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Abstract. Sequential recommendation leverages the temporal informa-
tion of users’ transactions as transition dependencies for better infer-
ring user preference, which has become increasingly popular in academic
research and practical applications. Short-term transition dependencies
contain the information of partial item orders, while long-term transi-
tion dependencies infer long-range user preference, the two dependencies
are mutually restrictive and complementary. Although some work inves-
tigates unifying both long-term and short-term dependencies for bet-
ter performance, they still neglect the fact that short-term interactions
are multi-folds, which are either individual-level interactions or union-
level interactions. Existing sequential recommendations mainly focus on
user’s individual (i.e., individual-level) interactions but ignore the impor-
tant collective influence at union-level. Since union-level interactions can
reflect that human decisions are made based on multiple items he/she has
already interacted, ignoring such interactions can result in the disability
of capturing the collective influence between items. To alleviate this issue,
we proposed a Joint Relational Dependency learning (JRD-L) for sequen-
tial recommendation that exploits both long-term and short-term pref-
erences at individual-level and union-level. Specifically, JRD-L combines
long-term user preferences with short-term interests by measuring short-
term pair relations at individual-level and union-level. Moreover, JRD-L
can alleviate the sparsity problem of union-level interactions by adding
more descriptive details to each item, which is carried by individual-level
relations. Extensive numerical experiments demonstrate JRD-L outper-
forms state-of-the-art baselines for the sequential recommendation.

Keywords: Sequential recommendation · Long-term user preference ·
Short-term user preference · Multi-relational dependency

1 Introduction

Nowadays, abundant user-item interactions in recommender system (RS) are
recorded over time, which can be further used to discover the patterns of users’
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behaviors [3,12]. Therefore, sequential recommendation is becoming a new trend
in academic research and practical applications, because it is capable of leverag-
ing temporal information among users’ transactions for better inferring the user
preference.

Dominant approaches aim to modeling long-term temporal information, cap-
turing holistic dependencies of user-item sequence, while short-term temporal
information which are essential in capturing partial dependencies are also signif-
icant. The long-term interaction is depicted in Fig. 1(a) where arrows indicate
the dependency among a user-item interaction sequence. As a representative
in long-term dependency modeling for general RS, factorization-based methods
plays an important role in long-term dependency sequential recommendation
for its remarkable efficiency [12]. Factorization-based methods model the entire
user-item interaction matrix into two low-rank matrices. Such measure that aims
to deal with the entire user-item interaction matrix is well-suited to train mod-
els that capture longer-term user preference profiles, however has limitations on
capturing short-term user interests. Two main drawbacks exist in factorization-
based methods for sequential recommendation: 1) they failed to fully exploit the
rich information of transition dependencies of multiple items; 2) modeling the
entire user-item dependencies causes enormous computing cost of growing size
of user-item interaction matrix when user has new interactions [8,9].

As for modeling users’ short-term interests, mainstream methods such as
Markov chain-based approaches [3] leverage transition dependency of items from
the individual-level. The short-term interaction at individual-level is shown as
Fig. 1(b). Therefore, individual-level dependencies can capture individual influ-
ence between a pair of single item, but may neglect the collective influence [19]
among three or more items denoted by union-level dependencies, as shown in
Fig. 1(c). Namely, the collective influence is caused by the dependency of a group
of items on a single item. To alleviate this issue, Yu et al. [19] leverages both
individual and collective influence for better sequential recommendation perfor-
mance. However, two main drawbacks exist in this methods: 1) the information
of individual and collective influence is simply added to the output proximity
score of a factorization-based model, leveraging none of the long-term informa-
tion; 2) The union-level interaction requires a group of items to be joint modeled
within a limit length of sequence, which may lead to sparsity problem.

In this paper, we propose a unified framework joint relational dependency
learning(JRD-L), which exploits long-term temporal information and short-
term temporal information from individual-level and union-level for improving
sequential recommendation. In particular, a Long Short-Term Memory (LSTM)
model [5] is used to encode long-term preferences, while short-term dependen-
cies existing in pair relations among items are computed based on the intermedia
hidden states of LSTM on both individual-level and union-level. LSTM hidden
states can carry the long-term dependencies information and transmit them to
short-term item pairs. Meanwhile, the individual-level relation and union-level
relation are modeled together to fully exploit the collective influence among
union-level pair relation and to address the sparsity problem. The framework
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of JRD-L is described in Fig. 3. Experiments on large-scale dataset demonstrate
the effectiveness of the proposed JRD-L. The main contributions of our paper
can be summarized as

– JRD-L considers user’s long-term preferences along with short-term pair-wise
item relations from multiple perspectives of individual-level and union-level.
Specifically, JRD-L involves a novel multi-pair relational LSTM model that
can capture both long-term dependency and multi-level temporal correlations
for better inferring user preferences.

– A novel attention model is also combined with JRD-L that can augment
individual-level and union-level pair relation by learning the contributions to
the subsequent interactions between users and items. Meanwhile, the weighted
outputs of attention model are fused together, contributing more individual-
level information to alleviates the sparse problem in the union-level dependency.

Fig. 1. (a) Long-term user-item interaction; (b) Individual-level item relevance; (3)
Union-level item relevance. The dependencies of an item on its’ subsequent item is
represented as the transition arrows.

2 Related Works

Many methods consider long-term temporal information to mining the sequential
patterns of the users’ behaviors, including factorziation-based approaches [12,14]
and Markov chains based approaches [2]. Recently, Deep learning (DL)-based
models have achieved significant effectiveness in long-term temporal information
modeling, including multi-layer perceptron-based (MLP-based) models [16,17],
Convolutional neural network-based (CNN-based) models [6,15] and Recurrent
neural network-based (RNN-based) models [1]. RNN-based models stand out
among these models for its capacity of modeling sequential dependencies by
transmiting long-term sequential information from the first hidden state to the
last one. However, RNN can be difficult to trained due to the vanishing gradient
problem [7], but advances such as Long Short-Term Memory (LSTM) [5] has
enabled RNN to be successful. LSTM is considered one of the most success-
ful variant of RNN, with the capability of capturing long-term relationships in
a sequence and suffering from the vanishing gradient problem. So far, LSTM
models have achieved tremendous success in sequence modelling tasks [20,21].
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With respect to short-term temporal information modeling, existing works on
modeling short-term temporal information mainly model pair relations between
items. The representative work is Markov Chain (MC)-based models [3]. The
objective of such model is to measure the average or weighted relevance values
between a given item and its next-interaction item, this only captures depen-
dencies between two single items. Tang et al. [15] propose a method capturing
collective dependencies among three or more items. However, the model in [15]
suffers from data sparsity problems. Therefore, in order to solve the sparsity
problem when merely modeling collective dependencies, Yu et al. [19] add indi-
vidual (i.e. individual-level) dependencies into collective (i.e. union-level) depen-
dencies, but their work is still insufficient for it does not leverage long-term
temporal information.

3 Joint Relational Dependency Learning

Before introducing the proposed method, we provide some useful notations as
follows. Let U and I be the user and item set, as shown in Fig. 2. A sequence of
interactions between U and I can be represented as S = {Sui

j : ui ∈ U}, and ui

is associated with a interaction sequence Sui
j = (Sui

1 , Sui
2 , ..., Sui

|Sui
j |). The goal of

JRD-L method is to predict the likelihood of the user preferred item eui
c , based

on the user’s behavior sequences Sui
j .

Fig. 2. (a) Sui
j = (Sui

1 , Sui
2 , ..., Sui

|Sui
j |) denotes a sequence of interactions between a user

ui and a given item set I. (b) Next-item recommendation aims to generate a ranking
list exposed to users by modeling user-item interaction sequence.

The overall architecture of JRD-L is shown in Fig. 3. Generally, JRD-L first
models long-termdependency over thewhole user-item interactiondataS = {Sui

j :
ui ∈ U} in aLSTMlayer. JRD-L takes themost recentn itemsbefore timepoint t of
the whole sequence as the short-term interaction sequence. Then, JRD-L computes
individual-level and union-level pair relations on the taken short sequence as short-
term dependencies modeling. Specifically, with the input of ui and Sui

j , JRD-L
composesui andSui

j into a single user-itemvector via anEmbedding layer, andout-
put eui

t as the user-item interaction embedding. A LSTM layer is then used to map
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Fig. 3. The overall framework of Joint Relational Dependency Learning (JRD-L).

the whole interaction sequence of user-item vector eui
1 , eui

2 , ..., eui

|Sui
j | into a sequence

of hidden vectors hui
1 , hui

2 , ..., hui

|Sui
j |. More importantly, we take one further step

from hui

|Sui
j | to derive hidden vector hui

ci encoding eui
c to model long-term sequential

information. Based on this, hui
ci is paired with the most recent n items before time

point t, i.e., hui
t−1, h

ui
t−2, ..., h

ui
t−n (t − n < |Sui

j |), individually. JRD-L then
passes the corresponding hidden status pairs of the most recent items to an atten-
tion layer, output the correlation likelihood Sindividual and Sunion, from which the
short-term individual-level and union-level pair relation is modeled, respectively.
At Last, Sindividual is concatenate with Sunion to obtain the correlation of eui

c with
the existing items for the next-item prediction task.

3.1 Skip-Gram Based Item Representation

By learning the item similarities from a large number of sequential behaviors
over items, we apply skip-gram with negative sampling (SGNS) [10] to generate
a unified representation for each item in an given user-item interaction sequence
Sui

j = (Sui
1 , Sui

2 , ..., Sui

|Sui
j |). Before exploiting users’ sequences dependencies, our

prior problem is to represent items via embedding layer in a numerical way for
subsequent calculations. In the embedding layer, the skip-gram with negative
sampling is applied to directly learn high-quality item vectors from users’ inter-
action sequences. The SGNS [10] generate item representations by exploiting
the sequence of interactions between users and items. Specifically, given an item
interaction sequence Sui

j = (Sui
1 , Sui

2 , ..., Sui

|Sui
j |) of user ui from the user-item

interaction sequence S, SGNS aims to solve the following objective function

arg max
vj ,wi

1
K

K∑

i=1

K∑

j �=i

log(σ(wT
i ∗ vj)

E∏

j=1

σ(−wT
i ∗ vk)) (1)
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K is the length of sequence Sui
j , and σ(wT

i ∗ vj)
E∏

j=1

σ(−wT
i ∗ vk) is computed by

negative sampling. σ(x) = 1/(1 + exp(−x)), wi ∈ U(⊂ R
m) and vi ∈ V (⊂ R

m)
are the latent vectors that correspond to the target and context representation for
items in Sui

j , respectively. The parameter m is the dimension parameter that is
defined empirically according to dataset size. E is the number of negative samples
per a positive sample. Finally, matrices U and V are computed to generate
representation of interaction sequences.

3.2 User Preference Modeling for Long-Term Pattern

To model the long-term temporal information in users’ behaviors, we apply a
standard LSTM [5] as in Fig. 3 to model the temporal information over the whole
user-item interaction sequence. For each user ui, we first generate an interaction
sequence Sui

with embedding items xj ∈ I based on U and V calculated by
Eq. (1) from embedding layer in Fig. 3, represented as Pu = eui

1 , eui
2 , ..., eui

|Sui
j |.

We use eui

|Sui
j | as the d-dimensions latent vector of item xj . Given the embedding

of the user-item interaction sequence eui
1 , eui

2 , ..., eui

|Sui
j | and the candidate next-

item eui
ci ∈ eui

c , we generate a sequence of hidden vectors hui
1 , hui

2 , ..., hui

|Sui
j | by

recurrently feeding eui
1 , eui

2 , ..., eui

|Sui
j | as inputs to the LSTM. The inner hidden

states in LSTM hidden layer are updated at each time step, which can carry the
long-term dependencies information and transmit them to item pairs. At each
time step, the next output of computing last hidden status hu

i is computed by

hu
i = g(eu

i , hu
i−1,WLSTM ) (2)

where g is the output function in LSTM and WLSTM are network weights of
eu
i and hu

i−1. Each eui
ci is appended separately to hui

1 , hui
2 , ..., hui

|Sui
j | calculated by

Eq. (2) to obtain the long-term-dependency-sensitive hidden states hui
ci .

hu
ci = g(eu

ci , h
u
|Su|,WLSTM ) (3)

Through LSTM long-term information modeling in Fig. 3, hui
c1 , hui

c2 , ..., hui

|cl| is out-
put by Eq. (3) and l is the total number of candidate next items. The sequence
hui
1 , hui

2 , ..., hui

|Sui
j | is calculated by Eq. (2) for the following multi-relational depen-

dency modeling stage.

3.3 Multi-relational Dependency Modeling for Short-Term Pattern

Long-term dependency models long-range user preferences but neglect impor-
tant pairwise relations between items, which is insufficient in capturing pairwise
relation from multiple level. Therefore our proposed method should unify both
short-term sequential dependency (at both individual-level and union-level) and
long-term sequential dependency. Inspired by [18], based on hui

c1 , hui
c2 , ..., hui

|cl|
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and hui
1 , hui

2 , ..., hui

|Sui
j | output by LSTM long-term information modeling stage,

we calculate pair relations on hui
t−1, h

ui
t−2, ..., h

ui
t−n (t − n < |Sui

j |) selected
from hui

1 , hui
2 , ..., hui

|Sui
j | . The task is then to learn the correlation between the

items in interaction sequence and candidate items. Rather than directly applying
the work [18] for modeling the short-term dependency, we introduce an atten-
tion mechanism to calculate pair relations from individual-level and union-level
to fully modeling the user preferences to different items. This is mainly because
the work [18] implies that all vectors share the same weight, discarding an impor-
tant fact that human naturally have different opinions on items. By introducing
attention mechanism, our work can distribute high weights on these items user
like more, thus improving recommendation performance.

Individual-Level Pairwise Relations. To capture the individual-level pair-
wise relations, the input of attention network for individual-level relation mea-
suring layer is hui

1 , hui
2 , ..., hui

|Sui
j | and hui

c1 , hui
c2 , ..., hui

|cl|, which is the output vec-

tor of LSTM long-term information modeling layer in Fig. 3. Specifically, hu
ci ∈

h(2) = (hui
c1 , hui

c2 , ..., hui

|cl|) (as indicated in Eq. 3) is paired with the hidden states
of the most recent n items before time point t, which is hui

t−1, h
ui

t−2, ..., h
ui

t−n

(t − n < |Sui
j |) from hui

1 , hui
2 , ..., hui

|Sui
j | calculated by Eq. (2). An attention net-

work is used for pairwise relation measuring. Let H ∈ R
n×l, Hij = h

(1)
i ∗ h

(2)
j

is a matrix consisting of output vectors of last LSTM layer, and n is the
size of h(1) = (hui

t−1, h
ui

t−2, ..., h
ui

t−n) in Eq. (2) and l is the size of h(2) =
(hui

c1 , hui
c2 , ..., hui

|cl|) in Eq. (3). The attentive weights α = (α1, α2, ..., αt−n) of the
items in interaction sequence are defined by a weighted sum of these output
vectors as α = softmax(ωT M) and M = tanh(H). We obtain M by a fully con-
nection layer activated by tanh activation function. ωT is a transpose vector of
attention network’s parameters. αi ∈ [0, 1] is the weight of hui

t−j and hui
t−j ∈ h(1).

After obtaining the weight αi of each existing item hu
t−j , the likelihood Sci ,

which describe how likely the exiting items in user-item interaction sequence
will interact with eui

ci in candidate next-interact items set, can be calculated by

sk = softmax(β1h
u
t−j + β2h

u
ci + b)

Sindividual =
n−1∑

i=1

αi · sk

(4)

where sk is the correlation score of the pair of item hu
t−j ∈ h(1) with hu

ci ∈ h(2),
Sci ∈ Sindividual is the output of attention network for individual-level relation
measuring layer. β1, β2 and b are LSTM parameters.

Union-Level Pairwise Relations. In order to model short-term union-level
pair relation, we predefine a sliding window to determine the length of col-
lective items set in existing user-item sequences. Based on the defined items
set, collaborate influence in union-level pair relation can be learned in attention
network for union-level relation measuring layer. Union-level pairwise relations
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learned by our method can capture collective dependencies among three or more
items, which complements to the individual-level relation for improving rec-
ommendation performance. In the union-level pairwise relation modeling stage,
the candidate length of collective items set is defined from θ = {2, 4, 6, 8}. To
learn the collaborate influence in union-level pair relation, we define a sequence
Q = {Q1, · · · , Qn−θ}, Qi = (hu

i , ..., hu
θ+i). For example, if θ = 2, we have

Q = {(hu
1 , hu

2 , hu
3 ), · · · , (hu

n−2, h
u
n−1, h

u
n)}. Then each Qi ∈ Q is paired with

h(2) = (hui
c1 , hui

c2 , ..., hui

|cl|) as in Eq. (3). Then union-level pairs pass through the
attention network for union-level relation measuring layer to obtain the weight
αi of each existing item hu

t−j , and output the correlation likelihood Sunion by

sm = softmax(β3Wi + β4h
u
ci + b)

Sunion =
n−1∑

i=1

αi · sm

(5)

hu
ci ∈ h(2), β3, β4 and b are model parameters. Then, Sunion is output by atten-

tion network for union-level pair relation measuring layer. Finally, Sunion is
concatenated with Sindividual from attention network for individual-level pair
relation measuring layer to calculate the correlation of eui

c with the existing
items for the next-item prediction task.

3.4 Optimization

To effectively learn the parameters of the proposed JDR-L model, our train-
ing objective is to minimize the loss between the predicted labels and the true
labels of candidate items. The optimization setup is, firstly, we define the item
that has the latest timestamp among the user-item interaction sequence as the
standard subsequent item, and define the rest of items as the non-subsequent
items. Secondly, the loss function is therefore based on the assumption that an
item (positive samples, i.e. standard subsequent item) this user liked will have
a relative larger value than other items (negative samples) that he/she has no
interest in. The loss function is then formulated as

arg min
Θ

N∑

i=1

(concatenate(S(i)
individual, S

(i)
union) − yi)2 +

λ

2
||Θ||2 (6)

where the parameter Θ = {WLSTM , ω, β1, β2, β3, β4, b}. S
(i)
individual in Eq. (4) rep-

resents the correlation likelihood output by attention network for individual-level
relation measuring layer. S

(i)
union in Eq. (5) represents the correlation likelihood

output by attention network for union-level relation measuring layer. yi is the
label of the candidate item and λ is a parameter for l2 regularization. Adap-
tive moment estimation (Adam) [11] is used to optimize parameters during the
training process.
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4 Experiments

4.1 Evaluation Setup

We conduct experiments to validate JDR-L for Top-N sequential recommenda-
tion task on the real-world dataset, i.e., Movie&TV dataset [19], that belongs
to Amazon data1. Since the original datasets are sparse, we firstly filter out
users with fewer than 10 interactions as in [19]. The statistical information of
the before-processing and after-processing of Movie&TV dataset is shown in
Table 1. Following the evaluation settings in [19], we set train/test with ratios
80/20.

Table 1. Statistical information of dataset.

Movies&TV Users Items Interactions

Before-processing 40929 51510 1163413

After-processing 35168 51227 1070645

We compare JRD-L with three baselines: BPR-MF [12] is a widely used
matrix factorization method for sequential RS; TranRec [4] models users as
translation vectors operating on item sequences for sequential RS); RNN-based
model (i.e., GRU4Rec [6] uses basic Gated Recurrent Unit for sequential RS);
FPMC [13] is a typical Markov chain method modeling individiual item interac-
tions; Multi-level item temporal dependency model (MARank) [19] models both
individual-level and union-level interactions with factorization model.

For fair comparisons, we set the dropout percentage as 0.5 [19]. The embed-
ding size d of Embedding layer is chosen from {32, 64, 128, 256}, which should
be equal to the hidden size h of LSTM. The regularization hyper-parameter λ is
selected from {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. We set the learning rate
of Aadm as the default number 0.001 [11]. As n is the most recent items for
short-term dependency, we choose n from {10, 20, 40, 60}. The length l of the
sliding window of union-level interaction is chosen from {2, 4, 6, 8}. We define
the length N of ranked list as 20. For the hardware settings, JRD-L model is
trained on a Linux server with Tesla P100-PCIE GPU.

4.2 Effect of Parameter Selection for JDR-L

This section will discuss how the parameters influence the JRD-L model per-
formance. We first explore the impact of n on the performance of JDR-L, the
comparison is set on different n chosen from {10, 20, 40, 60}. Secondly, we evalu-
ate the influence of the length l, l is chosen from {2, 4, 6, 8}. We use two metrics

1 https://www.amazon.com/.

https://www.amazon.com/
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to evaluate the model performance, which are MRR (Mean Reciprocal Rank)
- the average of reciprocal ranks of the predicted candidate items, and NDCG
(Normalized Discounted Cumulative Gain) - a normalized average of reciprocal
ranks of the predicted candidate items with a discounting factor, the compari-
son results of different setups are shown in Fig. 4. Figure 4 show that when other
hyperparameters are set equal, n = 10 achieves the best performance. These
observations, presumably, because sequential pattern does not involve a very
long sequence. Besides, l = 4 achieves the best performance, indicating that the
collective influence of 4 items is informative for the Movie&TV dataset.

Impact of the sequences length

Sc
or

e

0

0.01

0.02

0.03

0.04

0.05

0.06

N
10 20 40 60

NDCG@20
MRR@20

Impact of sliding window length

Sc
or

e

0

0.01

0.02

0.03

0.04

0.05

0.06

l
0 2 4 6 8 10

NDCG@20
MRR@20

Fig. 4. Results of JDR-L under different settings.

4.3 Ranking Performance Comparison

Ranking performance evaluates how the predicted Top-N lists act on the recom-
mendation system. Table 2 shows the comparison results of JDR-L with base-
lines. Encouragingly, we can find that JDR-L performs best with the highest
MRR and NDCG scores. Besides, baselines may not perform well as JDR-L.
Firstly, BPR-MF as matrix factorization-based method obtains less competitive
performance when compared with GRU4Rec. This is mainly because BPR-MF
considers user intrinsic preference over item while GRU4Rec models union-level
item interaction along with users’ overall preferences. Secondly, TranRec and
FPMC are two state-of-the-art methods exploiting individual-level item tempo-
ral dependency. Both of them outperform the other baselines, since they consider
individual-level item temporal dependency. This indicates that keeping directed
interaction between a pair of items is essential for sequential recommendation.
Thirdly, MARank considering individual-level and union-level interactions but
neglecting long-term dependencies performs worse than JDR-L. Above all, BPR-
MF performs the worst, this is mainly because BPR-MF models only intrinsic
preferences within short sequences of user-item interactions, neglecting long-term
user preferences and item interactions at individual-level and union-level.



178 X. Wang et al.

Table 2. Ranking performance.

Methods Movie&TV

Measures@20 MRR NDCG

BPR-MF 0.0089 0.0248

TranRec 0.0155 0.0392

GRU4Rec 0.0124 0.0344

FPMC 0.0162 0.0406

MARank 0.0170 0.0444

JDR-L 0.0179 0.0518

Improvement 5.2% 16.7%

4.4 Components Influence of JDR-L

JDR-L contains three components as indicated by Fig. 3, i.e. Long-term user-item
interaction modelling, individual-level item interaction modeling and union-level
item interaction modelling. To analyze the influence of different components to
the overall recommendation performance, we set different combinations of com-
ponents for evaluation, with the results been shown in Table 3. JDR-L with
three components performs best compared with other combinations as shown in
Table 3, verifying that our proposed JDR-L is optimal. As for other combinations,
LSTM-only obtains the lower MRR and NDCG scores compared with JDR-L,
this is because LSTM-only models long-term dependencies. LSTM+individual-
level item interaction outperforms LSTM+union-level item interaction, the main
reason is that union-level item interaction suffers from a sparsity problem as the
length of item set increases. Besides, both of LSTM+individual-level item inter-
action and LSTM+union-level item interaction obtain lower scores compared
with JDR-L model. This further indicates that the information in individual-
level item interaction should be combined into union-level interaction modeling
stage to solve the sparsity problem.

Table 3. Ranking performance on different components in JDR-L.

Methods Movie&TV

Measures@20 MRR NDCG

LSTM-only 0.0154 0.0447

LSTM+ individual-level item interaction 0.0147 0.0442

LSTM+ union-level item interaction 0.0142 0.0423

JDR-L 0.0178 0.0518



Joint Relational Dependency Learning for Sequential Recommendation 179

5 Conclusions

In this paper, we design a Joint Relational Dependency learning (JRD-L) for
sequential recommendation. JDR-L builds a novel model to unify both long-
term dependencies and short-term dependencies from individual-level and union-
level. Moreover, JDR-L can handle the sparsity problem when exploiting the
individual-level relation information from the sequential behaviors. Extensive
experiments on the benchmark dataset demonstrate the effectiveness of JRD-L.
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