®

Check for
updates

Fast Community Detection with Graph
Sparsification

Jesse Laeuchli®)

Cyber Security Research and Innovation Centre, Deakin University,
Geelong, Australia
j.laeuchli@deakin.edu.au

Abstract. A popular model for detecting community structure in large
graphs is the Stochastic Block Model (SBM). The exact parameters to
recover the community structure of a SBM has been well studied, and
many methods have been proposed to recover a nodes’ community mem-
bership. A popular approach is to use spectral methods where the Graph
Laplacian L of the given graph is created, and the Fiedler vector of the
graph is found. This vector is then used to cluster nodes in the same
community. While a robust method, it can be expensive to compute the
Fiedler vector exactly. In this paper we examine the types of errors that
can be tolerated using spectral methods while still recovering the com-
munities. The two sources of error considered are: (i) dropping edges
using different sparsification strategies; and (ii) inaccurately computing
the eigenvectors. In this way, spectral clustering algorithms can be tuned
to be far more efficient at detecting community structure for these com-
munity models.

Keywords: Clustering - Graph sparsification - Stopping criteria

1 Background and Motivation

Stochastic Block Models. Detecting communities through clustering is an
important problem in a wide variety of network applications characterized by
graphs [1,3]. However, it can be difficult to study the accuracy of clustering
on arbitrary graphs. To aid network analysis, generative models are frequently
introduced. One popular model is the Stochastic Block Model (SBM) [2]. In
this model a number of nodes n with community memberships are given, and
the connectivity of vertices p and ¢ within (and between) the communities are
also specified. For a given graph with parameters G(n,p,q), we define a = pn,
b = gn. It has been shown that the community structure can only be recovered
when (a — b)? > 2(a + b) [14]. While models of more than two communities are
sometimes studied, in this paper we restrict our attention to the case where the
number of communities is fixed at two. There are two reasons for this. The first
is that there is more theory available to work with. The second is that in practice
it is often the custom when seeking communities in a graph to recursively cluster

© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 291-304, 2020.
https://doi.org/10.1007/978-3-030-47426-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_23&domain=pdf
http://orcid.org/0000-0001-9970-9105
https://doi.org/10.1007/978-3-030-47426-3_23

292 J. Laeuchli

the nodes into two groups and then continue recursively, since this approach lends
itself to high performance computing [4]. A two community model is therefore
relevant to real-world approaches and worthy of study. Our goal in this paper is
to discuss the question of how we can recover the communities of a SBM faster, by
applying graph sparsification and inaccurate eigenvector computation, without
harming the accuracy of our recovery methods. Additionally, we show how we
can leverage recent research on nearly linear-time solvers to capitalize on the
sparser graphs we obtain.

Spectral Sparsification. A popular approach to clustering is to find the
Fiedler vector of the graph Laplacian L [4]. This is faster the sparser L is.
Given a matrix L, we say that matrix L is similar iff for all x,

2'La(l —e) < 2'Lax < 'Le(1 +¢). (1)

Matrices that are similar to each other by the criteria of Eq. (1) share similar
eigenvectors and eigenvalues [5]. While fast methods exist for computing such
similar matrices through sparsification [5], it is unclear how errors in eigenvector
approximation translate into errors in the communities recovered. Answering
this question is a key contribution of this paper.

Spectrum of SBM Matrices. Since we will make extensive use of the spec-
trum of the different matrix representations of a Stochastic Block Model (SBM),
we review the known results here, and provide some new ones.

First we consider the spectrum of a two community adjacency matrix. Define
a = np, b = ng, where p is the probability of a connection between nodes inside
the community, and ¢ is the probability of a connection between nodes in different
communities. Then the average instance of a SBM model with these parameters
can be represented in the form,

1 1
<A>= §(a+b)11T+§(afb)uuT (2)

where 1 =(1,1,1,...,1)/y/nand u=(1,1...,-1,-1,...)/y/n. Any particular
instance A of a SBM drawn from this distribution of matrices can be repre-
sented as A =< A > + X, where X is a random Wigner matrix. Because the
eigenvalues of X follow the famous semicircle law, the spectrum of A also follows
such a distribution [14], with the exception of the two largest eigenvalues. The
distribution of the bulk of the eigenvalues follows the equation,

The radius of the bulk of the spectrum of A is given as below, with the center
of the semi-circle being at 0.

ra = V(2(a+1b) (4)

Fast Community Detection with Graph Sparsification 293

Finally we also have the two largest eigenvalues of A given as below.

a+b

p— (5)

1 1
)\nzi(a—i—b)—l—l,)\n,l:i(a—b)—l—

We note that the eigenvectors of A are randomly distributed vectors on the
unit sphere except for the top two eigenvectors. The top two eigenvectors are
perturbed versions of the vectors of < A > [14].

We will also be interested in the spectrum and the eigenvectors of the scaled
Laplacian £ of instances of our SBM. The bulk of the spectrum of £ is also
known to follow a semi-circle distribution [11]. If we denote the average degree
of the SBM as d, then the distribution of the bulk of the eigenvalues follows the

equation,
2(a+b) 2
2n\ @& — %
plz) =2V & 7 (6)

T 2(af+b)
2

The radius of the bulk of the spectrum are as below, with the center of the

semi-circle being at 1.
\/(Q(C{ +0)) (7)
d
Avrachenkov et. al [11] states that the other non-trivial eigenvalue of L
remains to be characterized, so we briefly show that the eigenvalues outside
the semi-circle are as below and bound their deviation from this mean, since our
algorithms will make use of this information.

T =

1(a—0b)+ ofb
)\1:O,>\2:1—2(Cg“ (8)

o

We have A\; = 0, since L is a Laplacian. If A is a regular graph, then the
value for Ao is directly computable from the eigenvalues of A, as above. Since
SMBs are close to regular, with each node having the same average degree of
a + b, we need to show that the deviation from the mean is small and with high
probability will not change the result. From Lutzeyer and Walden [16] we have
that the error of applying this linear transform of the eigenvalues of A, in order
to obtain the eigenvalues of L, is 3M We can then use the Chernoff
concentration bounds to show that thls error goes to zero with high probability.

The elements of the rows of A are drawn from a binomial distribution, with
n/2 of them with probability p, and n/2 of them with probability ¢. For each
diagonal element of £, we then have,

Pr(|Li; — d| > v/ny/log(n2)) < 2etos(n®) —

Since we have n diagonal elements, the probability that none exceed this
bound can be computed as,

2

n2

(9)

lim (1— %)” =1 (10)

n— o0 n

294 J. Laeuchli

The error in our approximation for Ay is then

3dma$ - dmzn _ 3J+ \/’ﬁ\/ log(nz) - (d__ \/ﬁ\/ log(nz))
dmaaﬁ +dmin J+ f\/log Tl2 +(i* \/ﬁ\/log(nQ) (11)
_ 32\f\/10g (n?) Qﬁ\/log(nQ)
d

2 n(p+q)

Taking the limit as n increases we then have,

2y/n/log(n?) 0. (12)

lim 3———M——= =
n—oc n(p+q)

Finally, we state two properties of £ that we will make use of later. We can
write £ = D~Y2AD~Y2 = D=1/2XD~Y/2 4 D=Y2 < A > D71/2. Recall that
the eigenvectors of X are randomly distributed on the unit sphere. Then for any
€;,€ej € I

Ele;,D7'2XD™2¢;] = Ele;,D7V?Y " Njaja D7/ 2e;]

" . (1)
1 1 1
—1/2 1/2 . I
Ele;D ;)\m]xD e = z::d gd n
Alternatively, we have
Ele;D™Y*XD™1/2¢;] = Ele;D~1/? Z DT 1/2¢;]
. " (14)
_ _ 1
Ele;D™'2Y " Njwjai D72, Zd— i) =0
i=1 i=1

Overall Approach. We now outline our overall problem. We would like to
accelerate spectral algorithms for Stochastic Block Models (SBMs) while still
recovering the communities accurately. Our main approach is to analyze the
impact of two different types of error on SBM algorithms. The first is ‘edge
dropping’. We investigate two strategies for dropping edges which allow us to
recover the communities despite, in some cases, having significantly fewer edges
than the original problem. While the idea of sparsifying graphs in order to more
efficiently recover communities is not new, our contribution is to determine the
level of sparsification that can take place while still recovering communities.
Our second approach is to stop convergence of the eigensolver early. We analyze
‘power iteration’, and show that for many SBM instances the solver does not need
to be run to convergence. We choose power iteration both because the analysis is
simple, and because in conjunction with nearly linear-time solvers, and the drop-
ping strategy previously mentioned, we can design extremely efficient algorithms.

Fast Community Detection with Graph Sparsification 295

This is because power iteration based on these solvers are O(m) complexity. In
some cases we can reduce the number of edges by orders of magnitude, making
these solvers very attractive.

The foundation of both these methods is a careful use of the model parame-
ters and the known results for the spectra of SBM models.

2 Methods and Technical Solutions

Sampling with Effective Resistance. The main idea is that for a given
Stochastic Block Model (SBM) we know when we can recover the communities
based on the parameters a, b of the model. While it is sometimes assumed that
these parameters are known, Mossel et al. [7] gives Eq. (15) for recovering the
parameters of an unknown SBM, where | F| is the number of edges in the graph,
kn = |log"/*(n)], and X}, is the number of cycles of length &, in the graph.
While X, is difficult to compute, Mossel et al. shows that this can be well
approximated by counting the number of non-backtracking walks in the graph
that can be made in O(n) time. They then obtain a linear-time algorithm for
estimating a, b by showing that a ~ dn + fm and b~ d, — fn where,

i, = 2|E|
n (15)
fr = 2k Xy, — dF)n

Once we obtain an estimate for a, b then we can estimate how much we should
sparsify the graph to ensure that (a — b)? > 2(a + b), while still dropping edges
to obtain a much sparser matrix, for which we can obtain the Fiedler Vector
much faster. We can also estimate the percentage of the nodes we will recover
using the equation a? = %, 11+ erf(y/a2/2(1 — a?)) [14] .

In order to understand the percentage of the edges of the graph that we
should sample we need to consider what the odds are they we will sample an
edge connecting two nodes inside a community, against the odds that they will
sample an inter-community edge. Ideally we would only sample edges inside the
communities, since this would make the communities trivial to detect. Unfor-
tunately, it has been shown by Luxburg et al. [9,10] that for SBM as n — oo,
the effective resistance of a given edge (4,7) in the graph tends toward d% + %
Since the degrees of the nodes in this model are O(n), the variation between
effective resistances will be small, and will in any case not reflect the community
structure of the graph. At this point our spectral sparsifier will be selecting edges
essentially at random. While Luxburg et al. state that theoretical results suggest
that the effective resistances could degenerate only for very large graphs, their
experimental results show that this behaviour arises even for small communities
of 1,000 vertices.

296 J. Laeuchli

E(E) = 2q(5)* +2p(3)” (16)
(2p(%)?) ~ (2¢(%)?)
Pintra = W Qinter = W (17)
N Spint'r‘a A Spinter
P 1T 1

2

While in some sense this is a drawback, since this result is telling us we may as
well sample randomly, our algorithm can still function, and we can save the cost
of computing the effective resistances. For (a —b)? > 2(a+b) to hold true, there
must be significantly more intra-community edges than inter-community ones.
If we are sampling randomly with spectral sparsification, we should still sample
more of the desired edge type, since more of this type exist and we are sampling
each edge with roughly the same probability. If we have probabilities p, ¢, and
number of nodes n, then the expected value for the number of edges is shown in
Eq. (16). We can then compute the probability of sampling an intra-community
or inter-community edge as in Eq. (17). If we take S samples, Eq. (18) shows the
estimated p, ¢ for our sparsified graph. We then have a = pn, b = gn, which can
be used to decide if the communities can be recovered.

Correcting Effective Resistance. While Luxburg et al. [10] show that as
n — oo the effective resistance eff,; for a SBM degenerates to (1/d; + 1/d;)
for two nodes i, j, there are various methods known for correcting this. One
of these is to multiply by the sum of the degrees. While this does not correct
the issue in and of itself, since the effective resistance between every pair of
nodes converges to two, the variance around two may be meaningful. Using
these “scaled” effective resistances captures the community structure of a SBM,
and sparsifying by these resistances can cause us to find the community structure
of an SBM very quickly. These scaled effective resistances can be obtained by
taking the scaled Laplacian £ of our SBM, and applying the same algorithm
that is used to estimate the effective resistance of L.

Given the constants a,b, we can calculate the average difference in scaled
effective resistance between edges both inside the communities and outside. This
is useful because it allows us to predict on average how much we should sample
to ensure (a — b)? > 2(a + b), given the increased chance of sampling inter-
community edges.

Recall that eff,;, = eqLleq +eplley — 2e,Ley. Using our knowledge of the
spectrum of £, we can compute the average values of these terms.

Fast Community Detection with Graph Sparsification 297

E[Ll,] = E[L},) = Ele,D7V2X"1D"2¢,] + Ele,D"V2A 1D 1/2¢,]

Ele,D7Y2X"1D"1/2%¢,] = % Z)\ by Eq. (13)

1 e
Bl =5 [Ieiz=1
1

nJi—y, %
E[Ll,] = Ele,DV?X'DY?¢)) + Ele,D'V/? A1 D¢y (19)
Ele,DY?X1D'2¢,) = 0 by Eq. (14) so

1
E[E:;b] = Ele,DV/?A71DY%¢)) = ea)\—uuTeb
2
1 7 1 - . .
ea—uu ey =—(—1)* z=0ifa,beGand z =11if a,b & G.
Ao A2
We see that the effective resistance inside the group on average is e,Lfe, +
epLiey, — 2e,Lep =1+1— 2)%2 and e, Lle, + epLiey, — 2e,Le, =1+ 1+ 2%2
otherwise. This allows us to amend our estimates for @ and b. If we let 7/ be the
ratio between the effective resistance of the two links, then Eq.(21) gives the
scaled p’, ¢'.
Pintra
Dintra + 7' Qintra (20)

/
Pintra =
/ _ / .
Qinter = 1- Pintras
/ /
) — SDintra — SPinter

SEICO LI TEO

(21)

We note that our method above does have a potential drawback for very
small graphs. This is because we need to sample ©(n log(n)) edges to avoid the
graph being disconnected [12]. As graphs become large this should be a non-

2
issue because we have lim,, .~ (P ”ﬂlnil;;ép"ﬂ”) = 00, which indicates that our
sampling criteria will require more edges than needed to ensure connectivity.

Computing the Eigenvector Using Inverse Power Iteration. One of the
challenges of spectral methods is computing the eigenvectors needed for clus-
tering, since this can be expensive. Given a nearly linear-time solver, one can
compute the eigenvectors of a scaled graph Lapalcian in nearly time in the order
of the number of elements of £ [6], by using Inverse Power Iteration. This is
attractive given our edge dropping strategy, where we may reduce the number
of edges by several orders of magnitude for favourable graphs.

An additional feature is that it is possible to calculate a stopping criteria
for the eigensolver that will allow us to recover the communities, even though
the eigenvector has not fully converged. This is a desirable property, since full
convergence can be slow. While the bound for our stopping criteria is not tight,
it nevertheless is significantly faster than would otherwise be the case for full
convergence.

298 J. Laeuchli

Recall that for the power iteration we have an initial state c; Ayv1+. .. cp A\, Un.
On average the ¢; terms will be of approximately the same size. We are attempt-
ing to compute the eigenvector u = (1,1...,—1,—1,...)/y/n. After each itera-
tion of the power method we have a resultant vector which consists of the desired
eigenvector u, and some sum of the other eigenvectors. We need to compute the
likely contribution from the other eigenvectors. Once these contributions are
smaller than O(ﬁ) with high probability, we can stop the iteration, because
the signal from the desired eigenvector will dominate the calculation, and allow
for the correct community assignment.

We need to compute the average contribution from the remaining eigen-
vectors at each iteration. We begin by computing the average size for each
component of the other eigenvectors. Assuming all the ¢; are equal, we have

k . _— .
Az(u+ > i‘—; v). The eigenvectors v are randomly distributed around the unit
sphere, as in Wigner matrices. We know from O’Rourke and Wang [17], that the
elements of these eigenvectors are normally distributed variables, N (0, %)

Multiplying N(0, 1) by /’\\—;k we have N(0, (:\\—;)2’“%) after k iterations. We

then have that each component of the sum of the eigenvectors v are normal
variables N (0, 2(:\\72)21@)'

n

We can now use Chebyshev’s inequality to compute the probability that a
component of the sum of the eigenvectors v is greater than ﬁ, the size of the
components of the dominant eigenvector u as follows,

Pr(X - B[X]| 2 o) < Y21X

Pr(lX] >

(22)
Pr(|X] > —=) <

A
Pr(|X|> —=) < 2(Z2)2k,
(11> —=) < 230
Using our knowledge of the density of the spectrum of £, we can compute
the probability in Eq. (22), for LT as follows,

14+r, 1
B = [(23)

Once we know the probability of a single component of the eigenvector being
greater than the ﬁ, we can use this in a binomial distribution to calculate how
many elements we are likely to incorrectly classify. We can, either stop when &
is large enough to imply this is close to zero, or when the number is the same
order as the error introduced by the perturbation of the main eigenvector from
the addition of the random eigenvectors to < A >, as given in [13].

Fast Community Detection with Graph Sparsification 299

Regularized Spectral Clustering. While spectral clustering is robust for
matrices with high average degrees (c¢f. Saade et al. [8]), for very sparse matrices
that have low degree entries the technique may struggle to recover the commu-
nities when the graph approaches the theoretical limits of community detection.
This issue is exacerbated by the fact that we are dropping edges, and thus may
create such problematic cases. To combat this we use the method of regular-
ized spectral clustering method given in Saade et al. [8]. Given a regularization
parameter 7, and the matrix J with constant entries %, the authors first define
the regularized adjacency matrix A, as,

A, =A+7] (24)
Similarly they define the regularized diagonal as D, as,
D,=D+1Ir (25)
Then the regularized scaled Laplacian is given as,
L, =D Y2A +7JD1/? (26)

We note that the Fiedler vector of this matrix can be computed using the power
method using nearly linear-time sparse solvers. D, Y AD; 12 4 symmetric
and diagonally dominate so we can make use of nearly linear-time solvers to
compute (D;l/ZAD:l/Q)_lw. Then, since DT_l/QTJD:l/2 is a rank one matrix
TD;l/QjDil/QjT = D;l/QTJD;1/2, we can compute E;l using the Sherman-

Morrison formula which allows us to solve £ Lin terms of D, 1 2AD; 172,

A —1/2 =172 . 4

(D;1/2AD;1/2)_1 _ A—l’s _ A lDi / JD- /]:iA ! -

1+D; /2T A 1D (27)
E;l — (D;l/QAD;l/Z 4 D;1/2jD;1/2jT)71 — (D;l/zAD;l/2)71 -S
Using Eq. (27) we can then proceed to compute the Fielder vector using power
iteration. In order to determine when to stop the power iteration we proceed
in the same way as in Computing the Eigenvector Using Inverse Power
Iteration by determining the spectrum L. We begin by noting that £, has the
same spectrum as Di/ QADl/ 2, except that the top eigenvalue is increased by the
rank one update DII/ZTJDZI/Q, as discussed in Ding and Zhou [15]. Since we
will project out this eigenvector when performing power iteration, we then only
need to consider the density function of D, 1/ ’rAD; /2, By the same argument
that we used Eq. (12), we can show that as n increases, whp this density function

is given by,
2ga+b))
2n \ (drn? — % (28)

T 2(a+b)

(d+7)2

p(z) =

300 J. Laeuchli

Our Algorithm. We now present our algorithm. We first obtain (or the user
provides) an estimate for the Stochastic Block Model (SBM) parameters. We
then obtain the scaled effective resistances eff of the elements of the scaled
Laplacian £, which we then use to create a probability density function. We note
that we modify the probability density function to sample the edges that have
a low effective resistance over those that have a high resistance, since these are
the edges that make up our community. This approach is slightly different from
the standard algorithm of Spielman and Srivastava [5], which seeks to sample
the highest resistance edges.

Next we compute the estimated p, ¢ we will obtain after sparsification, using
either Eq. (18) or (21), depending on our sampling strategy, and based on this
we decide how much sparsification we can safely apply. After creating our new
matrix, we then obtain the relevant eigenvector, depending on whether we are
using the Laplacian or the Regularized Laplacian from Eq. (26).

Algorithm 1. RecursivePartition

INPUT: adj matrix A, boolean S for using scaled effective resistance (eff), regular-
ization parameter T
RETURN: partition p
[p,q]=EstParam(A) { Est param using eqn. (15)}
if S == True then
L = CreateScaledLap(A);
eff = EstResistance(L£) { Est resistance using Spielman and Srivastava [5]}
pdf = % {Normalize distribution}
pdf =1 — pdf {Sample the low resistance nodes}
S=0 {Init. number of samples}
while (a/ — V)% —2(a’ + V') < 0 do
Increase S
[a’ b']= EstSparseAB(p,q,S) {est a’ b’ using eqn. (21)}
end while

[i j]= find(A)

[ni nj]= randsample(S,pdf); {Sample S with pdf}
else

i j)= find(A)

[ni nj]= randsample(S); {Sample S with uniform distribution}
end if
A=sparse(i(ni), j(nj),1, size(A,1), size(A,2)) {Create the Sparsified Adjacency
Matrix}

= CreateDiag(A)+7 {Create Degree Matrix }

L, = DY Aps1/?
[v e]=powermethod(L;); {Get eigenvector}
[i p]= sort(v) {Get permutation}
return p

Fast Community Detection with Graph Sparsification 301

A Comment on Complexity. While the best performance we obtained was
by using the scaled effective resistance, depending on what solver is available,
this may not always be the most effective strategy. This is because obtaining
the scaled effective resistances using the method of Spielman and Srivastava [5],
requires us to solve a number of linear systems. If a nearly linear time solver is
available, this will take O(m) time, where m is the number of edges before our
dropping strategy. This will dominate the cost of the computation, and we will
not get significant speed-up from using power iteration, which is of order O(m’),
where m’ again is the number of sparsified edges. In the case of our examples
this is clearly sub-optimal, since we can reduce m several orders of magnitude
and still recover the communities, even when we are dropping edges randomly.
In this case it makes sense not to use the scaled effective resistance. On the
other hand, in practice, we may wish to use a different eigensolver, since the
code for these may be more mature. In this case, the cost of the eigensolver may
dominate, especially since the cost of applicable solvers (such as Lanczos-based
solvers), does not entirely depend on m. In this case the use of scaled effective
resistance sampling may be more effective.

3 Empirical Evaluation

We now present some experimental results. We first examine the difference
between effective-resistance and scaled-effective resistance, and how closely they
follow the predicted percentage of recovery. Additionally, we investigate the
time needed to compute the eigenvectors of the sparsified versus the unspar-
sifed matrix, and our convergence criteria for the Fiedler Vector.

Recovery of Communities. We now examine the success of our method in
recovering the communities with the given sparsification. In Figs. 1a we see that
using the Regularized Laplacian we can quickly recover almost all the nodes
correctly, at around the sparsification level, predicted by Eqs. (18) and (21). This
also highlights the impact of using the scaled effective resistance for sampling,
with the method converging faster, and following the prediction of Eq. (21) more
closely. We note that for both sampling methods the percent of edges we preserve
is very small, of the order of 102 of the original graph for the Scaled Effective
Resistance method.

In Fig. 1b, we try the real-world example of Saade et al. [8], where the authors
attempt to partition two blogging communities by their political alignment. This
is an interesting example because the communities are difficult to recover, requir-
ing the use of regularization techniques, and because the graph structure is not
exactly captured by the SBM model. Further this graph is quite small with only
1,222 nodes, meaning that the graph may be disconnected, as discussed earlier
in Sect. 2. Despite these difficulties, we are still able to recover the communities
even after a significant amount of sparsification is applied, at the point that our
criteria indicate we should be successful.

302 J. Laeuchli

S

©

&
o
©
@

o

©
o
©

o
S
® &

o
o o
® O

o ¢
g 3

o
e 3
g 3

=4
Y
&

o
@
a

Percent of Nodes Labeled Correctly
Percent of Nodes Labeled Correctly

Scaled Effective Resistance
Predicted Sucessful Recovery Point
Actual Recovery / Scaled Effective Resistance Predicted Connected Graph

Actual Recovery / Effective Resistance
Predicted Recovery

o

3
14
@

hed
o
o

o
o
a

Predicted Recovery

0.01 0.015 0.02 0.025 0.05 0.1 0.15 0.2 0.25 0.3
Percent Sparsification Percent Sparsification

(@) (b)

Predicted Recovery

Fig.1. (a) Results of recovering the communities using regularization after sparsi-
fication SBM (10000, 0.5,0.3). Shows the results for Effective resistance and Scaled
Effective Resistance as well as predicted recovery. (b) Results of recovering the com-
munities using regularization after sparsification for the political blog example. This
example shows the effect of sparsification on a small graph, where there is an interval
between the sparsification criteria, and the point at which the graph is connected.

Time Saved in Eigenvector Calculation. One of the main motivations of
this work is to obtain the correct community labels while spending less time
computing the require eigenvectors. Since we are able to recover the communities,
despite applying large amounts of sparsification, we would expect our eigensolver
to converge faster. Exactly how fast depends on the solver. For the eigensolver
shown in Spielman and Teng [6], built on top of their nearly linear-time solver
and constructed solely to find the Fiedler vector of the Laplacian, our time to
compute the eigenvector would depend on the number of elements of our graph.
Since we have reduced the number of elements by multiple orders of magnitude
when sampling with scaled effective-resistance we would get a multiple order
of magnitude speed-up. Unfortunately, these solvers are not available for use in
production code, so we do not benchmark them here.

When using the off-the-shelf solver available in Matlab to find the desired
eigenvector, with our best method we achieve essentially an order of magnitude
speed-up. This is because the solvers used by this method are not optimized for
graphs in the way that the solver of Spielman and Teng. The observed speed-up
can be seen in Table 1b.

While we do not have a nearly linear-time solver to fairly benchmark our
Inverse Power method, we are able to test the number of iterations required to
obtain 10~% accuracy vs the number of iterations recommended by our stop-
ping criteria, seen in Table la. In all four cases all the community nodes were
recovered, even though the sparsification was of the order of O(1073).

Fast Community Detection with Graph Sparsification 303

Table 1. (a) Speed-up in eigensolver from sparsification for the Regularized Laplacian
for SBMs (10000, 0.5, 0.3) and (10000, 0.5, 0.2) respectively, using an off the shelf solver.
(b) Number of iterations of the inverse power method required to reach the stopping
criteria vs number of iterations to reach 10~% accuracy using the Scaled Laplacian for
the SMB (10000, 0.5, 0.3).

SMB 5, .3 Sparse |SMB 5 2|Sparse Criteria [To 10~® [Criteria|To 10~
1.168185 sec|0.141 sec|1.05 sec [0.075 sec 1.148 sec|0.141 sec|12 102
(@) (b)

4 Conclusion and Future Work

In this paper we explored the use of sparsifying by effective resistance and scaled
effective resistances in order to recover sparsify SBMs, as well as effective stop-
ping criteria for eigensolvers used for community detection. The main goal is
to obtain faster solutions while still being confident in our ability to recover
the communities. We have provided a method that determines the number of
samples needed, depending on the type of sampling used. We found that the com-
munity structure can be recovered even when the matrix becomes very sparse.
Since SBMs are a commonly studied model for clustering, this method is widely
applicable. We leave several areas open for future work. While SBMs are widely
studied, the model has certain intrinsic limits which prevent it from modeling
certain real-world networks well. We would like to provide a similar analysis
for more complex community models, in particular models which have a non-
constant average degree. We could then apply our model to a larger variety of
real-world graphs.

Acknowledgements. We would like to acknowledge the efforts of Professor Peter W.
Eklund, who helped make this paper possible.

References

1. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002)

2. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition
model. Random Struct. Algor. 18, 116-140 (2001)

3. Abbe, E.: Community detection and stochastic block models: recent developments.
J. Mach. Learn. Res. 18(1), 6446-6531 (2017)

4. Pothen, A., Simon, H., Liou, K.: Partitioning sparse matrices with eigenvectors of
graphs. STAM. J. Matrix Anal. Appl. 11(3), 430-452 (1990)

5. Spielman, D., Srivastava, N.: Graph Sparsification by effective resistances. In: Pro-
ceedings of the 40th Annual ACM symposium on Theory of computing, STOC
2008, pp. 563-568 (2008)

6. Spielman, D., Teng, S.: Nearly linear time algorithms for preconditioning and solv-
ing symmetric, diagonally dominant linear systems. STAM J. Matrix Anal. Appl.
35(3), 835-885 (2014)

304

10.

11.

12.

13.

14.

15.

16.

17.

J. Laeuchli

Mossel, E., Neeman, J., Sly, A.: Reconstruction and estimation in the planted
partition model. Probab. Theory Relat. Fields 162(3), 431-461 (2014). https://
doi.org/10.1007/s00440-014-0576-6

Saade, A., Krzakala, F., Zdeborov4, L.: Impact of regularization on spectral clus-
tering. Ann. Stat. 44, 1765-1791 (2016)

. Luxburg, U., Radl, A., Hein, M.: Getting lost in space: Large sample analysis of

the resistance distance. In: Advances in Neural Information Processing Systems,
vol. 23 (2010)

Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random
neighborhood graphs. J. Mach. Learn. Res. 15, 1751-1798 (2014)

Avrachenkov, K., Cottatellucci, L., Kadavankandy, A.: Spectral properties of ran-
dom matrices for stochastic block model. In: WiOpt, pp. 25—29, May 2015

Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for
graph sparsification. In: STOC 2011, pp. 71-80, 06-08 June 2011

McSherry, F.: Spectral partitioning of random graphs. In: Proceedings 42nd IEEE
Symposium on Foundations of Computer Science (2001)

Nadakuditi, R.R., Newman, M.E.: Graph spectra and the detectability of commu-
nity structure in networks. Phys. Rev. Lett. 108(18), 188701 (2012)

Ding, J., Zhou, A.: Eigenvalues of rank-one updated matrices with some applica-
tions. Appl. Math. Lett. 20(12), 1223-1226 (2007)

Lutzeyer, J., Walden, A.: Comparing graph spectra of adjacency and Laplacian
matrices. arXiv:171203769

O’Rourke, S., Vu, V., Wang, K.: Eigenvectors of random matrices: a survey. J.
Comb. Theory Ser. A 144, 361-442 (2016)

https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
http://arxiv.org/abs/171203769

	Fast Community Detection with Graph Sparsification
	1 Background and Motivation
	2 Methods and Technical Solutions
	3 Empirical Evaluation
	4 Conclusion and Future Work
	References

