 0.216 0.299 0.214 0.290

DS-7 0.200 0.214 0.299 0.215 0.287

DS-8 0.213 0.230 0.727 0.257 0.295

DS-9 0.201 0.217 0.337 0.218 0.295

DS-10 0.681 0.330 7.740 0.640 19.592

DS-11 0.871 0.440 21.571 0.769 20.915

DS-12 1.060 0.489 25.134 0.787 27.666

In terms of ARI, as shown in Table 3, our SC-SRGF method also yields overall
better performance than the baseline methods. Specifically, our method achieves
an average ARI score (across twelve datasets) of 0.587, whereas the second best
score is only 0.466. Our method obtains an average rank of 1.17, whereas the
second best average rank is only 3.08. Further, as can be seen in Fig. 2, our
method achieves the best ARI score on ten out of the twelve datasets, which
also significantly outperforms the other spectral clustering methods.

In terms of time cost, as shown in Table 4, it takes our SC-SRGF method less
than 1 s to process the first nine smaller datasets and less than 30 s to process
the other three larger datasets, which is comparable to the time costs of the SSC
method. Therefore, with the experimental results in Tables 2, 3, and 4 taken
into account, it can be observed that our method is able to achieve significantly
better clustering results for high-dimensional datasets (as shown in Tables 2 and
3) while exhibiting comparable efficiency with the important baseline of SSC (as
shown in Table 4).

All experiments were conducted in MATLAB R2016a on a PC with i5-8400
CPU and 64 GB of RAM.
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3.3 Parameter Analysis

In this section, we evaluate the performance of our SC-SRGF approach with three
different parameters, i.e., the number of affinity matrices (or random subspaces)
m, the number of nearest neighbors K, and the sampling ratio r.
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Fig. 3. Average NMI over 20 runs by SC-SRGF with varying number of affinity matri-
ces m.

Influence of the Number of Affinity Matrices m. The parameter m con-
trols the number of random subspaces to be generated, which is also the number
of affinity matrices to be fused in the affinity fusion process. Figure 3 illustrates
the performance (w.r.t. NMI) of our SC-SRGF approach as the number of affinity
matrices goes from 5 to 30 with an interval of 5. As shown in Fig. 3, the perfor-
mance of SC-SRGF is stable with different values of m. Empirically, a moderate
value of m, say, in the interval of [10, 30], is preferred. In the experiments, we
use m = 20 on all of the datasets.

Influence of the Number of Nearest Neighbors K. The parameter K
controls the number of nearest neighbors when constructing the K-NN graphs
for the multiple random subspaces. As can be seen in Fig. 4, a smaller value of
K can be beneficial to the performance, probably due to the fact that the K-NN
graph with a smaller K may better reflect the locality characteristics in a given
subspace. In the experiments, we use K = 5 on all of the datasets.
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Influence of the Sampling Ratio r. The parameter r controls the sampling
ratio when producing the multiple random subspaces from the high-dimensional
space. As shown in Fig. 5, a moderate value of r is often preferred on the bench-
mark datasets. Empirically, it is suggested that the sampling ratio be set in the
interval of [0.2, 0.8]. In the experiments, we use r = 0.5 on all of the datasets.
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Fig. 4. Average NMI over 20 runs by SC-SRGF with varying number of nearest neigh-
bors K.

Brief Summary. From the above experimental results, we can observe that
the proposed SC-SRGF approach exhibits quite good consistency and robustness
w.r.t. the three parameters, which do not require any sophisticated parameter
tuning and can be safely set to some moderate values across different datasets.
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Fig. 5. Average NMI over 20 runs by SC-SRGF with varying sampling ratio r.

4 Conclusion

In this paper, we propose a new spectral clustering approach termed SC-SRGF
for high-dimensional data, which is able to explore diversified subspace informa-
tion inherent in high-dimensional space by means of subspace randomization and
affinity graph fusion. In particular, a set of multiple random subspaces are first
generated by performing random sampling on the original feature space repeat-
edly. After that, multiple K-NN graphs are constructed to capture the locality
information of the multiple subspaces. Then, we utilize an iterative graph fusion
scheme to combine the multiple affinity graphs (i.e., multiple affinity matrices)
into a unified affinity graph, based on which the final spectral clustering result
can be achieved. We have conducted extensive experiments on twelve real-world
high-dimensional datasets, which demonstrate the superiority of our SC-SRGF
approach when compared with several baseline spectral clustering approaches.
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