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Abstract. This paper proposes a general-purpose anomaly detection
mechanism for Internet backbone traffic named GAMPAL (General-
purpose Anomaly detection Mechanism using Path Aggregate without
Labeled data). GAMPAL does not require labeled data to achieve a
general-purpose anomaly detection. For scalability to the number of
entries in the BGP RIB (Routing Information Base), GAMPAL intro-
duces path aggregates. The BGP RIB entries are classified into the path
aggregates, each of which is identified with the first three AS numbers
in the AS PATH attribute. GAMPAL establishes a prediction model of
traffic throughput based on past traffic throughput. It adopts the LSTM-
RNN (Long Short-Term Memory Recurrent Neural Network) model
focusing on periodicity in weekly scale of the Internet traffic pattern.
The validity of GAMPAL is evaluated using the real traffic information
and the BGP RIB exported from the WIDE backbone network (AS2500),
a nation-wide backbone network for research and educational organiza-
tions in Japan. As a result, GAMPAL successfully detects traffic increases
due to events and DDoS attacks targeted to a stub organization.

Keywords: Network Traffic Analysis · General-Purpose Anomaly
Detection · Internet Backbone · LSTM-RNN

1 Introduction

The Internet backbone network contains large amount of traffic originated from
various kinds of users and services. The traffic pattern is peaky and jaggy, which
changes every moment even in ordinary times. On the other hand, the Inter-
net backbone network might encounter anomalies caused by not only failures
of network facilities but also disturbances such as flash crowds from social phe-
nomenon and cyber attacks. Because the disturbances are basically observed
only in traffic pattern, it is difficult to find each anomaly from the operators’
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viewpoints. In order to operate the Internet backbone network stably, it is neces-
sary to establish a general-purpose mechanism for finding these anomalies from
traffic information.

Anomaly detection mechanism are categorized into two approaches:
signature-based approach and behavior-based approach. The signature-based
approach can detect known anomalies. It is suitable for real-time detection [1–
3]. However, it fails to detect unknown anomalies such as new attacks. The
behavior-based approach can detect unknown anomalies. Most of existing mech-
anisms use labeled data composed of anomaly and non-anomaly traffic informa-
tion [4]. However, it is difficult to collect such traffic information. In addition, the
labeled data causes overfitting to the target network. Therefore, the behavior-
based approach is not suitable for general-purposed anomaly detection. Also,
Most of existing anomaly detection mechanisms are specialized for a particu-
lar environment such as a DC (Data Center) for Internet Services [5] and SDN
(Software-Defined Networking) [4] or they focus on a particular anomaly such as
DDoS (Distributed Denial of Service) [6]. This paper proposes a general-purpose
anomaly detection mechanism for Internet backbone traffic named GAMPAL
(General-purpose Anomaly detection Mechanism using Path Aggregate without
Labeled data). GAMPAL establishes a prediction model of traffic throughput
based on the past traffic throughput and utilizes the LSTM-RNN (Long Short-
Term Memory Recurrent Neural Network) model focusing on periodicity in daily
or weekly scale of the Internet traffic pattern. For scalability to the number of
entries in the BGP RIB (Routing Information Base), GAMPAL introduces path
aggregates. The BGP RIB entries are classified into the path aggregates, each of
which is identified with the first three AS numbers in the AS PATH attribute.
GAMPAL generates predicted throughput for each path aggregate. In GAMPAL,
an indicator named NSD (Normalized Summation of Differences) is introduced,
which reflects the difference between the predicted throughput and the observed
throughput. Anomaly is detected if the NSD value is larger than the threshold.

This paper implements a parser of traffic information produced by NetFlow
version 9 and the BGP RIB in the MRT format [7] and a learning mechanism for a
prediction model of traffic throughput based on LSTM-RNN model. The learning
mechanism utilizes the cuDNN (CUDA Deep Neural Network) [8] library and
Chainer library [9] in order to support a GPU computing environment. The
evaluation utilizes the real traffic and the BGP RIBs exported from the WIDE
backbone network (AS2500) [10], a nation-wide backbone network for research
and educational organizations in Japan.

2 Related Work

Anomaly detection mechanisms are categorized into two approaches: signature-
based approach and behavior-based approach. The signature-based approach [1]
defines some rules to detect anomalies and applies these rules to logging outputs
of servers and network facilities. The behavior-based approach monitors activi-
ties of end hosts or communication sessions in a networked system and detects
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some changes compared with the past ones. Because it is almost impossible to
define rules to detect any kinds of anomalies in the Internet traffic [2,3], this
paper discusses the existing work based on the latter approach.

For enterprise/DC (Data Center) scale network, [5] proposes a performance
anomaly detection mechanism for cloud and Internet services. This mecha-
nism is based on statistical behavior analysis which includes two techniques:
a behavior-based technique with adaptive learning and a prediction-based tech-
nique with statistically robust control charts. [11] proposes a general-purpose
anomaly detection mechanism for an enterprise network. This mechanism is
based on CNN-based classification of visualization of traffic information. The
traffic information is categorized with the MCODT (Micro-Cluster Outlier
Detection in Time series) cluster algorithm and visualized by the SOM (Self
Organization Map) dimentionality reduction algorithm. [4] is an intrusion detec-
tion mechanism for SDN (Software-Defined Networking). This mechanism uti-
lizes GRU (Gated Recurrent Unit) RNN based classification which is learned by
the NSL-KDD[12] labeled data set.

For Internet scale network, [6] proposes a botnet traffic detection mecha-
nism based on traffic information in P2P networks. This mechanism includes
CNN-based classification and a decision tree method for enhancing anomaly
detection rate. [13] proposes a framework for real-time anomaly detection of
cyber-attacks focusing on the Internet traffic. This framework combines unsu-
pervised and supervised classification mechanisms. The former is based on an
auto-encoder neural network while the latter is based on a nearest neighbor
classifier model in which the manual operation is required.

Table 1 shows the comparison between GAMPAL and the existing mecha-
nisms [4–6,11,13]. There are four metrics as follows: (i) scalability to the Inter-
net, (ii) versatility to any kinds of anomalies, (iii) consideration on periodicity
of the traffic pattern especially for Internet-scale network, and (iv) necessity of
labeled learning data. In terms of scalability, [4] proposes an anomaly detection
for small scale network. The SOM used in [11] does not have an aggregation
mechanism because it focuses only on an enterprise network, not an Internet-
scale network, and does not consider scaling. In terms of versatility, [4–6] are
not versatile to anomaly types. [4] proposes an intrusion detection for SDN. [5]
focuses on anomalies in cloud and Internet services. [6] is a mechanism spe-
cialized for botnet detection. [11] proposes a general-propose anomaly detection
mechanism for an enterprise network. [13] proposes a general-purpose anomaly
detection mechanism. In terms of consideration on periodicity, [4,11] focus on
periodicity of traffic. [4] uses GRU RNN which can learn data for a longer period
than simple RNN. [11] uses MCODT, a clustering algorithm for time-series data.
[6,13] do not focus on periodicity of traffic. In terms of necessity of labeled data,
most of existing mechanisms use labeled data. [5] uses real-world datasets of
Web services and evaluates the validity of anomaly detection by comparing with
that of an open source package. [11] does not use labeled data. The detection
validity is evaluated by comparing the time when the proposed method detects
behavior changes and the time when an event occurs in the real-world. [13] uses
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Table 1. Comparison of related work.

Fig. 1. Overview of GAMPAL methodology.

labeled data in supervised classification and un-labeled data in unsupervised
classification. In contrast to existing mechanisms, GAMPAL satisfies the four
metrics.

3 Methodology

3.1 Overview of GAMPAL Methodology

Figure 1 shows the overview of the GAMPAL methodology. GAMPAL is an
anomaly detection mechanism using a prediction model based on the LSTM-
RNN model. First, the flow information and the BGP RIB used in flow informa-
tion aggregation are exported from an Internet backbone network (Fig. 1-(i)).
The observed matrix of aggregated flow size is generated from the flow infor-
mation and the AS PATH attribute of the BGP RIB (Fig. 1-(ii), (iii)). Next,
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Fig. 2. Histogram of AS PATH length.

the matrix of aggregated flow size is inputted to the LSTM-RNN (Fig. 1-(iv)).
As a result, the predicted matrix of aggregated flow size is outputted. GAM-
PAL detects anomalies with a metric which measures the difference between the
predicted flow size and the observed flow size (Fig. 1-(vi)).

3.2 Flow Data Aggregation with AS PATH

GAMPAL adopts throughput of each flow as a general-purpose metric of traf-
fic pattern in the Internet backbone network. A flow can be identified with the
five tuples, i.e., source/destination IP addresses, source/destination ports, and
protocol number. In a backbone network in which the BGP full routes are main-
tained, the order of the number of flows will be the square of the number of the
BGP full routes. To make GAMPAL scalable to the Internet, the observed flows
are mapped into groups named the path aggregates.

GAMPAL utilizes the AS PATH attribute of the BGP RIB to define the
path aggregates. At a traffic measurement node in a backbone network, a large
number of destination addresses close to the IP address of the measurement node
will be observed while a small number of destination addresses distant from the
IP address of the measurement node will be observed. Therefore, the observed
flows that have destination addresses close to the IP address of the measure-
ment node should be classified in more detail to effectively detect anomalies. In
contrast, it is sufficient to roughly classify the observed flows that have destina-
tion addresses distant from the IP address of the measurement node to detect
anomalies. Figure 2 shows the distribution of the AS PATH length of the IPv4
BGP full routes observed in AS2500 on June 17, 2018. The minimum value, the
maximum value, the mode value, and the median value are 0 (iGP routes), 44,
3, and 4, respectively. Since the distribution of the AS PATH length is heavily
biased to small values and has a long and thin tail, it is sufficient to define path
aggregates with a short AS PATH length.
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Fig. 3. Example of AS PATH aggregation.

GAMPAL adopts the mode value of the AS PATH length, i.e., 3, to define the
path aggregates. That is, the first three AS numbers of the AS PATH attribute
defines a single path aggregate and they are used as the path aggregate identifier.
Consequently, 727,261 IPv4 BGP full routes (as of in January 2019) can be
classified into 31,258 path aggregates.

Each observed flow is mapped to a single path aggregate to which the BGP
route for the destination address prefix of the observed flow is classified. Thus,
a path aggregate is composed of the path aggregate identifier and IP address
prefixes that are mapped to the path aggregate. As a result, the number of
observed flows can be aggregated to the number of the path aggregates at the
most.

3.3 Training Approach: The Day of the Week

An Internet backbone network, such as a nation-wid backbone network usually
consists of several branch NOCs (Network Operation Centers). As the Internet
traffic pattern per NOC typically has periodicity in a daily or weekly scale, there
are two approaches for training the prediction model: the weekly training model
and the day of the week training model. The former uses continuous data of a
week, e.g., from Sunday to Saturday, as the training data and predicts the traf-
fic of the next week. The latter uses past data on the same day of the week,
e.g., every Monday of the past two months, as training data. In a preliminary
measurement, we made prediction models based on both approaches and com-
pared them. As a result, the latter approach showed more valid prediction than
the former one. Furthermore, the traffic pattern of the commodity Internet in
Japan shows a weekly periodicity [14]. Therefore, GAMPAL adopts the latter
approach, i.e., the day of the week training approach.

3.4 Overview of Prediction Procedures

Figure 3 shows an example of AS PATH aggregation. First, GAMPAL creates the
path aggregate list with the flow aggregation method described in Sect. 3.2. As
shown in Fig. 3, the entries in the BGP RIB are classified into the path aggregates
with the first three AS numbers of the AS PATH attribute. For example, the
two entries of the prefix 1.0.4.0/24 and the prefix 1.0.6.0/24 in the BGP
RIB are classified to a single path aggregate (the Path aggregate 2 in the table
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Fig. 4. Example of flow data aggregation by AS PATH.

of the path aggregate list), because the first three AS numbers of the AS PATH
attribute are the same.

After creating the path aggregate list, the observed matrix of aggregated flow
size are created with the path aggregate list. As shown in Fig. 4, the observed
matrix of aggregated flow size has time-series entries, each of which contains the
sum of the flow size during the time period. The data size of an observed flow
is aggregated into an entry of the observed matrix of aggregated flow size. For
example, as shown in Fig. 4, the entries whose destination address matches the
prefix 1.0.4.0/24 and the prefix 1.0.6.0/24 in the Flow information table are
mapped to the Path aggregate 2 in the observed matrix of aggregated flow
size. Each entry of the observed matrix of aggregated flow size contains the sum
of the bytes for 5 min.

Finally, GAMPAL generates the predicted matrix of aggregate flow size per
path aggregate with the LSTM-RNN model.

4 Implementation

Figure 5 shows overall procedures of GAMPAL. This section describes the imple-
mentation of GAMPAL.

4.1 Implementation Environment

GAMPAL is implemented in Python 3.7.0 on a server running Ubuntu Server
18.04.1. Chainer 5.1.0 is used to implement LSTM for training and pre-
diction. nfdump version 1.6.17 [15] is used to convert the flow information.
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Fig. 5. Overall procedures of traffic prediction

bgpdump version 1.4.99.13 [16] is used to convert the BGP RIBs. GPU
(Graphics Processing Unit) is used for calculations of LSTM-RNN. The GPU
platform is CUDA 9.0.

4.2 Data Pre-processing

First, binary flow information and binary BGP RIB exported from the Internet
backbone network are converted to human readable flow information and human
readable BGP RIB (Fig. 5-(1),(2a),(2b)).

Processing of NetFlow. The NetFlow, which is used as the flow information
format in this paper, is recorded in a binary file format. The binary flow infor-
mation contains time stamp, five tuples, and data size of the flow. It is converted
to a text file, the human readable flow information, using nfdump (Fig. 5-(2a)).
Because the binary file is recorded per hour, the text file also contains flow
information for an hour.

Processing of BGP RIB. The BGP RIB is recorded in the MRT format. This
binary BGP RIB is converted to the human readable BGP RIB using bgpdump



204 T. Wakui et al.

Fig. 6. Examples of BGP RIB, Prefix file, and AS PATH file.

(Fig. 5-(2b)). Next, the AS PATHs are extracted from the human readable BGP
RIB and saved in the AS PATH file per day (Fig. 5-(3a)). Prefixes are extracted
from the human readable BGP RIB and saved in the Prefix file per day (Fig. 5-
(3b)). Figure 6 shows a part of the human readable BGP RIB, a part of the
AS PATH file per day, and a part of the Prefix file per day. The procedure
numbers in Fig. 6 correspond to those in Fig. 5. From each BGP RIB entry, the
AS PATH is extracted and saved in the AS PATH file per day while the prefix
is extracted and saved in the Prefix file per day. Thus, an entry in the AS PATH
file per day corresponds to the entry in the Prefix file per day at the same line
number. For example, as shown in Fig. 6, the first line of the AS PATH file per
day (4713 2914 13335 13336) corresponds to the first line of the Prefix file per
day (1.0.0.0/24).

4.3 Generating Path Aggregate Identifier List and Matrix of
Aggregate Flow Size

The blue area in Fig. 5 shows the procedure after the pre-processing of the flow
information. This section describes the definition and generation of a path aggre-
gate identifier list, generation of a matrix of aggregate flow size (Fig. 5-(4)–(7)).

Generating Path Aggregate Identifier List. The AS PATH file per day
created from the human readable BGP RIB of the latest date in the training
data is used to define the path aggregate identifier and create the path aggregate
identifier list. The path aggregate identifier list includes all of the aggregated
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AS PATH in the BGP RIB without duplication (Fig. 5-(4a)). As described in
Sect. 3.2, the combination of the first three AS numbers is defined as the path
aggregate identifier. Figure 7 shows a part of the path aggregate identifier list
created from the AS PATH file on May 19, 2018. For example, the line 1 of the
Path aggregate identifier list in Fig. 7 shows a path aggregate identifier defined
with AS4713, AS2914, and AS13335.

Fig. 7. Example of the path aggregate identifier list.

Generating Observed Matrix of Aggregated Flow Size. Figure 8 shows
the structure of the observed matrix of aggregated flow size. It has a two dimen-
sional structure. Each row of the matrix corresponds to a specific time period
(e.g., 5 min). Each column of the matrix corresponds to a path aggregate. Each
element of the matrix contains the sum of bytes of the corresponding flow for
the time period.

Fig. 8. The structure of observed matrix of aggregated flow size.

Figure 8 shows that the number of the path aggregates in the observed matrix
of aggregated flow size is N . GAMPAL adopts 5 min as the time period of each
row. In case that the observed matrix of aggregated flow size are divided per
day, the number of rows is 288 as shown in Fig. 8.
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Fig. 9. Overview of path aggregate index generation.

Figure 9 shows a detailed diagram for generating the path aggregate index,
which is the index in the AS PATH file per day and the Prefix file per day. The
procedure numbers in Fig. 9 correspond to those in Fig. 5. The RB-tree RIB file is
converted from the corresponding Prefix file and the AS PATH file (Fig. 9-(4a),
(4b)). The RB-Tree RIB file adopts a self-balancing binary search tree (Red-
Black-Tree [17]) in which the prefixes are the main values. Since the number of
prefixes in the BGP RIB will be in the order of the number of the BGP full routes,
it is necessary to reduce the search time for the destination IP addresses in the
human readable flow information. The observed matrix of aggregated flow size
is generated from the human readable flow file and the RB-tree RIB file of the
same date. The destination IP address of each flow in the human readable flow
file is queried with the prefix in the RB-tree RIB (Fig. 9-(5)). When the prefix
is found, the AS PATH corresponding to the prefix is outputted (Fig. 9-(6)) and
the path aggregate identifier list (Fig. 9-(7a)). Finally, as shown in Fig. 10, the
observed matrix of aggregated flow size is generated from the path aggregate
identifier list and the human readable flow information. The path aggregate
index in the path aggregate identifier list and the time stamp in the human
readable flow information are used to select the element in the observed matrix
of aggregated flow size (Fig. 5-(7a), (7b)). The sum of bytes of the flow is added
to the corresponding element of the observed matrix of aggregated flow size.

4.4 Training of Traffic Prediction Model

The LSTM-RNN model for traffic prediction is implemented with Chainer [9],
an open source deep learning framework and the NstepLSTM class, a class for
supporting LSTM-based learning in Chainer. The implementation is optimized
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Fig. 10. The matrix of aggregated flow size generation.

Fig. 11. Input data to LSTM-RNN and training.

to use cuDNN (CUDA Deep Neural Network) [8] library for a GPU computing
environment.

In the LSTM-RNN model, the time period of the learning data must be
longer than that of expected periodicity. As described in Sect. 3.3, since the
traffic pattern of the commodity Internet in Japan shows weekly periodicity, it
is sufficient to focus on daily periodicity in GAMPAL. Because Sect. 4.3 describes
that each element in the observed matrix of aggregated flow size is the sum of
the bytes per path aggregate within 5 min, the number of rows of the observed
matrix of aggregated flow size is 288. Therefore, the time period of expected
periodicity is 288 in GAMPAL.

Figure 11 shows the way to input the elements of a path aggregate in the
observed matrix of aggregated flow size. Suppose that the value of L is larger
than the expected periodicity (i.e., 288 elements in the matrix of aggregated flow
size) of the traffic pattern. The learning window specifies L−1 out of L elements.
The specified elements can be inputted and the remaining element is compared
with the output. The parameters for LSTM-RNN are adjusted according to the
result of this comparison. The learning window slides forward one by one.
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5 Evaluation

5.1 Datasets

In the evaluation, the flow data (NetFlow) and the BGP RIB exported from
WIDE backbone Network (AS2500) [10] are used. The backbone network is
a nation-wide Layer-2 and Layer-3 network and includes branch NOCs, some
of which provide connectivity to stub organizations such as universities. The
backbone network is not only used as an external connection network for each
organization, but also frequently used as a testbed for experimentation of new
technologies. NetFlow is observed at a branch NOC accommodated in a univer-
sity and the BGP RIB is observed at a route server in the backbone network.

5.2 Evaluation Indicator

GAMPAL predicts throughput, i.e., the number of bytes per unit time, for each
of approximately 30,000 path aggregates. The number of bytes per unit time
varies for each path aggregate. Some path aggregates have zero to several bytes
while some path aggregates record hundred thousands or millions bytes. It is
necessary to define an indicator that can evaluate these path aggregates in the
same scale. Therefore, indicators with different scales depending on the data
such as MSE (Mean Square Error) are not suitable. In addition, the measured
and predicted values may include zero, which means there was no flow for 5 min.
Therefore, indicators that cannot be calculated with data containing zero such
as RMSPE (Root Mean Square Percentage Error) are not suitable. Thus, this
paper defines an indicator named NSD (Normalized Summation of Differences)
where mi denotes the i th observed value, pi denotes the i th predicted value,
and T denotes the number of input values.

NSD =
∑T

i=1 |mi − pi|
∑T

i=1 max(mi, pi)
(1)

NSD is the ratio of the sum of the differences between the observed and pre-
dicted values to the sum of the larger value of the observed and predicted values.
NSD takes a value between 0 and 1 regardless of the scale of value. Also, NSD
is the indicator that can be calculated even if the observed or predicted value
is zero. NSD shows how much the predicted value is different from the observed
value, that is, it shows the validity of prediction. If the difference between the
observed value and the predicted value is small, the NSD value is small.

5.3 Validity of General-Purpose Anomaly Detection

In the evaluation, the NSD value is calculated for normal and abnormal days. On
normal days, there seems to be no incident affecting the network. On abnormal
days, an incident may have occurred. In the evaluation, June 24–25, 2018, and
June 22–24, 2019 are selected as normal days, while October 17, 2018, November
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Table 2. Dates of event traffic and normal traffic.

Attribute Target date of evaluation Training data

Normal Jun. 24, 2018 May 6, 13, 20, 27, Jun. 3, 10, 17, 2018

Normal Jun. 25, 2018 May 5, 14, 21, 28, Jun. 4, 11, 18, 2018

Event Oct. 17, 2018 Sep. 5, 12, 19, 26, Oct. 3, 10, 2018

Event Nov. 22, 2018 Oct. 11, 18, 25, Nov. 1, 8, 15, 2018

Table 3. Dates of DDoS traffic and normal traffic.

Attribute Target date of evaluation Training data

Normal Jun. 22, 2019 Jun. 1, 8, 15, 2019

Normal Jun. 23, 2019 Jun. 2, 9, 16, 2019

Normal Jun. 24, 2019 Jun. 3, 10, 17, 2019

DDoS Jul. 6, 2019 Jun. 8, 15, 22, 2019

DDoS Jul. 7, 2019 Jun. 2, 9, 16, 23, 2019

DDoS Jul. 8, 2019 Jun. 3, 10, 17, 24, 2019

22, 2018, and July 6–8, 2019 are selected as abnormal days. Using the data
on those days, this paper tries to detect event traffic and DDoS attacks. On
October 17, 2018, connection failure to YouTube [18] occurred. On November
22, 2018, there was a campus festival of the university that accommodates the
measurement NOC. At the end of June 2019, a UDP reflection/amplification
attack using ARMS (Apple Remote Management Service) was observed around
the world [19]. This attack was also observed at the university. The university
blocked communications for ARMS on July 9, 2019. Therefore, it is assumed
that an abnormal state due to the attack was observed just before July 9, 2019.
Tables 2 and 3 show the normal and abnormal dates and their training data. If
the prediction model created with the data of the normal days is used to predict
the data of the abnormal days, the difference between the measured data and
the predicted data should be large.

Figure 12 shows the result of the evaluation. The value on top of a bar is
the average NSD value of all “path aggregates” on each day. The NSD values
on the days marked as “Event” (October 17 and November 22, 2018) are larger
than those of the normal days. The NSD values on the days marked as DDoS
attack are larger than those of the normal days. The NSD values on June 22–25
are all below 0.40, but those on July 6–8 are all above 0.43. Furthermore, the
maximum NSD value for the six days is observed on July 8 (0.443), the day
before the university settled the DDoS attacks. This indicates that the flows on
the abnormal days cannot accurately be predicted. In other words, the behavior
on the abnormal days was different from that of the normal days. This result
shows that GAMPAL can detect anomalies caused by the event traffic and the
DDoS attack.
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Fig. 12. Result of evaluation.

6 Conclusion

This paper proposed a general-purpose anomaly detection mechanism for Inter-
net backbone traffic based on a LSTM-RNN-based prediction model. To make
GAMPAL scalable to the number of the Internet full routes, each flow is mapped
to a single path aggregates identified with the first three AS numbers of the
AS PATH attribute of the BGP RIB. This paper evaluated the validity of GAM-
PAL using the observed flow data and the BGP RIBs exported from the WIDE
backbone network (AS2500), a nation-wide backbone network for research and
educational organizations in Japan. The evaluation showed that when a stub
organization of the backbone network suffers from DDoS attacks, the difference
between the predicted and observed values is significantly different. Therefore,
GAMPAL properly reflected the state of the Internet backbone with only the
traffic throughput.
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