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Abstract. Scientific computations are expected to be increasingly dis-
tributed across wide-area networks, and Message Passing Interface (MPI)
has been shown to scale to support their communications over long dis-
tances. Application-level measurements of MPI operations reflect the
connection Round-Trip Time (RTT) and loss rate, and machine learning
methods have been previously developed to estimate them under deter-
ministic periodic losses. In this paper, we consider more complex, ran-
dom losses with uniform, Poisson and Gaussian distributions. We study
five disparate machine leaning methods, with linear and non-linear, and
smooth and non-smooth properties, to estimate RTT and loss rate over
10 Gbps connections with 0–366 ms RTT. The diversity and complexity
of these estimators combined with the randomness of losses and TCP’s
non-linear response together rule out the selection of a single best among
them; instead, we fuse them to retain their design diversity. Overall, the
results show that accurate estimates can be generated at low loss rates
but become inaccurate at loss rates 10% and higher, thereby illustrating
both their strengths and limitations.

Keywords: Round Trip Time · Loss rate · Message Passing
Interface · Machine Learning · Generalization bounds · Regression ·
Information fusion

1 Introduction

Computations distributed across geographically dispersed facilities, such as mul-
tiple supercomputer sites connected over a wide-area network, are of increasing
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Fig. 1. RTT estimates with lowest RMS error of individual and fuser methods.

interest in science applications. Their execution times are effected by network
latencies and loss processes, often in a complex way, due to the close coupling
between computations and communications in these applications. Recently, Mes-
sage Passing Interface (MPI) has been shown to be effective in supporting com-
munications over wide-area connections, including ones long enough to span the
globe, under external packet loss rates up to 20% [14]. In contrast with execu-
tions at a single facility, these distributed computations need to account for the
longer and more varied executions times of MPI operations to avoid inefficien-
cies due to unbalanced computing and networking operations; for example, MPI
join operation over connections with wide ranging latencies will be delayed by
the longest. Motivated by such considerations, Round Trip Times (RTT) and
loss rates of wide-area connections are estimated using execution time measure-
ments of MPI primitives in distributed computations [15]. A main contributor
to these execution times is the Transmission Control Protocol (TCP) which is a
dominant underlying transport mechanism of MPI for wide-area connections. In
particular, at increased loss rates and randomness, the execution time variations
are dominated by TCP’s highly non-linear response dynamics [7,9].

Machine Learning (ML) methods have been developed for a number of net-
working tasks for science data flows, for example, detecting flow anomalies [6] and
classifying elephant and mice flows [4]. In particular, ML methods are developed
to estimate the connection RTT and loss rate under deterministic periodic losses
in [15] for 10 Gbps emulated connections with 0–366 ms RTT; these connections
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Table 1. RMS errors of RTT estimation by individual and fuser methods.

Loss type EOT GPR LR RT SVM LR-F GPR-F Δ̃LR-F Δ̃GPR-F

Periodic 109.20 87.78 102.27 95.31 103.49 92.94 85.50 −1.63 2.28

Poisson 101.89 91.90 104.32 104.31 120.35 89.85 85.69 2.05 6.21

Gaussian 84.33 73.13 2020.55 73.28 137.29 88.22 87.06 −15.06 −13.92

Uniform 109.11 99.59 106.47 107.62 121.81 90.12 84.90 9.46 14.69

represent local, cross country, continental and round the earth distances. In this
paper, we consider more realistic, complex scenarios with random losses, in par-
ticular under unform, Poisson and Gaussian distributions up to 20% loss rates, to
study the strengths and limitations of ML methods. We study five disparate ML
methods, with linear and non-linear, and smooth and non-smooth properties, to
estimate connection RTT and loss rate. They include four non-linear estimators,
namely, smooth Support Vector Machine (SVM) and Gaussian Process Regres-
sion (GPR), and non-smooth Ensemble of Trees (EOT) and Regression Trees
(RT), in addition to the baseline Linear Regression (LR) method. The diversity
and complexity of these estimators combined with the randomness of losses and
TCP’s non-linear response rule out the identification of a single best among the
estimators. Analytical results establish the finite-sample limits in asserting the
performance superiority of any such method based on samples [5]. In particular,
the training error is an insufficient indicator of estimator’s performance due to
potential over-fitting that leads to poor generalization performance on future
datasets.

Fig. 2. Index representing increase of loss
rate and RTT from left to right.

Over-fitting is often specific to an
estimator method and is less likely
to occur across estimators of radically
different designs. In several cases, by
fusing diverse estimators both the
performance and diversity of design
are preserved [10]. However, the fused
estimators are also subject to finite
sample limits since they are also esti-
mators. We study linear regression
fusion (LR-F) and GPR fusion (GPR-
F) methods, and our results show
that the latter achieves lowest Root
Mean Square Error (RMSE) among
all estimators for RTT in three out
of four scenarios. We develop ana-
lytical characterization of the perfor-
mance improvements of fused esti-
mates over individual RTT estimates
under finite sample, distribution-free
framework [17].
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By using MPI execution times as the independent variable, we formulate the
problem of estimating RTT and loss rate as a regression estimation problem. The
overall results are illustrated using RTT estimates with smallest RMSE among
individual methods and fusers in Fig. 1 for four loss rates. In each plot, datasets
are concatenated at four loss rates in increasing order and at each loss rate RTT
is increased left to right, and measurements are repeated 10 times at each RTT
value as shown in Fig. 2. Among individual RTT estimates, GPR has the lowest
RMSE in all four scenarios, and GPR-F fuser achieved even lower RMSE in three
out of four loss scenarios, as shown in Table 1 while encompassing the design
diversity of individual methods. Overall, our results show that accurate estimates
can be generated at low loss rates but become inaccurate at loss rates 10% and
higher, wherein the datasets appear much too complex for these methods (as in
the case of deterministic periodic losses [15]). In addition, they reveal some subtle
performance effects including over-smoothing by some estimators in achieving
lower RMSE, and bleeding effects of RTT in loss rate estimates.

The organization of this paper is as follows. The testbed used in collecting
MPI execution time measurements is described in Sect. 2. An analytical for-
mulation of the underlying regression problem is presented in Sect. 3. Various
datasets of execution time measurements are qualitatively described in Sect. 4.
RTT estimators are described in Sect. 5, wherein five different ML methods are
described in Sect. 5.1 and two fusers are described in Sect. 5.2. Generalization
equations of the fusers for RTT estimation are described in Sect. 6. Loss rate
estimators are described in Sect. 7. The performance of the estimators is quali-
tatively interpreted in the context of datasets at lower and higher loss rates in
Sect. 8. A summary of results and directions for future work are described in
Sect. 9.

2 Test Configuration

A computing cluster with InifiniBand (IB) interconnect is expanded to consti-
tute a testbed to run MPI codes across the wide-area Ethernet connections.
Additional Ethernet Network Interface Cards (NIC) are installed in two cluster
computing nodes (tait1 and tait2), which are connected to Ethernet switches and
a hardware-based Ethernet emulator in the configuration shown in Fig. 3. The
IB connections of the cluster are subject to 2.5 ms latency limit, and hence MPI
measurements over IB are not indicative of the performance over long distance
connections. Specifically, the shorter distances combined with credit-based IB
protocol flow control do not adequately reflect the complex variations of TCP
over wide-area connections, particularly under packet losses. Furthermore, due
to their latencies, wide-area networks are more prone to more losses compared
to IB networks.
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Fig. 3. Configuration for long Ethernet
connection between compute nodes of IB
cluster.

Typical wide-area connections con-
sist of a number of switches and
routers whereas IB connections have
fewer IB switches. This testbed con-
nection consists of two Ethernet
switches between the source comput-
ing node and a port of the emu-
lator, which reflects a site connec-
tion. Similarly at the other end, the
connection consists of two Ethernet
switches between the second port of
the emulator and destination com-
puting node. Thus, this symmetric
end-to-end connection consists of four
Ethernet internal cross-connections,
six short Ethernet segments and one
emulated long distance Ethernet con-
nection with variable latency, loss rate
and type of loss distribution.

ANUE/Ixia hardware-based emulator is used to collect MPI measurements
over Ethernet connections with 11 Round Trip Times (RTT) in 0–366 ms range.
These RTT values are strategically chosen to represent three ranges: (a) smaller
values represent cross-country connections, for example, computing facilities dis-
tributed across the US, (b) 93–183 ms represent inter-continental connections,
and (c) 366 ms represents a connection spanning the globe, which is mainly used
as a limiting case. External periodic and random packets losses are introduced
using ANUE/Ixia devices at four different loss rates. These emulators delay the
packets as per the specified RTT value, and thus closely emulate the physical long
distance path. Equally importantly, these emulations closely match TCP dynam-
ics of physical connections with corresponding RTTs, which is a critical factor in
assessing MPI performance over long distance connections. In particular, these
emulations lead to different TCP dynamics and responses under deterministic
(periodic) and random losses of Ethernet segments [14], which result in a wider
spread of the execution times at high loss rates under random losses (Sect. 8).

3 Analytical Formulation

We now provide a formal description of the underlying estimation problems
to support subsequent analytical treatment of RTT and loss rate estimation
methods. Let E be a random variable representing the execution time of MPI
Send Receive primitive; it is distributed according to the joint probability dis-
tribution PE,R,L, where R and L are the random variables representing RTT
and loss rate, respectively. In general, the distribution PE,R,L is quite complex
since it depends on the properties of the network connection and host systems,
and also the software stack consisting of the operating system, networking and
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MPI modules. Given an execution time measurement E = e, the conditional
distribution PR,L|e = PR,L|E=e, characterizes the distribution of RTT and loss
rate at this value e. Then, RTT-regression function fR is defined as the expected
value of RTT at E = e given by

fR(e) =
∫

RdPR,L|e,

which is averaged over both R and L at each e. The loss-regression function fL

is the expected value of the loss rate at E = e, which is similarly given by

fL(e) =
∫

LdPR,L|e.

In general, these regressions cannot be obtained even in theory since the underly-
ing distribution PE,R,L is unknown. In stead, ML methods are employed to esti-
mate their approximations using a training sample (Ei, Ri, Li), i = 1, 2, . . . , l,
wherein Ei is the execution time measured over a connection with RTT Ri

and loss rate Li. The distributions of the connection parameters R and L are
determined by the design of connection configurations, and are fixed while the
measurements of E are repeated. Thus, the distribution of E encompasses fac-
tors due to the properties of physical connection parameters as well as operating
system, TCP and MPI modules.

Then, RTT and loss rate estimation problems can be cast as estimating
the regression functions fR and fL, respectively, using measurements. We con-
sider that RTT-regression estimate f̂R

A is obtained by method A ∈ A =
{EOT,GPR,LR,RT,SVM,LR−F,GPR−F} using the measurement pairs (Ei, Ri), i =
1, 2, . . . , l. Similarly, the loss-regression estimate f̂L

A is obtained by method
A ∈ A using the measurement pairs (Ei, Li), i = 1, 2, . . . , l. At a given exe-
cution time E = e, f̂R

A (e) and f̂L
A(e) are the estimates of RTT and loss rate,

respectively, provided by method A.

4 Execution Time Measurements

The execution times of MPI Send Receive operations collected at the application-
level are shown as a function of RTT in Fig. 4 for loss rates, 0.1, 1, 10 and 20%, of
externally induced losses under four loss scenarios, one deterministic periodic and
three random, namely uniform, Poisson and Gaussian. Their increasing trend as
a function of RTT is evident at lower loss rates, 0.1% and 1%, but it becomes
less prominent at 10% loss rate, and essentially disappears at 20% loss rate as
outliers dominate. Overall, the execution times as well as their variations increase
as loss rate is increased, which is an indication of the increased complexity of
their estimation at higher loss rates.

In terms of losses, the execution times are shown as function of loss rates
0.1, 1, 10 and 20% in Fig. 5 under the four loss scenarios. The measurements
at any loss rate encompass all 11 RTT values, and 10 repeated measurements
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Fig. 4. Execution times of MPI Sendrecv operations as function of RTT under four
external loss scenarios, namely, periodic, uniform, Poisson and Gaussian.

Fig. 5. Execution times of MPI Sendrecv operations as function of loss rate under four
external loss scenarios, namely, periodic, uniform, Poisson and Gaussian.
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at each RTT value. Their increasing trend as a function of loss rate is evident
overall but is sharper for periodic losses and is more diffused with overlaps across
loss rates in all three random loss scenarios. The ranges of execution times are
much wider for random losses compared to periodic losses. Also, the execution
times as well as their variations increase overall as loss rate is increased for
deterministic periodic loss scenario. But, in random loss scenarios the variations
are more subtle: their spread is similar at all loss rates except at 20%, wherein
a few measurements are very large, which indicate the complexity of loss rate
estimation in these scenarios.

Fig. 6. Traces of execution times in seconds of MPI Sendrecv operations under four
external loss cases.

5 RTT Estimators

We present RTT estimates in the form of traces that are indexed by groups of 440
measurements that correspond to increasing loss rates, and within each group we
have 11 sub-groups that correspond to increasing RTT values as shown in Fig. 2;
each sub-group corresponds to 10 repeated measurements at a fixed pair of loss
rate and RTT. The 440 measurements for each loss scenario shown in Fig. 6 will
be used to compare qualitatively with the corresponding RTT estimate traces.
We utilize the regression estimation codes from matlab statistics toolbox.

5.1 Five Estimators

The five estimation methods are chosen to reflect different characteristics of the
underlying regressions, namely, smooth and non-smooth functions, respectively.
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Fig. 7. Periodic losses.

Fig. 8. Uniform losses.
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GPR and SVM with Gaussian kernels [16] are based on non-linearly transform-
ing the feature space X into regression space of Y . They both provide smooth
regression functions fGPR and fSVM, and their respective function classes FGPR

and FSVM consist of smooth functions as a result of Gaussian kernels. EOT [2,8]
method is based on boosting of a collection of classification trees that are cus-
tomized to fit the training data using the AdaBoost method. RT [3] methods is
also based on trees that are customized to fit the training data. They both lead
to a highly non-smooth regression functions fEOT and fRT, and their function
classes FEOT and FRT consists of a collection of decision tree. LR is a smooth
and linear method and leads to fLR from the function classes FLR, which is
effective in RTT estimation under no losses [15] but is quite limited under losses
as indicated by its RMSE in Tables 1 and 2.

The estimators under periodic, uniform, Poisson and Gaussian loss scenarios
are shown in Figs. 7, 8, 9 and 10, respectively. Under periodic and Gaussian
losses, all estimates are more accurate at 0.1% and 1% loss rate but are inaccurate
at higher loss rates; in particular, they capture the increasing trends in RTT at
low loss rate but exhibit high variation at 10% and 20% loss rate. Under unform
and Poisson losses, GPR method does not capture the increasing RTT trend at
any loss rate, while other non-linear estimates captured it. Interestingly, GPR
achieved lowest RMSE among individual estimators which is due to the inclusion
of measurements at higher loss rate that resulted in “averaging” across all loss
rates. This undesirable artifact of low RMSE but less accurate estimate at low
loss rates is illustrated in Figs. 8 and 9. LR and SVM methods have highest and
second highest RMSE among the twenty cases in Table 1.

Fig. 9. Poisson losses.
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Fig. 10. Gaussian losses.

5.2 Estimator Fusers

The estimators from five individual methods are used as 5-dimensional input to
a fuser which produces RTT as its output. The linear regression fuser (LR-F) is
a linear combination of the individual estimators, and the GPR fuser (GPR-F) is
obtained using GPR method based on the outputs of five estimators correspond-
ing to the training sample. GPR-F achieved lower RMSE than best individual
estimator GPR in all except under Gaussian losses, whereas LR-F has lower
RMSE for Poisson and uniform losses. As shown in Fig. 1, the fused estimates
were able to capture the increasing RTT trend at lower loss rates while achiev-
ing lower RMSE error than GPR under uniform and Poisson losses, unlike GPR
estimator with lowest RMSE among individual estimators.

6 Generalization Equations for Fused Estimates

We consider five individual estimates, indexed by A ∈ AI =
{EOT,GPR,LR,RT,SVM}, such that the fuser input vector X consists of five real-
valued components, XA, A ∈ AI , and output Y is a real-valued estimate of
RTT. RMSE values in Table 1 have been used to compare the performance of
fusers and individual estimators in previous sections, which are subject to sta-
tistical variations since they are computed based on a sample. We now derive
confidence bounds for these RMSE values which provide analytical justification
for their use. For simplicity of presentation of analytical results, we use MSE in
place of RMSE following the common practice in finite sample theory [17].
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6.1 Regression Problem: Finite Sample Generalization

In a generic regression estimation problem the feature vector X ∈ �d and the
output vector Y ∈ � are distributed jointly accordingly to an unknown distri-
bution PX,Y . The expected error of a regression function f is

I(f) =
∫

(f(X) − Y )2 dPX,Y .

The expected best regression estimator f∗ minimizes I(.) over F , i.e., I(f∗) =
min
f∈F

I(f). The empirical error Î(f) based on training data (Xi, Yi), i = 1, 2, . . . , l,

is defined as

Î(f) =
1
l

l∑
i=1

(f(Xi) − Yi)2

It is an approximation of I(f) computed based on the training data. The empir-
ical best regression estimator f̃ minimizes Î(.) over F , i.e., Î(f̃) = min

f∈F
Î(f).

The joint distribution PX,Y of data is complex, domain specific, and is only
partially known. In our context, it depends on the finer details of the underlying
software and hardware components, which may manifest as additional random
variables. For an individual estimator A ∈ AI , X and Y correspond to execution
time E and RTT R, respectively, and PX,Y corresponds to PE,R,L which involves
additional random variable of the loss rate L. For fusers, X and Y correspond
to 5-dimensional vector consisting of outputs of estimators and RTT R, respec-
tively. In general, an optimal f∗ cannot be computed precisely with probability
one even in principle, since PX,Y is either unknown or not computationally con-
ducive. Under certain conditions, Vapnik’s generalization theory [17] establishes
that there exists a confidence function δ(.) such that for a “suitable” estimator
f̂ obtained from training data we have

P
l
X,Y

[
I(f̂) − I(f∗) > ε

]
< δ(ε, ε̂, l) (1)

where ε, ε̂ > 0, 0 < δ < 1, and Î(f̂) = min
f∈F

Î(f)+ ε̂. This condition ensures that

“error” of f̂ is within ε of optimal error (of f∗) with probability 1−δ, irrespective
of the underlying measured or computed data distribution P

l
X,Y . Furthermore,

under these conditions, the confidence parameter δ(ε, ε̂, l) approaches 1 as the
sample size l approaches infinity.

Consider the fuser class FF used in fusing the estimators fA ∈ FA, A ∈ AI .
Let fF denote the regression function obtained by composing fA’s with the fuser
function from FF . The error reduction ΔF of the fused estimate over the best
individual classifier is defined as

ΔF = min
A∈AI

I(fA) − I(fF ).

Then, if FF has the isolation property [11], then ΔF ≥ 0. The best error reduc-
tion is given by

Δ∗
F = min

A∈AI

I(f∗
A) − I(f∗

F ).
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and its estimate based on a sample is given by

Δ̃F = min
A∈AI

Î(fA) − Î(fF ).

The error reduction values ΔF based on measurements are shown in Table 1
for the two fusers LR-F and GPR-F. GPR-F has positive Δ̃F values in three
scenarios indicating that the fused estimate has lower RMSE than the lowest
of its constituent estimators (namely, GPR). LR-F has positive Δ̃F values in
two scenarios, which might be attributed to the lack of the required statistical
independence in estimator outputs. We show in the next section that the estimate
Δ̃F reflects the optimal improvement Δ∗

F achievable by the fuser within a formal
framework.

6.2 Estimator Fusers: Generalization Equations

The generalization bound δ(ε, ε̂, l) applicable to five individual estimators can be
derived using various properties of the corresponding estimator classes [12]. In
particular, these bounds for GPR and SVM with Gaussian kernels could be based
on fat-shattering index [16], and for EOT and RT they may be based on bounded
total variation [1]. In Theorem 1, we assume that these generalization bounds
are available from existing works, and their detailed derivations are beyond the
scope of this paper.

We now show that the estimate Δ̃F is within ε of the optimal Δ∗
F with

a probability that improves with the training data size l independent of the
underlying distribution PY,X .

Theorem 1. Consider that there exists δB(ε, ε̂B , l) such that based on i.i.d. l-
sample, we have

P
l
X,Y

[
I(f̂B) − I(f∗

B) > ε
]

< δB (ε, ε̂B , l) . (2)

for all individual estimators B ∈ AI , NAI
= |AI |, and both fusers B =

LR−F,GPR−F such that δB(ε, ε̂B , l) → 0 as l → ∞. Then, the probability that
the closeness between Δ̃F and Δ∗

F is within ε is bounded as

P
l
X,Y

[
|Δ̃F − Δ∗

F | < ε
]

> 1 − δD (ε/2, ε̂D, l) −
∑

A∈AI

δA (ε/(2NAI
), ε̂A, l) ,

for both fusers D = LR−F,GPR−F.

Proof. We first note that for D = LR−F,GPR−F

|Δ̃F − Δ∗
F | ≤ |Î(f̂D) − I(f∗

D)| +
∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ ,
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which establishes that the condition |Δ̃F − Δ∗
F | > ε implies that at least one

term on the right hand side is greater than ε/2. We now have

|Î(f̂D) − I(f∗
D)| ≤ |Î(f̂D) − I(f̂D)| + |I(f̂D) − I(f∗

D)|,

which in turn establishes that the condition |Î(f̂D) − I(f∗
D)| > ε/2 implies that

at least one term on the right hand side is greater than ε/4. Then, by hypothesis
in Eq. (2), both conditions are simultaneously satisfied with probability at most
δD (ε/4, ε̂d, l). Similarly, we have

∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ ≤
∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f̂A)
∣∣∣∣

+
∣∣∣∣ min
A∈AI

I(f̂A) − min
A∈A

I(f∗
A)

∣∣∣∣ ,

which in turn establishes that the condition
∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ > ε/2

implies that at least one term on the right hand side is greater than ε/4. Then,
we consider the two upper bounds

∣∣∣∣ min
A∈AI

Î(f̂A) − min
A∈A

I(f̂A)
∣∣∣∣ ≤

∑
A∈AI

∣∣∣Î(f̂A) − I(f̂A)
∣∣∣

∣∣∣∣ min
A∈AI

I(f̂A) − min
A∈AI

I(f∗
A)

∣∣∣∣ ≤
∑

A∈AI

∣∣∣I(f̂A) − I(f∗
A)

∣∣∣ .

In each case, the condition that left hand side is larger than ε/2 implies at least
one of the terms under the summation is greater ε/(2NAI

). Under the hypothesis
of this theorem in Eq. (2), both conditions are satisfied with probability at most

∑
A∈AI

δA(ε/(2NAI
), ε̂a, l).

By combining the above terms together, we have

P
l
X,Y

[
|Δ̃F − Δ∗

F | > ε
]

< δD (ε/2, ε̂D, l) +
∑

A∈AI

δA (ε/(2NAI
), ε̂A, l) ,

which proves the theorem. �

The confidence bound in this theorem is distribution-free in that it does
not depend on PX,Y . It is expressed in terms of the precision parameter ε

and the confidence parameter

[
1 − δD (ε/2, ε̂D, l) − ∑

A∈AI

δA (ε/(2NAI
), ε̂A, l)

]
,

which approaches 1 with increasing number of measurements l.
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Table 2. Loss rate estimates RMSE of five estimators and linear fuser.

Loss type EOT GPR LR RT SVM LR-F

Gaussian 5.19 6.39 5.34 6.82 7.17 6.42

Periodic 7.26 6.62 6.82 7.00 6.91 6.81

Poisson 6.99 6.61 7.42 6.93 6.72 6.74

Uniform 7.26 6.62 6.82 7.00 6.91 6.81

Fig. 11. Loss rate estimates with lowest RMSE of individual methods.

7 Loss Rate Estimators

The loss estimates of four non-linear estimators are shown in top left plot of
Fig. 11 for periodic losses. For random losses, SVM estimates have extreme vari-
ations and hence are omitted in the plots. Also, LR estimator is omitted in all
plots due to its extremely large variation under all loss scenarios. Qualitatively,
smooth SVM and non-smooth RT methods both exhibit large variations, which
indicate the underlying properties of the data rather than these methods; indeed
GPR is the only method that did not produce large variations. RMSE of five
estimators and linear fuser LR-F are shown in Table 2. Methods with lowest
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RMSE for loss rate estimation are shown in Fig. 12, which are EOT for periodic
losses and GPR for all others. Both of them exhibited lower variations at low
loss rate and an increasing trend as RTT is increased at a fixed loss rate. As in
the case of RTT estimation, the “averaging” by GPR resulted in lower RMSE
but less accurate estimates at low loss rates; but, interestingly, this effect is more
dominant for Gaussian errors unlike for RTT estimation. In almost all cases, at
fixed loss rate, the estimators showed an increasing trend as RTT is increased.

Fig. 12. Loss rate estimates with lowest RMSE of individual methods.

The large variations shown in the scatter plots in Fig. 5 indicate high RMSE
by any estimate since its output is a function and data dispersed around it
contributes to RMSE. In particular, a smooth estimate will not be able to cap-
ture these variations as applicable to GPR and SVM methods. While tree-based
methods in principles can capture such variations, they require a large num-
ber of leaf nodes, and those with smaller number will result in large RMSE. In
summary, the results indicate the challenging nature of the underlying datasets,
which in some sense expose the limitations of the conventional ML approaches
for loss rate estimation.

8 Execution Time Measurements: Data Regressions

Qualitative insights into the performance of regression estimators can be gained
by examining the scatter plots of measurements separately at low and high loss
rates. Overall increasing trend of RTT when plotted as a function of execution
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Fig. 13. Data regressions under periodic and uniform losses.

Fig. 14. Data regressions under Poisson and Gaussian losses.
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time is evident under 0.1% and 1% loss rates, but not under and 10% and 20%
loss rates in all four scenarios, as shown in Fig. 13 for periodic and unform losses,
and in Fig. 14 for Poisson and Gaussian losses. Even GPR-F estimate with the
lowest overall RMSE captures the increasing trend only in the former case but
not in the latter case. Qualitatively, the wide spread of measurements at high loss
rates indicates the lack of information needed to estimate RTT by any method
that uses regression function, smooth or non-smooth.

Fig. 15. Data regressions of loss estimators with lowest RMSE.

For loss rates, the scatter plots are shown in Fig. 15, which have significant
variations in execution times at fixed values of loss rate. The non-smooth EOT
method with lowest RMSE under periodic losses captures several loss rates at
10 and 20% loss rates as shown in top left plot. The smooth GPR estimator
is plotted along with data in all three random loss scenarios in which it has
lowest RMSE; several estimated points are in between the loss rate values, and
the estimator shows a continuous trend in the mapping from measurements
to loss rate. Similar to RTT estimates, an overall increasing trend of loss rate
when plotted as a function of execution time is evident under 0.1% and 1% loss
rate; but, the loss rate is fixed at two values 0.1 and 1% as shown in Fig. 16
for periodic and unform losses, and in Fig. 17 for Poisson and Gaussian losses.
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Fig. 16. Loss regression at low and high loss rates for periodic and uniform losses.

Fig. 17. Loss regression at low and high loss rates for Poisson and Gaussian losses.
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This is a “bleed over” artifact due to increasing RTT at both 0.1 and 1%loss
rates. Under 10% and 20% loss rates in all four scenarios there is a signifi-
cant scatter in loss estimates, indicating the underlying complexity of regression
estimation.

9 Conclusions

Rich datasets of MPI measurements are becoming increasingly available as more
and more computations are distributed over wide-area networks. These measure-
ments exhibit certain characteristics, such as longer executions times and large
variations, that are atypical of conventional MPI applications executed on single
computing systems with Inifiniband or custom interconnects. Losses are integral
to wide-area networks as TCP that supports MPI utilizes self-induced losses
to pace its flows. Consequently, these distributed computations need to mitigate
the inefficiencies due to network delays and their variations. These computations
may be distributed across geographically dispersed nodes that are dynamically
identified; consequently, the RTTs and loss rates of the underlying connections
may not be a priori known. The MPI measurements collected at the application-
level reflect the connection length and losses, and have been shown to be useful
in estimating RTT and loss rate using ML methods, albeit accurately only at
low loss rates.

Complementing previous works under deterministic periodic loss scenarios,
we studied five ML methods to estimate the connection RTT and loss rates under
random losses, which are more reflective of practical scenarios. As in previous
works [15], the results show that accurate estimates can be generated at low
loss rates but they become inaccurate at loss rates 10% and higher. However,
this randomness manifests in subtle ways, resulting in different performances of
non-linear estimators; in particular, GPR that achieves low RMSE does not pro-
vide accurate RTT estimates at low loss levels, unlike others with higher RMSE.
These effects are mainly due to the highly non-linear response of the underly-
ing TCP dynamics that “amplify” the randomness of losses. Furthermore, it is
equally complex to assess the performance of ML methods due to their non-linear
nature, and their fusers are only effective in some scenarios for RTT estima-
tion. In another direction, these results highlight the strengths and limitations
of ML methods for network-level estimation problems using application-level
measurements.

This work constitutes only initial steps in understanding the complexity of
estimating network-level parameters using application-level measurements, and
the performance of various ML solutions, including individual and fused esti-
mates. Future work may involve studying the random losses due to external
traffic in production networks, which may not follow known random processes.
Since there is no universal way to choose among various ML methods from sam-
ple performance only, it would be of future interest to investigate into domain
specific customizations, hyper-parameter tuning, fusers and other approaches to
RTT and loss rate estimation [12,13].
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