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Abstract. In this paper, we propose online algorithms for multiclass
classification using partial labels. We propose two variants of Perceptron
called Avg Perceptron and Max Perceptron to deal with the partially
labeled data. We also propose Avg Pegasos and Max Pegasos, which are
extensions of the Pegasos algorithm. We also provide mistake bounds
for Avg Perceptron and regret bound for Avg Pegasos. We show the
effectiveness of the proposed approaches by experimenting on various
datasets and comparing them with the standard Perceptron and Pegasos.

Keywords: Online learning · Pegasos · Perceptron

1 Introduction

Multiclass classification is a well-studied problem in machine learning. However,
we assume that we know the true label for every example in the training data. In
many applications, we don’t have access to the true class label as labeling data
is an expensive and time-consuming process. Instead, we get a set of candidate
labels for every example. This setting is called multiclass learning with partial
labels. The true or ground-truth label is assumed to be one of the instances in
the partial label set. Partially labeled data is relatively easier to obtain and thus
provides a cheap alternative to learning with exact labels.

Learning with partial labels is referred to as superset label learning [13],
ambiguous label learning [2], and by other names in different papers. Many pro-
posed models try to disambiguate the correct labels from the incorrect ones. One
popular approach is to treat the unknown correct label in the candidate set as
a latent variable and then use an Expectation-Maximization type algorithm to
estimate the correct label as well the model parameters iteratively [2,9,11,13,18].
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Other approaches to label disambiguation include using a maximum margin for-
mulation [20] which alternates between ground truth identification and maximiz-
ing the margin from the ground-truth label to all other labels. Regularization
based approaches [8] for partial label learning have also been proposed. Another
model assumes that the ground truth label is the one to which the maximum
score is assigned in the candidate label set by the model [14]. Then the margin
between this ground-truth label and all other labels not in the candidate set is
maximized.

Some approaches try to predict the label of an unseen instance by averaging
the candidate labeling information of its nearest neighbors in the training set
[10,21]. Some formulations combine the partial label learning framework with
other frameworks like multi-label learning [19]. There are also specific approaches
that do not try to disambiguate the label set directly. For example, Zhang et al.
[22] introduced an algorithm that works to utilize the entire candidate label set
using a method involving error-correcting codes.

A general risk minimization framework for learning with partial labels is dis-
cussed in Cour et al. [3,4]. In this framework, any standard convex loss function
can be modified to be used in the partial label setting. For a single instance,
since the ground-truth label is not available, an average over the scores in the
candidate label set is taken as a proxy to calculate the loss. Nguyen and Caruana
[14] propose a risk minimization approach based on a non-convex max-margin
loss for a partial label setting.

In this paper, we propose online algorithms for multiclass classification using
partially labeled data. Perceptron [15] algorithm is one of the earliest online
learning algorithms. Perceptron for multiclass classification is proposed in [7]. A
unified framework for designing online update rules for multiclass classification
was provided in [5]. An online variant of the support vector machine [17] called
Pegasos is proposed in [16]. This algorithm is shown to achieve O(log T ) regret
(where T is the number of rounds). Once again, all these online approaches
assume that we know the true label for each example.

Online multiclass learning with partial labels remained an unaddressed prob-
lem. In this paper, we propose several online multiclass algorithms using partial
labels. Our key contributions in this paper are as follows.

1. We propose Avg Perceptron and Max Perceptron, which extensions of Per-
ceptron to handle the partial labels. Similarly, we propose Avg Pagasos and
Max Pegasos, which are extensions of the Pegasos algorithm.

2. We derive mistake bounds for Avg Perceptron in both separable and general
cases. Similarly, we provide log(T ) regret bound for Avg Pegasos.

3. We also provide thorough experimental validation of our algorithms using
datasets of different dimensions and compare the performance of the proposed
algorithms with standard multiclass Perceptron and Pegasos.

2 Multiclass Classification Using Partially Labeled Data

We now formally discuss the problem of multiclass classification given partially
labeled training set. Let X ⊆ R

d be the feature space from which the instances
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are drawn and let Y = {1, . . . , K} be the output label space. Every instance
x ∈ X is associated with a candidate label set Y ⊆ Y. The set of labels not
present in the candidate label set is denoted by Y . Obviously, Y ∪ Y = [K].1

The ground-truth label associated with x is denoted by lowercase y. It is assumed
that the actual label lies within the set Y (i.e., y ∈ Y ). The goal is to learn a
classifier h : X → Y. Let us assume that h(x) is a linear classifier. Thus, h(x)
is parameterized by a matrix of weights W ∈ R

d×K and is defined as h(x) =
arg maxi∈[K] wi.x where wi (ith column vector of W ) denotes the parameter
vector corresponding to the ith class. Discrepancy between the true label and the
predicted label is captured using 0–1 loss as L0−1(h(x), y) = I{h(x) �=y}. Here, I is
the 0–1 indicator function, which evaluates to true when the condition mentioned
is true and 0 otherwise. However, in the case of partial labels, we use partial
(ambiguous) 0–1 loss [3] as follows.

LA(h(x), Y ) = I{h(x)/∈Y } (1)

Minimizing LA is difficult as it is not continuous. Thus, we use continuous sur-
rogates for LA. A convex surrogate of LA is the average prediction hinge loss
(APH) [3] which is defined as follows.

LAPH(h(x), Y ) =

[
1 − 1

|Y |
∑
i∈Y

wi.x + max
j /∈Y

wj .x

]
+

(2)

where |Y | is the size of the candidate label set and [a]+ = max(a, 0). LAPH

is shown to be a convex surrogate of LA in [4]. There is another non-convex
surrogate loss function called the max prediction hinge loss (MPH) [14] that can
be used for partial labels which is defined as follows:

LMPH(h(x), Y ) =
[
1 − max

i∈Y
wi.x + max

j /∈Y
wj .x

]
+

(3)

In this paper, we present online algorithms based on stochastic gradient descent
on LAPH and LMPH .

3 Multiclass Perceptron Using Partial Labels

In this section, we propose two variants of multiclass Perceptron using partial
labels. Let the instance observed at time t be xt and its corresponding label set be
Y t. The weight matrix at time t is W t and the ith column of W t is denoted by wt

i .
To update the weights, we propose two different schemes: (a) Avg Perceptron
(using stochastic gradient descent on LAPH) and (b) Max Perceptron (using
stochastic gradient descent on LMPH). We use following sub-gradients of the
LAPH and LMPH .

1 We denote the set {1, . . . , K} using [K].
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∇wk
LAPH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 1
|Y |

∑
i∈Y wi.x − maxj∈Y wj .x ≥ 1

− x
|Y | , if 1

|Y |
∑

i∈Y wi.x − maxj∈Y wj .x < 1

and k ∈ Y

x, if 1
|Y |

∑
i∈Y wi.x − maxj∈Y wj .x < 1

and k = arg maxj∈Y wj .x
0, if 1

|Y |
∑

i∈Y wi.x − maxj∈Y wj .x < 1

, k ∈ Y and k �= arg maxj∈Y wj .x

(4)

∇wk
LMPH =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if maxj∈Y wj .x − maxj∈Y wj .x ≥ 1
−x, if maxj∈Y wj .x − maxj∈Y wj .x < 1

and k = arg maxi∈Y wi.x
x, if maxj∈Y wj .x − maxj∈Y wj .x < 1

and k = arg maxi∈Y wi.x

(5)

We initialize the weight matrix as a matrix of zeros. At trial t, the update rule
for wi can be written as:

wt+1
i = wt

i − η∇wi
L(ht(xt), Y t)

where η > 0 is the step size and ∇wi
L(ht(xt), Y t) is found using Eq. (4) and (5).

The complete description of Avg Perceptron and Max Perceptron is provided in
Algorithm 1 and 2 respectively.

3.1 Mistake Bound Analysis

In the partial label setting, we say that mistake happens when the predicted
class label for an example does not belong to its partial label set. We first define
two variants of linear separability in a partial label setting as follows.

Definition 1 (Average Linear Separability in Partial Label Setting).
Let {(x1, Y 1), . . . , (xT , Y T )} be the training set for multiclass classification
with partial labels. We say that the data is average linearly separable if there
exist w1, . . . ,wK ∈ R

d such that

1
|Y t|

∑
i∈Y t

wi.xt − max
j∈Y

t
wj .xt ≥ γ, ∀t ∈ [T ].

Thus, average linear separability implies that LAPH(h(xt), Y t) = 0, ∀t ∈ [T ].

Definition 2 (Max Linear Separability in Partial Label Setting). Let
{(x1, Y 1), . . . , (xT , Y T )} be the training set for multiclass classification with
partial labels. We say that the data is max linearly separable if there exist
w1, . . . ,wK ∈ R

d such that

max
i∈Y t

wi.xt − max
j∈Y

t
wj .xt ≥ γ, ∀t ∈ [T ].

Thus, max linear separability implies that LMPH(h(xt), Y t) = 0, ∀t ∈ [T ].
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Algorithm 1. Avg Perceptron
Initialize W 1 = 0
for t = 1 to T do

Get xt

Predict ŷt as ŷt = arg maxi∈[K] w
t
i .x

t

Get the partial label set Y t of xt

Calculate loss LAPH(ht(xt), Y t) using Eq. (2)
if LAPH(ht(xt, Y t) > 0 then

wt+1
i = wt

i + ητ t
i x

t, i ∈ [K] where

τ t
i =

⎧
⎪⎨

⎪⎩

1
|Y t| , i ∈ Y t

−1, i = arg max
j∈Y

t wt
j .x

t

0, ∀i ∈ Y
t
, i �= arg max

j∈Y
t

else
wt+1

i = wt
i , ∀i ∈ [K]

end if
end for

We bound the number of mistakes made by Avg Perceptron (Algorithm 1)
as follows.

Theorem 1 (Mistake Bound for Avg Perceptron Under Average Lin-
ear Separability). Let (x1, Y 1), . . . , (xT , Y T ) be the examples presented to Avg
Perceptron, where xt ∈ R

d and Y t ⊆ [K]. Let W ∗ ∈ R
d×K (‖W ∗‖ = 1) be such

that 1
|Y t|

∑
i∈Y t w∗

i .xt −max
j∈Y

t w∗
j .xt ≥ γ, ∀t ∈ [T ]. Then we get the following

mistake bound for Avg Perceptron Algorithm.

T∑
t=1

LA(ht(xt), Y t) ≤ 2
γ2

+
[
1
c

+ 1
]

R2

γ2

where c = mint |Y t|, R = maxt ||xt|| and γ ≥ 0 is the margin of separation.

The proof is given in Appendix A of [1]. We first notice that the bound is
inversely proportional to the minimum label set size. This is intuitively obvious
as the smaller the candidate label set size, the larger the chance of having a non-
zero loss. When c = 1, the number of updates reduces to the normal multiclass
Perceptron mistake bound for linearly separable data as given in [5]. Also, the
number of mistakes is inversely proportional to γ2. Linear separability (Defini-
tion 1) may not always hold for the training data. Thus, it is important to see
how does the algorithm Avg Perceptron performs in such cases. We now bound
the number of updates in T rounds for partially labeled data, which is linearly
non-separable under LAPH .

Theorem 2 (Mistake Bound for Avg Perceptron in Non-Separable
Case). Let (x1, Y 1), . . . , (xT , Y T ) be an input sequence presented to Avg Percep-
tron. Let W (‖W‖ = 1) be weight matrix corresponding to a multiclass
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Algorithm 2. Max Perceptron
Initialize W 1 = 0
for t = 1 to T do

Get xt

Predict ŷt as ŷt = arg maxi∈[K] w
t
i .x

t

Get the partial label set Y t of xt

Calculate loss LMPH(ht(xt), Y t) using Eq. (3)
if LMPH(ht(xt, Y t) > 0 then

wt+1
i = wt

i + ητ t
i x

t, i ∈ [K] where

τ t
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if maxj∈Y wj .x − maxj∈Y wj .x < 1

and i = arg maxj∈Y wj .x

−1, if maxj∈Y wj .x − maxj∈Y wj .x < 1

and i = arg maxj∈Y wj .x

else
wt+1

i = wt
i , ∀i ∈ [K]

end if
end for

classifier. Then for a fixed γ > 0, let dt = max
{

0, γ − [ 1
|Y t|

∑
i∈Y t wi.xt−

max
j∈Y

t wj .xt]
}
. Let D2 =

∑T
t=1(|Y t|dt)2 and R = maxt∈[T ] ||xt|| and c =

mint∈[T ] |Y t|. Then, mistakes bound for Avg Perceptron is as follows.

T∑
t=1

LA(ht(xt), Y t) ≤ 2
Z2

γ2
+ 2K

R2 + Δ2

( γ
Z )2

where Z =
√

1 + D2

Δ2 , Δ =
[

D2+KD2R2

K

] 1
4
and K =

[
1
c + 1

]
.

The proof is provided in the Appendix B of [1].

4 Online Multiclass Pegasos Using Partial Labels

Pegasos [16] is an online algorithm originally proposed for an exact label setting.
In Pegasos, L2 regularizer of the weights is minimized along with the hinge loss,
making the overall objective function strongly convex. The strong convexity
enables the algorithm to achieve a O(log T ) regret in T trials. The objective
function of the Pegasos at trial t is the following.

f(W,xt, Y t) =
λ

2
||W ||2 + L(h(xt), Y t)

Here, λ is a regularization constant and ||W || is Frobenius norm of the weight
matrix. Let W t be the weight matrix at the beginning of trial t. Then, W t+1 is
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found as W t+1 = ΠB(W t − ηt∇t). Here ∇t = ∇W tf(W t,xt, Y t), ηt is the step
size at trial t and ΠB is a projection operation onto the set B which is defined
as B = {W : ||W || ≤ 1√

λ
}. Thus, ΠB(W ) = min{1, 1

(λ||W ||)}W .
We now propose extension of Pegasos [16] for online multiclass learning using

partially labeled data. We again propose two variants of Pegasos: (a) Avg Pegasos
(using average prediction hinge loss (Eq. 2)) and (b) Max Pegasos (using max
prediction hinge loss (Eq. (3)). We first note that ∇t can be written as:

∇t = λW t + ∇W tL (6)

where ∇W tL is given by Eq. (4) (for LAPH) and Eq. (5) (for LMPH). Complete
description of Avg Pegasos and Max Pegasos are given in Algorithm 3 and
Algorithm 4 respectively.

Algorithm 3. Avg Pegasos
Input: λ, T
Initialize: W1 s.t. ||W 1|| ≤ 1√

λ
for t = 1 to T do

Get xt, Y t

Set ηt = 1
λt

Calculate loss LAPH(ht(xt), Y t) using Eq. (2)
if LAPH > 0 then

W t+ 1
2 = (1 − ηtλ)W t − ηt∇W LAPH where ∇W LAPH is given by Eq. (4)

W t+1 = min{1, 1/
√

λ

||W t+1
2 ||

}W t+ 1
2

else
W t+1 = W t

end if
end for
Output: W T

4.1 Regret Bound Analysis of Avg Pegasos

We now derive the regret bound for Avg Pegasos.

Theorem 3. Let (x1, Y 1), (x2, Y 1), . . . , (xT , Y T ) be an input sequence where
xt ∈ R

d and Y t ⊆ [K]. Let R = maxt ||xt||. Then the regret of Avg Pegasos
is given as:

1
T

T∑
t=1

f(W t,xt, Y t) − min
W

1
T

T∑
t=1

f(W,xt, Y t) ≤ G2lnT

λT

where G =
√

λ +
√

1 + 1
cR and c = mint |Y t|

The proof is given in Appendix C of [1]. We again see the regret is inversely
proportional to the size of the minimum candidate label set.
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Algorithm 4. Max Pegasos
Input: λ, T
Initialize: W1 s.t. ||W 1|| ≤ 1√

λ
for t = 1 to T do

Get xt, Y t

Set ηt = 1
λt

Calculate loss LMPH(ht(xt), Y t) using Eq. (3)
if LAPH > 0 then

W t+ 1
2 = (1 − ηtλ)W t − ηt∇W LMPH where ∇W LMPH is given by Eq. (5)

W t+1 = min{1, 1/
√

λ

||W t+1
2 ||

}W t+ 1
2

else
W t+1 = W t

end if
end for
Output: W T

Fig. 1. Dermatology dataset results

5 Experiments

We now describe the experimental results. We perform experiments on Ecoli,
Satimage, Dermatology, and USPS datasets (available on UCI repository [6]) and
MNIST dataset [12]. We perform experiments using the proposed algorithms Avg
Perceptron, Max Perceptron, Avg Pegasos, and Max Pegasos. For benchmarking,
we use Perceptron and Pegasos based on exact labels.

For all the datasets, the candidate or partial label set for each instance con-
tains the true label and some labels selected uniformly at random from the
remaining labels. After every trial, we find the average mis-classification rate
(average of L0−1 loss over examples seen till that trial) is calculated with respect
to the true label. This sets a hard evaluation criteria for the algorithms. The
number of rounds for each dataset is selected by observing when the error curves
start to converge. For every dataset, we repeat the process of generating partial
label sets and plotting the error curves 100 times and average the instantaneous
error rates across the 100 runs. The final plots for each dataset have the average
instantaneous error rate on the Y-axis and the number of rounds on the X-axis.
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Fig. 2. Ecoli dataset results

For every dataset, we plot the error rate curves for all the algorithms for
different candidate label set sizes. This helps us in understanding how the online
algorithms behave as the candidate label set size increases. For the Dermatology
dataset, which contains six classes, we take candidate labels sets of sizes 2 and
4, respectively, as shown in Fig. 1. We see that the average prediction loss based
algorithms perform the better in both cases. The results for the Ecoli dataset
for candidate label sets of size 2, 4 and 6 are shown in Fig. 2. Here, we find
that the Max Pegasos algorithm performs comparably to the algorithms based
on the Average Prediction Loss for candidate labels set sizes 2 and 4. But for
candidate label set size 8, the Max Prediction Loss performs significantly worse
than the Average Prediction Loss based algorithm. The results for Satimage and
USPS datasets are shown in Fig. 3 and 4 respectively. For Satimage, the Max
Pegasos performs the best for label set of size 2. But for label set size 4, the
Average Prediction Loss based algorithms perform much better. For USPS, we
see that though for candidate labels set sizes 2 and 4, the Max Perceptron and
Max Pegasos perform better than our algorithms, for label set sizes 6 and 8, the
Average Prediction Loss based algorithms perform much better. The results for
MNIST are provided in Fig. 5. Here we observe the Max Perceptron and Max
Pegasos performs much better than the other algorithms for label set sizes 2 and
4. However, for label set sizes 6 and 8, the Average Pegasos performs best.
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Fig. 3. Satimage dataset results

Fig. 4. USPS dataset results

Overall, we see that for smaller labels set sizes, the Max Prediction Loss per-
forms quite well. However, the Average Prediction Loss shows the best for larger
candidate label set sizes. Studying the convergence and theoretical properties
of the non-convex Max Prediction Loss can be an exciting future direction for
exploration.
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Fig. 5. MNIST dataset results

6 Conclusion

In this paper, we proposed online algorithms for classifying partially labeled
data. This is very useful in real-life scenarios when multiple annotators give
different labels for the same instance. We presented algorithms based on the
Perceptron and Pegasos. We also provide mistake bounds for the Perceptron
based algorithm and the regret bound for the Pegasos based algorithm. We also
provide an experimental comparison of all the algorithms on various datasets.
The results show that though the Average Prediction Loss is convex, the non-
convex Max Prediction Loss can also be useful for small labels set sizes. Providing
a theoretical analysis for the Max Prediction Loss can be a useful endeavor in
the future.
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