
Resource-Restricted Cryptography:
Revisiting MPC Bounds in the

Proof-of-Work Era

Juan Garay1, Aggelos Kiayias2(B), Rafail M. Ostrovsky3,
Giorgos Panagiotakos4(B), and Vassilis Zikas2

1 Department of Computer Science and Engineering,
Texas A&M University, College Station, USA

garay@cse.tamu.edu
2 School of Informatics, University of Edinburgh & IOHK, Edinburgh, UK

{akiayias,vzikas}@inf.ed.ac.uk
3 Department of Computer Science and Department of Mathematics,

UCLA, Los Angeles, USA
rafail@cs.ucla.edu

4 School of Informatics, University of Edinburgh, Edinburgh, UK
giorgos.pan@inf.ed.ac.uk

Abstract. Traditional bounds on synchronous Byzantine agreement
(BA) and secure multi-party computation (MPC) establish that in
absence of a private correlated-randomness setup, such as a PKI, proto-
cols can tolerate up to t < n/3 of the parties being malicious. The intro-
duction of “Nakamoto style” consensus, based on Proof-of-Work (PoW)
blockchains, put forth a somewhat different flavor of BA, showing that
even a majority of corrupted parties can be tolerated as long as the
majority of the computation resources remain at honest hands. This
assumption on honest majority of some resource was also extended to
other resources such as stake, space, etc., upon which blockchains achiev-
ing Nakamoto-style consensus were built that violated the t < n/3 bound
in terms of number of party corruptions. The above state of affairs begs
the question of whether the seeming mismatch is due to different goals
and models, or whether the resource-restricting paradigm can be gener-
ically used to circumvent the n/3 lower bound.

In this work we study this question and formally demonstrate how the
above paradigm changes the rules of the game in cryptographic defini-
tions. First, we abstract the core properties that the resource-restricting
paradigm offers by means of a functionality wrapper, in the UC frame-
work, which when applied to a standard point-to-point network restricts
the ability (of the adversary) to send new messages. We show that such
a wrapped network can be implemented using the resource-restricting
paradigm—concretely, using PoWs and honest majority of computing
power—and that the traditional t < n/3 impossibility results fail when
the parties have access to such a network. Our construction is in the fresh
Common Reference String (CRS) model—i.e., it assumes a CRS which
becomes available to the parties at the same time as to the adversary.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 129–158, 2020.
https://doi.org/10.1007/978-3-030-45724-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_5

130 J. Garay et al.

We then present constructions for BA and MPC, which given access to
such a network tolerate t < n/2 corruptions without assuming a private
correlated randomness setup. We also show how to remove the freshness
assumption from the CRS by leveraging the power of a random oracle.
Our MPC protocol achieves the standard notion of MPC security, where
parties might have dedicated roles, as is for example the case in Obliv-
ious Transfer protocols. This is in contrast to existing solutions basing
MPC on PoWs, which associate roles to pseudonyms but do not link
these pseudonyms with the actual parties.

1 Introduction

Byzantine agreement (BA), introduced by Lamport, Shostak, and Pease [31], is
a fundamental primitive in distributed computing and is at the core of many
secure multi-party computation (MPC) protocols. The problem comes in two
main flavors, Consensus and Broadcast—although a number of relaxations have
also been proposed. Consensus considers a set of n parties P = {P1, . . . , Pn} each
of whom has an input xi, and who wish to agree on an output y (Consistency)
such that if xi = x for all honest parties then y = x (Validity), despite the
potentially malicious behavior of up to t of them. In the Broadcast version, on
the other hand, only a single party, often called the sender has an input xs, and
the goal is to agree on an output y (Consistency) which, when the sender is
honest equals x (Validity).

The traditional setting in which the problem was introduced and investigated
considers synchronous communication and protocol execution. In a nutshell, this
means that the protocol advances in rounds such that: (1) parties have a con-
sistent view of the current round—i.e., no party advances to round ρ + 1 before
all other parties are finished with their round ρ instructions; and (2) all mes-
sages sent in round ρ are delivered to their respective recipients by the beginning
of round ρ + 1. Furthermore, the underlying communication network is a com-
plete point-to-point authenticated channels network, where every pair (Pi, Pj)
of parties is connected by a channel, such that when Pj receives a message on
this channel it knows it was indeed sent by Pi (or the adversary, in case Pi is
corrupted). We refer to the above setting as the (standard) LSP setting.

In this model, Lamport et al. [21,31] proved that there exists no Consensus or
Broadcast protocol which can tolerate t ≥ n/3 Byzantine parties, i.e., parties con-
trolled by a (central) active and malicious adversary. The original formulation con-
sidered perfect security (i.e., information-theoretic security with zero error proba-
bility) and no correlated randomness shared among the parties.1 This impossibil-
ity result was later extended by Borcherding [7] to computational security—i.e., it
was proved to hold even under strong computational assumptions, such as one-way

1 Lamport et al. also considered the case of “signed messages.” The information-
theoretic setting was referred to as the “oral messages” setting.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 131

permutations.2 Furthermore, it applies evenwhen the point-to-point channels used
by the parties are secure, i.e., both authenticated andprivate, and even ifwe assume
an arbitrary public correlated randomness setup and/or a random oracle (RO).3
(A public correlated randomness setup can be viewed as a functionality which sam-
ples a string and distributes it to all parties, e.g, a common reference string (CRS).
This is in contrast to a private correlated randomness setup which might keep part
of the sampled string private and distribute different parts of it to different parties,
e.g., a PKI.) For ease of reference we state the above as a corollary:

Corollary 1 (Strong t ≥ n/3 impossibility [7]). In the synchronous point-
to-point channels setting, there exists no Broadcast protocol tolerating t ≥ n/3
corrupted parties. The statement holds both in the authenticated and in the
secure channels settings, both for unconditional adversaries and assuming (even
enhanced) trapdoor permutations, and even assuming an arbitrary public corre-
lated randomness setup and/or a random oracle.

Finally, Cohen et al. [16], show that this line of impossibility results can be
extended to the case of symmetric functionalities, i.e., functionalities where all
parties receive the same output.

The effect of BA lower bounds on MPC. MPC allows a set of parties to compute
an arbitrary function of their (potentially private) inputs in a secure way even
in the presence of an adversary. Ben-Or, Goldwasser and Wigderson [5] pre-
sented a protocol which computes any function with perfect security in the syn-
chronous setting while tolerating t < n/3 malicious parties assuming the parties
have access to a complete network of instant delivery point-to-point secure—i.e.,
authenticated and private—channels (we shall refer to this model as the BGW
communication model). The lower bound holds even if a Broadcast channel—i.e.,
an ideal primitive guaranteeing the input/output properties of Broadcast—is
available to the parties. Rabin and Ben-Or [34] proved that if we allow for a
negligible error probability and assume broadcast, then there exists a general
MPC protocol tolerating up to t < n/2 of the parties being corrupted, even if
the adversary is computationally unbounded.

Observe, however, that just allowing negligible error probability is not suf-
ficient for circumventing the t < n/3 barrier. Indeed, it is straightforward to
verify that fully secure MPC as considered in [26,34]—with fairness and guar-
anteed output delivery—against malicious/Byzantine adversaries implies Broad-
cast: Just consider the function which takes input only from a designated party,
the sender, and outputs it to everyone.4 In fact, using the above observation
2 The original result by Borcherding just treats the case of assumptions sufficient for

the existence of existentially unforgeable signatures, but it can easily be extended
to arbitrary cryptographic hardness assumptions.

3 As usual, the implicit assumption here is that no party of adversary can query the
RO more times than its running time.

4 There are some delicate matters to handle when capturing Broadcast as MPC, which
will become relevant for our results, but for clarity we defer discussing them for when
they are needed.

132 J. Garay et al.

and Corollary 1 directly implies that t < n/3 is tight even assuming a computa-
tional adversary, secure point-to-point channels, an arbitrary public correlated
randomness setup, e.g., a CRS, and/or a random oracle.

The public-key infrastructure (PKI) model. With the exception of perfect secu-
rity5, the above landscape changes if we assume a private correlated randomness
setup, such as a PKI. Indeed, in this case Dolev and Strong [19] proved that
assuming a PKI and intractability assumptions implying existentially unforge-
able digital signatures (e.g., one way functions) Broadcast tolerating arbitrarily
many (i.e., t < n) malicious corruptions is possible. We refer to this protocol as
Dolev-Strong Broadcast. In fact, as shown later by Pfitzmann and Waidner [33],
by assuming more complicated correlations—often referred to as a setup for
information-theoretic (pseudo-)signatures—it is also possible to obtain an uncon-
ditionally (i.e., information-theoretically) secure protocol for Broadcast tolerat-
ing. Clearly, by plugging the above constructions in [34], we obtain a computa-
tionally or even i.t. secure MPC protocol tolerating any dishonest minority in
the private correlated randomness setting. Recall that this task was impossible
for honest majorities in the public correlated randomness setting.

The blockchain revolution. The introduction and systematic study of blockchains
in the permissionless setting, such as the Bitcoin blockchain, demonstrated how
Consensus and Broadcast can be reached even in settings where a majority of
the participants might be adversarial (as long as the majority of the comput-
ing power remains honest) and even without a private correlated randomness
setup. And although it was proven that such constructions work under the differ-
ent assumption of honest-majority computing power, a confusion still remained
driven mainly by the fact that the investigation of the type of consensus achieved
by Bitcoin (“Nakamoto consensus”) considered more involved models that closer
capture its execution parameters (e.g., “partial synchrony” [20]), and that the
Bitcoin backbone protocol [23,32] was shown to achieve eventual consensus, a
property closer to the traditional state-machine replication problem from dis-
tributed computing [35]6. In fact, similar approaches were also used for alter-
native blockchains that relied on assumptions about restricting other resource,
such as for example a majority of honest stake (“proof of stake”—PoS) [6,25,30],
a majority of honest space [3,6,15,18,30], etc., which were however also analyzed
in more complex network settings; see also Remark 1.

The resource-restricting paradigm. We will use this general term to refer to all
the above approaches. Thus, an intriguing question remained:

Does Corollary 1 still apply to the standard LSP model (of instant delivery
authenticated channels and full synchrony) under the resource-restricting
paradigm?

5 Since perfect security allows no error probability, a setup does not help.
6 Although it was also shown in [23] how to achieve the standard version of Consensus,

as defined above, but in a way radically different from the existing protocols.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 133

In this work we first answer this question in the negative by abstracting the
essence of the above resource-restricting paradigm as an access restriction on
the underlying communication network. Intuitively, the assumption of restricting
(the adversary’s access to) the relative resource can be captured by disallowing
any party—and in particular any adversarial party—to send unboundedly many
more new messages than any other party. To avoid ambiguity and allow using the
related assumption in higher level constructions, we choose to work on Canetti’s
Universal Composition framework [10]. In particular, we describe the assumption
induced by restricting the resources available to the adversary by means of a
functionality wrapper, which wraps a communication network and restricts the
ability of parties (or the adversary) to send new messages through this network.

We then demonstrate how our wrapper, when applied to the standard instant-
delivery synchronous network, makes it impossible for the adversary to launch
the attack from [7]. In particular, the classical impossibilities (or even their
extension stated in Corollary 1) in the same model as the one they were proven,
and with the required properties from the target primitive, do not apply to
protocols in this new restricted network. We note in passing that the idea of
restricting the resources available to the adversary compared to those available to
the parties in order to limit the adversary’s attacking power was also previously
explored in [8,24].

In order to prove that our network restriction is an appropriate abstraction
of the mechanisms implied by the resource-restricting paradigm, we focus on the
case of proofs of work (PoW) and prove how to implement the wrapped LSP-style
network from a public correlated randomness setup (in particular, any high min-
entropy CRS) and an access-restricted random oracle. Concretely, along the lines
of the composable analyses of Bitcoin [4], we capture the assumption of honest
majority of hashing power by means of a wrapped RO, which allows each party
(honest or corrupted) at most q queries per communication round (cf. [23]) for
any given q (polynomial in the security parameter).7 An important consideration
of our transformation is the need for a freshness property on the assumed CRS.
Specifically, our protocol for realizing the wrapped network assumes that the
adversary gets access to the CRS at the same time as honest parties do (and
crucially relies on this fact). Intuitively, the reason is that our protocol will rely
on PoW-style hash puzzles in order to restrict the ability of the adversary to
create many new valid messages. Clearly, if the adversary has access to the initial
CRS—which will play the role of the genesis block—way before the honest parties
do, then he can start potentially precomputing valid messages thus making the
implementation of communication restriction infeasible.

We note that such freshness of the CRS might be considered a non-standard
assumption and seems relevant only in combination with the resource-restricting
paradigm. Nonetheless, in Sect. 6, we discuss how this freshness can be replaced
using PoWs on challenges exchanged between parties, along the lines of [1]. The
absence of freshness yields a somewhat relaxed wrapper which offers analogous

7 The wrapper actually puts a restriction to adversarial parties as honest parties can
be restricted by their protocol (cf. [4]).

134 J. Garay et al.

restrictions as our original wrapper, but guarantees only limited transferability
of the messages sent, and is not as strict towards the adversary as our original
one (i.e., adversarial messages can be transferred more times than honest ones).
Still, as we argue, this relaxed wrapper is sufficient for obtaining all the positive
results in this work.

The above sheds light on the seemingly confusing landscape, but leaves open
the question of how powerful the new assumption of the resource-restricting
wrapper (and hence the resource-restricting paradigm in general) is. In partic-
ular, although the above demonstrates that the resource-restricting paradigm
allows to circumvent the limitation of Corollary 1, it still leaves open the ques-
tion:

Does the resource-restricting methodology allow for fully secure MPC in the
public correlated randomness model, and if so, under what assumptions on
the ‘number of corrupted parties?

We investigate the question of whether we can obtain honest majority MPC
in this setting, and answer it in the affirmative. (Recall that without the resource-
restricting methodology and associated assumptions this is impossible since MPC
implied Broadcast.) Note that a consensus impossibility due to Fitzi [22] proved
that the t < n/2 bound is actually necessary for Consensus in the standard LSP
communication model. And the lower bound holds even if we assume a broadcast
primitive. In fact, by a simple inspection of the results one can observe that the
underlying proof uses only honest strategies (for different selections of corrup-
tion sets) and therefore applies even under the resource-restricting paradigm—
where, as above, this paradigm is captured by wrapping the network with our
communication-restricting wrapper.

Towards the feasibility goal, we provide a protocol which allows us to establish
a PKI assuming only our resource-restricted (wrapped) LSP network and one-
way functions (or any other assumption which allows for existentially unforgeable
signatures). More specifically, we show that our PKI establishment mechanism
implements the key registration functionality Freg from [11]. Our protocol is
inspired by the protocol of Andrychowicz and Dziembowski [1]. Their protocol,
however, achieved a non-standard notion of MPC in which inputs are associated
to public-keys/pseudonyms. In particular, in the standard MPC setting, com-
puting a function f(x1, . . . , xn) among parties P1, . . . , Pn means having each Pi

contribute input xi and output f(x1, . . . , xn)—this is reflected both in the origi-
nal definitions of MPC [26,36] and in the UC SFE functionality Fsfe [10] and the
corresponding standalone evaluation experiment from [9]. Instead, in the MPC
evaluation from [1], every party Pi is represented by a pseudonym ji, which is
not necessarily equal to i and where the mapping between i and ji is unknown
to the honest participants.8 Then the party contributing the �th input to the
computation of f is Pi such that ji = �. This evaluation paradigm was termed
pseudonymous MPC in [29].

8 In fact, (j1, . . . , jn) is a permutation of (1, . . . , n).

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 135

It is not hard to see, however, that the above evaluation paradigm makes the
corresponding solution inapplicable to classical scenarios where MPC would be
applied, where parties have distinguished roles. Examples include decentralized
auctions—where the auctioneer should not bid—and asymmetric functionali-
ties such as oblivious transfer. We note in passing that the above relaxation of
traditional MPC guarantees seems inherent in the permissionless peer-to-peer
setting setting of [1,29]. Instead, our protocol adapts the techniques from [1] in
a white-box manner to leverage the authenticity of our underlying communica-
tion network—recall that our protocol is in the (wrapped) BGW communication
setting—in order to ensure that the registered public keys are publicly linked to
their respective owners. This allows us to evaluate the standard MPC function-
ality.

Getting from an implementation of Freg where the keys are linked to their
owners to standard MPC is then fairly straightforward by using the modular-
ity of the UC framework. As proved in [11], Freg can be used to realize the
certified signature functionality (aka certification functionality) Fcert which, in
turn, can be used to realize a Broadcast functionality against even adaptive
adversaries [27]. By plugging this functionality into the honest-majority proto-
col (compiler) by Cramer et al. [17]—an adaptation of the protocol from [34] to
tolerate adaptive corruptions—we obtain an MPC protocol which is adaptively
secure.

Organization of the paper. In Sect. 2 we discuss our model. In Sect. 3 we intro-
duce our wrapper-based abstraction of the resource-restricting paradigm and
demonstrate how the impossibility from Corollary 1 fails when parties can use
it. Section 4 presents our implementation of this wrapper from PoWs and a fresh
CRS, and Sect. 5 discusses how to use it to obtain certified digital signatures and
MPC. Finally in Sect. 6 we discuss how to remove the freshness assumption by
leveraging PoWs.

2 Model

To allow for a modular treatment and ensure universal composition of our results,
we will work in Canetti’s UC model [9]. We assume some familiarity of the
reader with UC but we will restrict the properties we use to those that are
satisfied by any composable security framework. In fact, technically speaking,
our underlying framework is the UC with global setups (GUC) [12], as we aim
to accurately capture a global notion of time (see below). Nonetheless, the low
level technicalities of the GUC framework do not affect our arguments and the
reader can treat our proofs as standard UC proofs.

Parties, functionalities, and the adversary and environment are (instances
of) interactive Turing machines (ITMs) running in probabilistic polynomial time
(PPT). We prove our statements for a static active adversary; however, the static
restriction is only for simplicity as our proofs can be directly extended to handle
adaptive corruptions. In (G)UC, security is defined via the standard simulation

136 J. Garay et al.

paradigm: In a nutshell, a protocol π realizes a functionality F (in UC, this
is described as emulation of the dummy/ideal F-hybrid protocol φ) if for any
adversary attacking π there exists a simulator attacking φ making the executions
of the two protocols indistinguishable in the eyes of any external environment.
Note that π might (and in our cases will, as discussed below) have access to its
own hybrid functionalities.

Synchrony. We adopt the global clock version of the synchronous UC model
by Katz et al. [28] as described in [4]. Concretely, we assume that parties have
access to a global clock functionality which allows them to advance rounds at
the same pace. For generality, we will allow the clock to have a dynamic party
set, as in [4].

The functionality manages the set P of registered identities, i.e, parties
P = (pid, sid). It also manages the set F of registered functionalities (together with
their session identifier). Initially, P = ∅ and F = ∅. For each session sid the clock
maintains a variable τsid. For each identity P = (pid, sid) ∈ P it manages variable
dP . For each pair (F , sid) ∈ F it manages variable d(F,sid) (all integer variables are
initially set to 0).

Synchronization:
Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1;
execute Round-Update and forward (clock-update, sidC , P) to A.
Upon receiving (clock-update, sidC) from some functionality F ∈ F in a
session sid such that (F , sid) ∈ F , set d(F,sid) = 1, execute Round-Update and
return (clock-update, sidC , F) to A.
Upon receiving (clock-read, sidC) from any participant (including the
environment, the adversary, or any ideal—shared or local—functionality)
return (clock-read, sidC , τsid) to the requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) = 1 for all F ∈ F and
dP = 1 for all honest P = (·, sid) in P, then set τsid = τsid + 1 and reset dF = 0 and
dP = 0 for all parties P = (·, sid) ∈ P.

Global Functionality Gclock

Communication network. We capture point-to-point authenticated commu-
nication, modeling the LSP channels in UC, by means of a multi-party multi-use
version of the authenticated channel functionality with instant delivery along
the lines of [4]. (The original network from [4] had bounded delay; hence here
we need to set this bound to 1.) Note that in this network once an honest party
Pi inserts a message to be sent to Pj , the message is buffered, and it is deliv-
ered after at most Δ attempts from the receiver (here Δ = 1). Syntactically, we
allow the simulator to query the network and learn if a buffered message was
received by the respective receiver. This step—despite being redundant in most

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 137

cases as the simulator should be able to defer this fact by observing the acti-
vations forwarded to him—is not only an intuitive addition, as it captures that
the adversary is aware of delivery of message, but will also simplify the proto-
col description and simulation. For completeness, we include the authenticated
network functionality below.

Note that the BGW-style secure point-to-point network functionality can
be trivially derived by the authenticated one by replacing in the message
(sent, sid,m, Pi, Pj ,mid) which the adversary receives upon some m being
inserted to the network, the value of m by ⊥ (of by |m| if this is implemented
by standard encryption).

The functionality is parameterized by a set of possible senders and receivers,
denoted by P, a list M , and integer variables of the form Dz, where z ∈ {0, 1}∗,
that are dynamically created. For every party P ∈ P it maintains a fetch counter
fP . Initially, M := ∅ and fP := 0, for every P ∈ P.

Upon receiving (send, sid, m, Pj) from Pi ∈ P, set Dmid := 1 and
M = M ||(m, Pi, Pj , mid), where mid is a unique message-ID, and send
(sent, sid, m, Pi, Pj , mid) to A.
Upon receiving (fetch, sid) from some honest party Pj ∈ P, increment fP by
1, set M ′ = ∅, and do the following:
1. For all tuples (m, Pi, Pj , mid) ∈ M , set Dmid := Dmid − 1,
2. for all tuples (m, Pi, Pj , mid) ∈ M , where Dmid ≤ 0, delete

(m, Pi, Pj , mid) from M , and add (m, Pi) to M ′.
3. Send (sent, sid, M ′) to Pj .
Upon receiving (fetch-requests, sid, P) from A, output
(fetch-requests, sid, fP).

Functionality Fauth

The random oracle functionality. As is typical in the proof-of-work litera-
ture, we will abstract puzzle-friendly hash functions by means of a random oracle
functionality.

The functionality is parameterized by a security parameter λ and a set of parties
P. It maintains a (dynamically updatable) map H that is initially empty.

Upon receiving (Eval, sid, x) from some party P ∈ P (or from A on behalf of
a corrupted P), do the following:
1. If H[x] = ⊥, sample a value y uniformly at random from {0, 1}λ, and set

H[x] := y.
2. Return (Eval, sid, x, H[x]) to the requestor.

Functionality FRO

138 J. Garay et al.

Furthermore, following [4], we will use the wrapper to capture the assumption
that no party gets more than q queries to the RO per round. This wrapper in
combination with the honest majority of parties captures the assumption that
the adversary does not control a majority of the systems hashing power.

The wrapper functionality is parameterized by a set of parties P, and an upper
bound q which restricts the F-evaluations of each corrupted party per round. (To
keep track of rounds the functionality registers with the global clock Gclock.) The
functionality manages the variable τ and the current set of corrupted miners P.
For each party P ∈ P it manages variables qP . Initially, τ = 0.
General:

The wrapper stops the interaction with the adversary as soon as the
adversary tries to exceed its budget of q queries per corrupted party.

Relaying inputs to the random oracle:
Upon receiving (Eval, sid, x) from A on behalf of a corrupted party P ∈ P ′,
then first execute Round Reset. Then, set qP := qP + 1 and only if qP ≤ q
forward the request to FRO and return to A whatever FRO returns.
Any other request from any participant or the adversary is simply relayed to
the underlying functionality without any further action and the output is
given to the destination specified by the hybrid functionality.

Standard UC Corruption Handling:
Upon receiving (corrupt, sid, P) from the adversary, set P ′ := P ′ ∪ P. If P
has already issued t > 0 random oracle queries in this round, set qP := t.
Otherwise set qP := 0.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from
Gclock. If |τ ′ − τ | > 0 (i.e., a new round started), then set qP := 0 for each
participant P ∈ P and set τ := τ ′.

Wrapper Functionality Wq
ro(F)

Correlated randomness setup. Finally, we make use of the CRS functional-
ity [13], which models a public correlated randomness setup.

When activated for the first time on input (Retrieve, sid), choose a value d ← D,
and send (Retrieve, d) back to the activating party. In each other activation
return the value d to the activating party.

Functionality FD
crs

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 139

3 Inapplicability of Strong BA Impossibility

In this section we present our abstraction of the resource-restricting paradigm
as a communication-restricting wrapper for the underlying communication net-
work, and show that the strong BA impossibility (Corollary 1) does not apply
to this wrapped network. In particular, as we discussed, in [7] it was argued
that assuming 3t ≥ n, no private correlated randomness setup, the existence
of signatures, and authenticated point-to-point channels, no protocol solves the
broadcast problem. In this section, we show that if parties have access to a simple
channel that is restricted in such a way that spam or sybil attacks are infeasible,
the impossibility proof of [7] does not go through.

3.1 Modeling a Communication-Restricted Network

Our filtering wrapper restricts the per-round accesses of each party to the func-
tionality, in a probabilistic manner. In more detail, for parameters p, q, each
party has a quota of q send requests per round, each of them succeeding with
probability p. Note that after a message has been sent through the filter, the
sender, as well as the receiver, can re-send the same message for free. This fea-
ture captures the fact that if a message has passed the filtering mechanism once,
it should be freely allowed to circulate in the network. We explicitly differentiate
this action in our interface, by introducing the resend request; parties have to
use resend to forward for free messages they have already received.

The wrapper functionality is parameterized by p ∈ [0, 1] and q ∈ N, which restrict
the probability of success and number of F-evaluations of each party per round,
respectively, and a set of parties P. It registers with the global clock Gclock. It
manages the round integer variable τ , the current set of corrupted parties P̃, and a
list T . For each party P ∈ P, it manages the integer variable tP .
Initially τ := 0, T := ∅, and tP := 0, for each P ∈ P.
Filtering:
– Upon receiving (send, sid, m, Pj) from party Pi ∈ P, execute Round-Reset, and

do the following:
• Set tPi := tPi + 1. If tPi ≤ q, with probability p, do:

1. Add (m, Pi) to T and output (success, sid) to Pi.
2. On response (continue, sid, m) from Pi, forward (send, sid, m, Pj) to F .
In any other case, send (fail, sid) to Pi.

– Upon receiving (resend, sid, m, Pj) from honest party Pi ∈ P \ P̃, if
(m, Pi) ∈ T then forward (send, sid, m, Pj) to F .

– Upon receiving (resend, sid, m, PJ) from A on behalf of corrupted Pi ∈ P̃, if
(m, P) ∈ T for some P ∈ P, then forward (send, sid, m, Pj) to F .

– Upon F sending (sent, sid, m, Pi) to Pj , add (m, Pj) to T and forward the
message to Pj .

Wrapper Functionality Wp,q
flt (F)

140 J. Garay et al.

Standard UC Corruption Handling:

– Upon receiving (corrupt, sid, P) from the adversary, set P̃ ← P̃ ∪ P.

General:

– Any other request from (resp. towards) any participant or the adversary, is
simply relayed to the underlying functionality (resp . any participant of the
adversary) without any further action.

Procedure Round-Reset:
– Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from

Gclock.
– If |τ ′ − τ | > 0, then set tP := 0 for each P ∈ P and set τ := τ ′.

3.2 The Impossibility Theorem, Revisited

Next, we show that if parties have access to Wp,q
flt(Fauth), for some noticeable

p and q ≥ 1, the BA attack from the impossibility proof of [7] does not go
through. The proof relies on the fact that the adversary can simulate the behavior
of multiple honest parties. In a nutshell, we describe a protocol where parties
send messages through Wp,q

flt(Fauth), and due to the restricted number of send
attempts the adversary has at his disposal, it is impossible for him to simulate
multiple parties running this protocol.

Lemma 1. Let n = 3, t = 1, p be a noticeable function, and q ≥ 1. There exists
a polynomial time protocol in the (Gclock,Fauth,Wp,q

flt(Fauth),Fsig)-hybrid model
that invalidates the t ≥ n/3 BA attack from the impossibility theorem of [7].

Proof. The impossibility proof considers the class of full information protocols,
where if some party receives a message at some round r, it signs the message
with its own signing key, and sends it to all other parties. We are going to show
a subclass of protocols that use Wp,q

flt(Fauth) and are not captured by the proof.
We first briefly recall the proof in [7] for the case n = 3 and t = 1. The

proof is based on constructing three scenarios σ1, σ2, σ3, where broadcast cannot
possibly be achieved. Let the sender be P1. We proceed to describe σ1, σ2, σ3. In
σ1, P1 has input 0 and P2 is corrupted. In σ2, P1 has input 1 and P3 is corrupted.
In σ3, P1 is corrupted.

By Validity, it follows that in σ1 P3 should output 0, and in σ2 P2 should out-
put 1, no matter the behavior of the adversary. Moreover, due to the Agreement
(Consistency) property, the output of P2 and P3 in σ3 must be the same. The
proof then proceeds to describe a way of making the view of P3 (resp. P2) indis-
tinguishable in scenarios σ1 (resp. σ2) and σ3, and thus reaching a contradiction
since they are going to decide on different values in σ3.

The main idea is for P2 in σ1 to behave as if P1 had input 1, by creating a set
of fake keys and changing the signatures of P1 to the ones with the fake keys and

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 141

different input where possible. Since there is no PKI, P3 cannot tell whether: (i)
P1 is corrupted and sends messages signed with different keys to P2, or (ii) P2

is corrupted. Symmetrically, P3 in σ2 simulates P1 with input 0. Finally, P1 in
σ3 simulates both behaviors, i.e., P1 running the protocol honestly with input 1
in its communication with P2, and P1 with input 0 in its communication with
P3. This is exactly where the impossibility proof does not go through anymore.

For the moment, assume that we are in the setting where p = 1−negl(λ) and
q = 1. Let Π be a full information protocol, where in the first round the sender
P1 uses W1−negl(λ),1

flt (Fauth) to transmit its message to the other two parties.
Further, assume that this message is different for the cases where the sender
input is 0 and 1, with probability α. It follows that P1 has to send two different
messages to parties P2 and P3 at the first round of σ3, with probability α. How-
ever, this is not possible anymore, as the network functionality only allows for
one new message to be send by P1 at each round, with overwhelming probability.
Hence, with probability α the impossibility proof cannot go through anymore.

For the case where p is noticeable and q ≥ 1, we can design a similar protocol
that cannot be captured by the proof. The protocol begins with a first “super
round” of size λ

pq regular rounds, where each party should successfully send its
first message m at least 3λ

4 times using Wp,q
flt(Fauth) for it to be considered

valid. Since the functionality allows sending the same message twice for free, the
sequence of 3λ

4 messages is encoded as follows: (m, 1), . . . , (m, 3λ
4).

Next, we analyze the probability that A can use the strategy described in
the impossibility proof in [7]. Note that each party can query Wp,q

flt(Fauth) up to
λ/p times during the super round. We will show that: (i) honest parties will
be able to send 3λ

4 messages with overwhelming probability, and (ii) that the
adversary in σ3 will not be able to send the 2 · 3λ

4 messages it has to. Let random
variable Xi be 1 if the i-th query to Wp,q

flt(Fauth) of some party P succeeds, and
0 otherwise. Also, let X =

∑λ/p
i=1 Xi. It holds that E[X] = p · λ/p = λ. By an

application of the Chernoff bound, for δ = 1
4 , it holds that

Pr[X ≤ (1 − δ)E[X]] = Pr[X ≤ 3λ

4
] ≤ e−Ω(λ).

Hence, with overwhelming probability each party will be able to send at least
3λ
4 messages in the first λ

pq rounds. On the other hand, we have that

Pr[X ≥ (1 + δ)E[X]] = Pr[X ≥ 5λ

4
] ≤ e−Ω(λ).

Hence, no party will be able to send more than 5λ
4 messages in the first super

round. This concludes the proof, since the adversary, in order to correctly follow
the strategy described before, must send in total 6λ

4 (> 5λ
4) messages in the

first super round. Thus, with overwhelming probability it is going to fail to do
so. Finally, note that the length of the super round is polynomial, since 1/p is
bounded by some polynomial. Thus, the theorem follows. ��

The proof of Corollary 1 works along the same lines as the proof of [7]; since
only public correlated randomness is assumed, nothing prevents the adversary

142 J. Garay et al.

from simulating an honest party. Finally, we note that the same techniques used
above can also be used to refute an appropriate adaptation of Corollary 1, where
parties have access to Wp,q

flt(Fauth).

4 Implementing a Communication-Restricted Network

In this section we describe our implementation of Wp,q
flt(Fauth) that is based on

the resource-restricted RO functionality Wq
ro(FRO) and a standard authenticated

network. As discussed in the introduction, we also make use of an enhanced ver-
sion of the Fcrs functionality, where it is guaranteed that the adversary learns the
shared string after the honest parties. We capture this restriction in a straight-
forward way: A wrapper Wfresh(FD

crs) which does not allow the adversary to
learn the CRS before the round honest parties are spawned. W.l.o.g., in the rest
of the paper we are going to assume that all parties are spawned at round 1.

Our protocol makes uses of the proof-of-work construction of [2]. Every time a
party wants to send a new message, it tries to find a hash of the message and some
nonce, that is smaller than some target value D, and if successful it forwards this
message through Fauth to the designated recipient. Moreover, if it has received
such a message and nonce, it can perform a resend by forwarding this message
through Fauth. To be sure that the adversary does not precompute small hashes
before the start of the protocol, and thus violates the send quota described in
the wrapper, parties make use of the string provided by WD

fresh(Fcrs), where D
will be a distribution with sufficient high min-entropy. They use this string as
a prefix to any hash they compute, thus effectively disallowing the adversary to
use any of the small hashes it may have precomputed.

Initialization:
– We assume that P is in the party set of Wq

ro(FRO), Fauth, and Wfresh(FD
crs),

and is registered with Gclock. The protocol maintains a list of valid
message/nonce/hash tuples T , initially empty, and a counter t initially set to 0.
When P is first activated, it gets the CRS from Wfresh(FD

crs), and uses it as a
prefix of all messages it sends to Wq

ro(FRO). For simplicity, we avoid explicitly
including this term bellow.

Message Exchange:
– Upon receiving (send, sid, m, P ′), execute Round-Reset, set t := t + 1, and if

t > q output (fail, sid) to P . Otherwise, do the following:
1. Send (eval, sid, (m, r)) to Wq

ro(FRO), where r ← {0, 1}λ.
2. On response (eval, sid, (m, r), v), if (v > D), output (fail, sid) to P .
3. Otherwise, if no entry of the form (m, r′, v′) exists in T , store (m, r, v) in T .

Then, send (success, sid) to P . On response (continue, sid), pick r′, v′ such
that (m, r′, v′) is an entry in T , and send (send, sid, (m, r′, v′), P ′) to Fauth.

– Upon receiving (resend, sid, m, P ′), if r, v exist such that (m, r, v) is an entry
in T , send (send, sid, (m, r, v), P ′) to Fauth. Otherwise, output (fail, sid) to P .

Protocol Wrapped-ChannelD,q(P)

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 143

– Upon receiving (fetch, sid), forward the message to Fauth.
– Upon receiving (sent, sid, (m, r, v), P ′) from Fauth, send (eval, sid, (m, r)) to

Wq
ro(FRO). On response (eval, sid, (m, r), v′), if (v ≤ D) and (v′ = v), remove

any entry of the form (m, r′, v′) from T and instead add (m, r, v), and output
(sent, sid, m, P ′).

– Upon receiving (fetch-requests, sid), forward the message to Fauth, and
output its response.

Clock Update:
Upon receiving (clock-update, sidC), send (clock-update, sidC) to Gclock.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from
Gclock. If |τ ′ − τ | > 0, then set t := 0 and τ := τ ′.

Next, we prove that Wrapped-ChannelD,q UC realizes the Wp,q
flt(Fauth) func-

tionality, for appropriate values of p. The main idea of the proof is that the
simulator is going to simulate new messages sent through the ideal functionality
in the eyes of A, by appropriately programming the random oracle. All other
actions can be easily simulated.

Lemma 2. Let p := D
2λ , and D be a distribution with min-entropy at least

ω(log(λ)). Protocol Wrapped-ChannelD,q UC-realizes functionality Wp,q
flt(Fauth)

in the (Gclock,Wq
ro(FRO),Fauth,Wfresh(FD

crs))-hybrid model.

Proof. We consider the following simulator that is parameterized by some real-
world adversary A:

The simulator manages a set of parties P . It sets up an empty network buffer M ,
an empty random oracle table H, and a table of received messages T . The
simulator also manages integer variables of the form Dz, where z ∈ {0, 1}∗, that
are dynamically created, and fP , for P ∈ P. Initially, M is empty, and fP := 0,
for P ∈ P.

Simulating the CRS:
– Sample a value from D once, and only output it after the round the protocol

starts.

Simulating the Random Oracle:
– As in the protocol above, we always include the CRS value as a prefix of all

messages to Wq
ro(FRO). Again, for clarity we avoid explicitly including this

term bellow.
– Upon receiving (eval, sid, u) for Wq

ro(FRO) from A on behalf of corrupted
P ∈ P, do the following:
1. If H[u] is already defined, output (eval, sid, u, H[u]),

Simulator S1

144 J. Garay et al.

2. If u is of the form (m, r), send (send, sid, m, P) to Wp,q
flt (Fauth) on behalf of

P . On response (fail, sid), set H[u] to a uniform value in {0, 1}λ larger than
D. On response (success, sid), set H[u] to a uniform value in {0, 1}λ

smaller or equal to D. Output (eval, sid, v, H[u]).
3. Otherwise, set H[u] to a uniform value in {0, 1}λ and output

(eval, sid, u, H[u]).

Simulating the Network:
– Upon receiving (send, sid, u, P ′) for Fauth from A on behalf of corrupted

P ∈ P, do the following:
1. If u is of the form (m, r, v), H[(m, r)] is defined, H[(m, r)] = v, and v ≤ D,

add (u, P) to T , and send (resend, sid, m, P ′) to Wp,q
flt (Fauth) on behalf of

P . On response (sent, sid, m, P, P ′, mid), set Dmid = 1 and
M = M ||(u, P, P ′, mid), and send (sent, sid, u, P, P ′, mid) to A.

2. Otherwise, send (sent, sid, u, P, P ′, mid) to A, where mid is a unique
message-ID.

– Upon receiving (fetch-requests, sid, P) for Fauth from A, execute
Network-Update and output (fetch-requests, sid, P, fP).

Interaction with Wp,q
flt (Fauth):

– Upon receiving (sent, sid, m, P, P ′, mid) from Wp,q
flt (Fauth), execute

Network-Update, and do the following :
1. If (� ∃(r′, v′) : ((m, r′, v′), P) ∈ T), pick an r uniformly at random from

{0, 1}λ and set H[(m, r)] := v, where v is a uniform value in {0, 1}λ smaller
or equal to D. Then, add ((m, r, v), P) to T .

2. Otherwise, pick r, v such that ((m, r, v), P) is an entry in T .
Add ((m, r, v), P, P ′, mid) to M , set Dmid = 1, and output
(sent, sid, (m, r, v), P, P ′, mid) to A.

Procedure Network-Update: For each P ∈ P, send (fetch-requests, sid, P) to
Wp,q

flt (Fauth). On response (fetch-requests, sid, P, f ′
P), if f ′

P > fP , set fP := f ′
P

and do the following

1. For all tuples ((m, r, v), P ′, P, mid) ∈ M , set Dmid := Dmid − 1.
2. For all tuples ((m, r, v), P ′, P, mid) ∈ M , where Dmid ≤ 0, delete

((m, r, v), P ′, P, mid) from M , delete any entry of the form ((m, r′, v′), Pj)
from T , and add ((m, r, v), Pj) to T .

We will argue that for every PPT adversary A in the real world, no PPT
environment Z can distinguish between the real execution against A and the
ideal execution against S1.

First, let E1 denote the event where honest parties in the real world, and on
input send, repeat a query to the random oracle. Each time an honest party
issues a new RO query, a random string of size λ bits is sampled. The probability
that the same string is sampled twice in a polynomial execution is negligible in
λ. Moreover, E1 implies this event. Hence, the probability of E1 happening in
a polynomially bounded execution is at most negl(λ). Note, that if E1 does not
occur, the distribution of send commands invoked by honest parties that succeed
is identical in the real and the ideal world.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 145

Next, we turn our attention to adversarial attempts to send a new message.
Let E2 be the event where A sends a message of the form (m, r, v) to Fauth,
such that it hasn’t queried (m, r) on the random oracle and H[(m, r)] = v. The
probability of this event happening, amounts to trying to guess a random value
sampled uniformly over an exponential size domain, and is negl(λ). Moreover,
if E2 does not occur, the adversary can only compute new “valid” messages by
querying the RO. Define now E3 to be the event where the adversary makes a
query to the RO containing the CRS value, before round 1. By the fact that
the CRS value is sampled by a high min-entropy distribution, and that A is
PPT, it is implied that Pr[E3] ≤ negl(λ). Hence, if E2 and E3 do not occur, the
distribution of adversarially created messages is identical in both worlds.

Now if E1, E2, E3 do no occur, the view of the adversary and the environment
in both worlds is identical, as all requests are perfectly simulated. By an appli-
cation of the union bound, it is easy to see that ¬(E1∨E2∨E3) occurs with only
negligible probability. Hence, the real and the ideal execution are statistically
indistinguishable in the eyes of Z, and the theorem follows. ��

Regarding the round and communication complexity of our protocol, we note
the following: It takes on expectation 1/p send requests to send a message,
i.e., 1/pq rounds, and the communication cost is only one message. Regarding
implementing Wp,q

flt(Fauth) using virtual resources, we point to Remark 1.

Corollary 2. Let n = 3, t = 1, p be a noticeable function, q ≥ 1, and any
distribution D with min-entropy at least ω(log(λ)). Then, there exist a polynomial
time protocol in the (Gclock,Wq

ro(FRO),Fauth,Wfresh(FD
crs),Fsig)-hybrid model,

that invalidates the proof of the impossibility theorem of [7].

Remark 1. The resource-restricted crypto paradigm can be also applied to vir-
tual resources. For PoS, the implicit PKI associated with PoS blockchains seems
sufficient for a simple implementation of our resource-restricted wrapper using
a verifiable random function (VRF). However, this PoS-implicit PKI typically
assigns keys to coins instead of parties. Thus, a transformation, e.g. through
our wrapper (see Sect. 5), would be needed that shifts from the honest majority
assumption on coins to parties. This validates the generality of our abstraction;
however, with PoS in the permissioned setting, there might be more direct ways
of getting standard MPC by leveraging the implicit coin-PKI.

5 Implementing a Registration Functionality

In this section, we show how to implement a key registration functionality
(cf. [11]) in the resource-restricted setting, and in the presence of an honest
majority of parties.

5.1 The Registration Functionality

The registration functionality allows any party to submit a key, which all other
parties can later retrieve. Our specific formulation Fr

reg, is parameterized by an

146 J. Garay et al.

integer r that specifies the round after which key retrieval becomes available.9
Note, that Freg does not guarantee that the keys submitted belong to the corre-
sponding parties, i.e., a corrupted party can submit a key it saw another party
submit.

Following the paradigm of [4] to deal with synchrony, Freg also has a
Maintain command, which is parameterized by an implementation dependent
function predict-time. We use this mechanism, to capture the behavior of the
real world protocol with respect to Gclock, and appropriately delay Freg from
sending its clock update until all honest parties get enough activations. In
more detail, predict-time takes as input a timed honest input sequence of tuples
IT

H = (. . . , (xi, idi, τi), . . .), where xi is the i-th input provided to Freg by honest
party idi at round τi. We say that a protocol Π has a predictable synchronization
pattern, if there exists a function predict-time such that for any possible execu-
tion of Π, with timed honest input sequence IT

H , predict-time(IT
H) = τ + 1 if all

honest parties have received enough activations to proceed to round τ + 1.

The functionality is parameterized by a set of parties P, and an integer r. It
maintains integer variables τ, du, and a owner/key set T . Initially, T is empty and
τ is equal to 0.

Upon receiving any input I from any party or the adversary, send
(clock-read, sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0,
set τ := τ ′, du := 0. Then, if I was received from an honest party P ∈ P \ P̃, set
IT

H := IT
H ||(I, Pi, τ). Depending on the input I and the ID of the sender, execute

the respective code:
On input I = (Submit, sid, v) from honest party P , if there is no v′ such that
(P, v′) ∈ T , add (P, v) to T and send (Submit, sid, v) to A.
On input I = (Submit, sid, v) from corrupted party P , if τ ≤ r and there is a
v′ such that (P, v′) ∈ T , delete it and add (P, v) instead. Then, send
(Submit, sid, v) to A.
On input I = (Retrieve, sid) from party P , if τ > r, output
(Retrieve, sid, T) to P .
Upon receiving (Maintain, sid) from honest party P , if predict-time(IT

H) > τ ,
and du = 0, set du := 1 and send (clock-update, sidC) to Gclock. Otherwise,
send (I,ID) to A.

Functionality Fr
reg

5.2 The Identity-Assignment Protocol

To implement the above functionality we follow an adaptation of the protocol
from [1], with the difference that instead of relating keys to pseudonyms, parties
are able to create a PKI relating keys to identities. First, we deal with a technical
issue.
9 We sometimes omit r when it is clear from the context.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 147

Our protocol contains commands that perform a sequence of operations. It
is possible that during the execution of this operation, the party will lose the
activation. Following the formulation of [4], we perform some of the commands
in an interruptible manner. That is, a command I is I-interruptible executed, if
in case activation is lost, an anchor is stored so that in the next invocation of
this command it continues from the place it stopped in the previous activation.
For more details on how implement this mechanism, we refer to [4].

Next, we give an informal description of the protocol, which makes use of
Wflt(Fauth), Fauth, Gclock, and the signature functionality Fsig of [11], adapted
for many signers and being responsive, i.e., the one who is issuing a command is
not losing its activation, as for example is done in the context of the key evolving
signature functionality Fkes of [3].

The protocol is structured in 2 different phases. In the first phase, lasting
up to round r + n + 1, parties use Wflt(Fauth) to partially agree on a “graded”
PKI. In more detail, for the first r rounds (procedure PoWGeneration) they
attempt to send through Wflt(Fauth) messages containing a verification key pk
and an increasing counter c. A key is going to be taken in account, only if a
sufficient number of messages related to this key and with different counter val-
ues are sent. This way keys are linked to resource accesses. And since resource
accesses are restricted, so is going to be the number of generated keys. Unlike [1],
to establish that keys are linked to identities, at round r parties sign the sub-
mitted key p̂k and their identity with their verification key pk, and multicast it
to all other parties.

For the remaining n+1 rounds (procedure KeyAgreement), parties depending
on when they received the messages related to some key, assign it a grade from 0
for the earliest, to n for the latest. To ensure that these grades differ by at most
one for the same key, they immediately send the relevant messages they received
to all other parties. This allows them to establish a form of a graded PKI, denoted
by K in the protocol, where parties are proportionally represented, and which
is going to be later used for broadcast. Finally, key/identity pairs received that
have been signed with a key in K of grade 0 are added to a separate set M. This
set is going to be used in the second phase, which we describe next, to correctly
relate keys to identities.

Starting at round r + n + 2, parties use an adaptation of the “Dolev-Strong”
protocol to reliably broadcast M (procedure Broadcast). The way the protocol
works, is by accepting messages as correctly broadcast only if a progressively
bigger number of keys of sufficient grade in K have signed it. At the last round
of the protocol, round r + 2n + 2, it is ensured that if an honest party accepts a
message, then so do all other honest parties. Finally, by using a simple majority
rule on the key/identity pairs contained in the broadcast sets M, parties are
able to agree on a key/identity set, denoted by N in the protocol, where each
party is related to exactly one key and honest parties are correctly represented.
N is output whenever a Retrieve command is issued. Next, we give a formal
description of protocol Graded-Agreement.

148 J. Garay et al.

Initialization:
– We assume that P is registered to Gclock and is in the party sets of Wq

flt(FRO),
Fauth and Fsig. The protocol maintains a list K of key/grade pairs, a list M of
key/owner tuples, a list N of key/owner pairs, and a list T of message/key
pairs, all initially empty, keys pk, p̂k, initially set to ⊥, and integer variables
τ := 0, r := 4n2λ

min(1,pq)
, c := 1.

Upon receiving any input I from any party or the adversary, send (clock-read,
sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0, set τ := τ ′ and
dr, du := 0, and do the following:
– On input I = (Maintain, sid), if dr = 0 execute in a

(Maintain, sid)-interruptible manner the following:
1. If 1 ≤ τ ≤ r, execute PowGeneration.
2. Else if r < τ ≤ r + n + 1, execute KeyAgreement.
3. Else, if r + n + 1 < τ ≤ r + 2n + 2, execute Broadcast.
4. Finally, if du = 1, send (clock-update, sidC) to Gclock. Set dr := 1.

– On input I = (Submit, sid, v), if p̂k = ⊥, set p̂k := v.
– On input I = (Retrieve, sid), if τ > r + 2n, output N .
– On input I = (clock-update, sidC), if dr = 1 and du = 0, send

(clock-update, sidC) to Gclock. Set du := 1.

Procedure PoWGeneration:
If pk = ⊥, then send (KeyGen, sid) to Fsig, and on response
(Verification Key, sid, v), set pk := v. If p̂k = ⊥, give the activation to Z, and
in the next activation repeat this step. Otherwise, do the following:
1. Repeat q times: Send (send, sid, (pk, c), P) to Wp,q

flt (Fauth). On response
(success, sid), increase c by 1, and for each P ′ ∈ P send
(resend, sid, (pk, c − 1), P ′) through Wp,q

flt (Fauth).
2. If τ = r, send (Sign, sid, pk, (p̂k, P)) to Fsig. On response,

(Signed, sid, pk, (p̂k, P ′), σ), for each P ′ ∈ P send (send, sid, (pk, p̂k, σ), P ′) to
Fauth.

Procedure KeyAgreement:
1. Send (fetch, sid) to Wp,q

flt (Fauth).
2. On response, (sent, sid,M) from Wp,q

flt (Fauth), for every subset of messages in
M of the form M ′ = {(sent, sid, (pk′, i), P ′

i)}i∈[�(1−δ)pqr�], for δ equal to 1/4t,
if no entry of the form (pk′, ·) exists in K, add (pk′, τ − (r + 1)) to K and
forward the messages in M ′ to all other parties through Wp,q

flt (Fauth).
3. If τ = r + 1, send (fetch, sid) to Fauth. On response (sent, sid,M ′) from

Fauth, for every message in M of the form (sent, sid, (pk′, p̂k
′
, σ), P ′), if there

exists a entry of the form (pk′, ·) in K, send (Verify, sid, pk′, (p̂k
′
, P ′), σ) to

Fsig. On response (Verified, sid, pk′, (p̂k
′
, P ′), σ, f), if f = 1, add (p̂k′, P ′) to

M.

Protocol Graded-Agreement(P)

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 149

Procedure Broadcast:
1. If τ = r + n + 2, send (Sign, sid, pk, (M, pk)) to Fsig. On response,

(Signed, sid, pk, (M, pk), σ), send (send, sid, ((M, pk), (pk, σ)), P ′) to every
party P ′ ∈ P through Fauth.

2. If r + n + 2 < τ ≤ r + 2n + 2, send (fetch, sid) to Fauth. On response,
(sent, sid,M) from Fauth, do the following:

(a) For every message in M of the form
(sent, sid, ((m, pk1), (pk1, σ1), . . . , (pkk, σk)), P

′), for k = τ − (r + n + 2),
send (Verify, sid, pki, (m, pk1), σi) to Fsig, for i ∈ [k]. If for all responses of
the form (Verified, sid, pki, (m, pk1), σi, fi), for i ∈ [k], it holds that fi = 1,
pk1, . . . , pkk are all different, and (pki, gi) ∈ K for gi ≤ k, add (m, pk1) to T .

(b) For every new entry (m, pk1) in T , send (Sign, sid, pk, (m, pk1)) to Fsig. On
response, (Signed, sid, pk, (m, pk1), σ), add (pk, σ) to the relevant message
received, and forward it to all other parties through Fauth.

3. If τ = r + 2n + 2, do the following:
(a) For every pki, where ∃m �= m′ : (m, pki), (m

′, pki) ∈ T , delete all entries of
the form (·, pki) from T .

(b) For every P ′ ∈ P, if there exists a unique key p̂k′, where at least n/2 entries
of T contain an entry of the form (p̂k

′
, P ′) and do not contain any other

entry of the form (·, P ′), add (p̂k′, P ′) to N .

We are going to show that protocol Graded-Agreement implements function-
ality Freg. First, note that there exists a function predict-time for our protocol
that successfully predicts when honest parties are done for the round; honest
parties lose their activation in a predictable manner when they get Maintain
as input. Moreover, a simulator can easily simulate the real world execution in
the eyes of Z, since it has all the information it needs to simulate honest parties’
behavior and functionalities Wflt(Fauth), Fauth, and Fsig. Finally, due to the
properties of the protocol, also proved in [1], all parties are going to agree on the
same key/identity set N , and thus provide the same responses on a Retrieve
command from Z. We proceed to state our theorem.

Theorem 1. Let n > 2t, p be a noticeable function, q ∈ N
+. The proto-

col Graded-Agreement UC-realizes functionality F
4n2λ

min(1,pq)+2n+3
reg in the (Gclock,

Fauth, Wp,q
flt(Fauth), Fsig)-hybrid model.

Proof. Let r = 4n2λ
min(1,pq) and w.l.o.g., let p · q ≤ 1. We start by making some

observations about the protocol.

Claim. The set K of each honest party, at the end of round r + 1, will contain
the keys of all other honest parties, with overwhelming probability in λ.

Proof. We first show that the claim holds for a single honest party. Let random
variable Xi be equal to 1, if the i-th invocation of send to Wp,q

flt(Fauth) by some
honest party P is successful, and 0 otherwise. It holds that Pr[Xi = 1] = p, and
that X1, . . . , Xr·q is a set of independent random variables; each party invokes

150 J. Garay et al.

send exactly r · q times up to round r. Let X =
∑rq

i=1 Xi. By an application of
the Chernoff bound, it holds that:

Pr[X ≤ (1 − 1
4t

)pqr] = Pr[X ≤ (1 − 1
4t

)E[X]] ≤ e−Ω(λ)

Since X is an integer, with overwhelming probability each honest party will send
at least 	(1− 1

4t)pqr
 messages to each other party. Hence, its key will be included
in K. By an application of the union bound the claim follows. �

In addition to the previous claim, we also note two things: (i) The grade of
each such key will be 0, and (ii) due to the correctness of the signature scheme,
all honest parties will add the associated key p̂k and the correct owner of key pk
in M. These two facts will be useful later, when we will argue that all honest
keys make it to the final list of keys N , along with their correct owner.

Next, we show that the total number of keys generated will be at most n.

Claim. The set K of each honest party contains at most n elements, with over-
whelming probability.

Proof. As before let Z =
∑qt(r+n)

i=1 Zi, denote the successful attempts of the
adversary to send a message through Wflt(Fauth). Note that, starting from
round 1, she has r + n rounds in her disposal to send messages. After some
computations we can show that:

(1 +
1
4t

)E[Z] = (1 +
1
4t

)pqt(r + n) ≤ (1 − 1
4t

)pqr(t + 1)

By the Chernoff bound, it holds that:

Pr[Z ≥ (1 − 1
4t

)pqr(t + 1)] ≤ Pr[Z ≥ (1 +
1
4t

)E[Z]] ≤ e−Ω(λ)

Note now, that 	(1− 1
4t)pqr
 different messages are required for a new key to be

added to K. It follows, that the adversary will add at most t keys of its choice
to K. Moreover, by the design of the protocol, honest parties will add at most
n − t keys to K. Thus, the set K of any honest party will contain at most n keys
with overwhelming probability. �

Next, note that if an honest party adds a key to K with grade g < n, due to
the fact that the relevant messages for this key are multicast to all other parties
in the network together with an additional valid signature, all honest parties will
add the same key in K with grade at most g + 1.

Using all facts proved above, we can now proceed and show that during the
Broadcast phase of the protocol, all honest parties will reliably broadcast set M.
Moreover, the adversary will not be able to confuse them about her broadcast
input, if any. We start by arguing about the values broadcast by honest parties.

Claim. At the end of round r + 2n + 2, the set N of each honest party will
contain the keys of all honest parties, along with their correct identity, with
overwhelming probability.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 151

Proof. Let P be some honest party, (pk, p̂k) be her public keys, K′,M′ be her
key sets, and m = (M′, pk). By our previous claim, all honest parties will have
added (pk, 0) to their key set K. Moreover, they will all receive the message
(p̂k, P) signed w.r.t. pk at round r + 1 by party P , and thus include (p̂k, P) in
M. Note, that no honest party will include another entry related to P , as P will
not send any other such message. Moreover, all parties will receive (m, (pk, σ)),
where σ is a valid signature for m. Hence, they will all add m to T . Again, due
to unforgeability, they will not add any other entry related to pk in T . Hence,
since T has at most n elements (one for each key) and 2n > t, (p̂k, P) will be
the only entry that appears exactly once with respect to P in at least n/2 sets
of T . Thus, all honest parties will add (pk, P) in N , and the claim follows. �

Next, we argue that the key sets N of all honest parties will be the same.

Claim. At the end of round r + 2n + 2, all honest parties will have the same set
N , with at most one entry per party, with overwhelming probability.

Proof. First, we argue that all honest parties have same set T at the end of round
r+2n+2. For the sake of contradiction assume that the opposite was true. This
would imply that some honest party P has added (m, pk) ∈ T at some round r′,
while some other party P ′ has not. We take two cases. If r′ < r +2n+2, then P
will forward the message relevant to entry (m, pk) together with its own signature
to all other parties. Since its key has grade 0, all other honest parties will add
(m, pk) to T in the next round. On the other hand, if r′ = r+2n+2, it holds that
(m, pk) is signed by n keys in the set K of P , and by our previous claims at least
one of these keys was of an honest party. Thus, this party must have accepted
this message earlier, and by our previous argument all other honest parties will
also receive and add this message to T . This is a contradiction. Hence, honest
parties agree on their entries in T .

Now, since all parties agree on T , and N is a deterministic function of T , it
is implied that they will also agree on N . Moreover, by construction each party
P is associated with at most one key in N . The claim follows. �

Our last two claims imply that all parties agree on N , all honest parties will
be represented, and at most one key will be assigned to each identity.

Having established these properties of the protocol, we next give a sketch of
the simulator, which we denote by S2. The first thing the simulator must deal
with is clock updates. In the ideal world, clock updates sent by Z to honest
parties, are directly forwarded to Gclock, which in turn notifies S2. This is not
the case in the real world. Parties send updates to Gclock only after a sufficient
number of Maintain and clock-update inputs have been provided by Z. The
way we simulate this behavior, is by having S2 deduce exactly when honest
parties will send their updates in the real world, by keeping track of when Freg
will send its clock update in the ideal world, as well as the activations it gets after
a Maintain command has been issued to Freg or a clock-update command
has been issued to Gclock. Note, that a new round starts only after either of the
two commands has been issued, and thus S2 has been activated.

152 J. Garay et al.

Since S2 can tell when parties are done for each round, it can also simulate
the interaction of A with Wflt(Fauth), Fauth and Fsig. It does that by simulating
the behavior of honest parties. All information needed to do this are public, or
in the case of the honest parties’ signatures can be faked by the simulator itself.
Note, that care has been taken so that S2 never throughout the protocol has to
sign anything with the keys submitted to Freg for honest parties; it only signs
with the keys generated by the parties themselves. This is the reason that each
party uses two different keys, pk and p̂k.

Finally, at round r + 2n + 2 the simulator submits to Freg the keys that
corrupted parties choose based on key set N ; with overwhelming probability
this set is the same for all honest parties. Thus, the response of Freg to any
Retrieve query after this round is N . It follows that the view of Z in the two
executions is going to be indistinguishable, and the theorem follows. ��

As discussed in the introduction, getting from an implementation of Freg
where the keys are linked to their owners to standard MPC is fairly straightfor-
ward by using the modularity of the UC framework. As proved in [11], Freg can
be used to realize the certified signature functionality (aka certification func-
tionality) Fcert which, in turn, can be used to realize a Broadcast functionality
against even adaptive adversaries [27] if we additionally assume the existence of
secure channels; for details about implementing the secure channel functionality
Fsc from Fauth we point to [14]. By plugging the Broadcast functionality into
the honest-majority protocol (compiler) by Cramer et al. [17]—an adaptation
of the protocol from [34] to tolerate adaptive corruptions—we obtain an MPC
protocol which is adaptively secure.

Corollary 3. Let n > 2t, p be a noticeable function, and q ∈ N
+. Then,

there exists a protocol that UC-realizes functionality Fmpc in the (Gclock, Fsc,
Wp,q

flt(Fauth), Fsig)-hybrid model.

6 Removing the Freshness Assumption

So far, we have assumed that all parties, including the adversary, get access to
the CRS at the same time, i.e., when the protocol starts. In this section, we give
a high level overview of how our analysis can be adapted to the case where we
remove the fresh CRS and instead assume the existence of a random oracle. The
protocol we devise is based on techniques developed initially in [1].

The main function of the CRS in the implementation of Wflt(Fauth), is to
ensure that all parties agree on which hash evaluations are “fresh”, i.e., performed
after the CRS became known. Consequently, sent messages are fully transferable,
in the sense that they can be forwarded an arbitrary number of times and still be
valid. Without a CRS we have to sacrifice full transferability and instead settle
with a limited version of the property (cf. [33]).

Next, we describe the filtering functionality we implement in this setting,
denoted Wflt-lim(Fauth). The functionality has the same syntax as Wflt(Fauth),
with one difference: each message sent is accompanied by a grade g, which signi-
fies the number of times that this message can be forwarded by different parties

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 153

and is also related to when the message was initially sent. For example, if party
P1 receives a message with grade 2, the message can be forwarded to party P2

with grade 1, and party P2 can forward to party P3 with grade 0. Party P3

cannot forward the message any further, while party P2 can still forward the
message to any other party it wants to. Moreover, the initial grade assigned to
a message sent using the send command is equal to the round that this com-
mand was issued minus 1, i.e., messages with higher grades can be computed at
later rounds, for honest parties. The adversary has a small advantage: the initial
grade of messages he sends is equal to the current round. Finally, we enforce the
participation of honest parties the same way we do for the Freg functionality in
Sect. 5. Next, we formally describe Wflt-lim.

The wrapper functionality is parameterized p ∈ [0, 1] and q ∈ N, which restrict the
probability of success and number of F-evaluations of each party per round,
respectively, and a set of parties P. It manages the round integer variable τ , a
boolean flag du, the current set of corrupted parties P̃, and a list T . For each
party P ∈ P, it manages the integer variable tP .
Initially τ, du := 0, T := ∅, and tP := 0, for each P ∈ P.

Upon receiving any input I from any party or the adversary, send
(clock-read, sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0,
set τ := τ ′, du := 0 and tP := 0 for each P ∈ P. Then, if I was received from an
honest party P ∈ P \ P̃, set IT

H := IT
H ||(I, Pi, τ). Depending on the input I and

the ID of the sender, execute the respective code.

Filtering:

– Upon receiving (send, sid, m, Pj) from party Pi ∈ P, do the following:
• Set tPi := tPi + 1. If tPi ≤ q, with probability p, do:

1. If Pi is honest, let local variable g := τ − 1. Otherwise, let g := τ .
2. Add (m, Pi, g) to T , and output (success, sid) to Pi,
3. On response (continue, sid, m) from Pi, forward (send, sid, (m, g), Pj)

to F .
In any other case, send (fail, sid) to Pi.

– Upon receiving (resend, sid, m, g, Pj) from honest party Pi ∈ P \ P̃, if
(m, Pi, g) ∈ T and g > 0, then forward (send, sid, (m, g), Pj) to F .

– Upon receiving (resend, sid, m, g, Pj) from A on behalf of corrupted Pi ∈ P̃, if
for some g′ ≥ g and some P ∈ P, (m, P, g′) ∈ T , and g > 0, forward
(send, sid, (m, g), Pj) to F .

– Upon F sending (sent, sid, (m, g), Pi) to Pj , add (m, Pj , g − 1) to T and
forward the message to Pj .

Ensure Honest Participation:

– Upon receiving (Maintain, sid) from honest party P , if predict-time(IT
H) > τ

and du = 0, set du := 1 and send (clock-update, sidC) to Gclock. Otherwise,
send (I,ID) to A.

Wrapper Functionality Wp,q
flt-lim(F)

154 J. Garay et al.

Standard UC Corruption Handling:

– Upon receiving (corrupt, sid, P) from the adversary, set P̃ ← P̃ ∪ P.

General:

– Any other request from (resp. towards) any participant or the adversary, is
simply relayed to the underlying functionality (resp . any participant of the
adversary) without any further action.

The way we implement this functionality is by introducing a repeated
challenge-exchange procedure to protocol Wrapped-Channel: at each round par-
ties sample a random string, which they then hash together with the challenges
sent by other parties at the previous round to compute a new challenge, that
they multicast to the network. The new challenge computed at each round is
used as a prefix to the queries they are making to the restricted RO function-
ality. If a query is successful, they send the query value along with a pre-image
of the challenge, in order for other parties to be sure that the challenge they
multicast earlier was used in the computation, and thus ensure freshness. The
receiving party can forward the message by also including a pre-image of its own
challenge, thus ensuring all honest parties will accept it as valid. Obviously, in
the first round of the protocol parties cannot send any message as they haven’t
yet exchanged any random challenges, in the second round the messages cannot
be transferred, in the third they can be transferred once, and so on. We formally
describe the new protocol and state our lemma next. The relevant security proof
proceeds as that of Lemma 2, except that we have to show the that the adversary
cannot precomputes hashes that are related to some challenge at a round earlier
than the one that this challenge was generated. Due to lack of space we omit it.

Initialization:
– We assume that P is in the party set of Wq

ro(FRO), Fauth, FRO. The protocol
maintains a list of valid message/nonce/hash tuples T , initially empty, a
counter t initially set to 0, flags dn, du, dr all set to 0, a set M buf , and
sequences of sets M j and integers cj , for j ∈ N.

Upon receiving any input I from any party or the adversary, send (clock-read,
sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0, set τ := τ ′ and
t, dr, du, dn := 0, and do the following:
Message Exchange:
– Upon receiving (send, sid, m, P ′), set t := t + 1, and if t > q output (fail, sid)

to P . Otherwise, do the following:

Protocol Wrapped-Channel-LimD,q(P)

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 155

1. If dn = 0, execute MaintainNetwork.
2. Send (eval, sid, (cτ , m, r)) to Wq

ro(FRO), where r ← {0, 1}λ.
3. On response (eval, sid, (cτ , m, r), v), if (v > D), output (fail, sid) to P .
4. Otherwise, if no entry of the form (τ − 1, M ′, m, r′, v′) exists in T , store

(τ − 1, (M τ), m, r, v) in T . Then, send (success, sid) to P . On response
(continue, sid), pick M ′, r′, v′ such that (τ − 1, M ′, m, r′, v′) is an entry in
T , and send (send, sid, (τ − 1, M ′, m, r′, v′), P ′) to Fauth.

– Upon receiving (resend, sid, m, g, P ′), if g > 0 and M, r, v exists such that
(g, M, m, r, v) ∈ T , send (send, sid, (g, M, m, r, v), P ′) to Fauth.

– Upon receiving (fetch, sid), if dn = 0, then execute MaintainNetwork. Set
M ′ = ∅, and for each message of the form (sent, sid, (g, M, m, r, v), P ′) in
M buf , do the following:
1. Let M = (Mi, Mi−1, . . . , Mg+1). For j ∈ {g + 1, . . . , i}, sent (eval, sid, Mj).

On response (eval, sid, Mj , v), initialize variable H[Mj] := v.
2. If cg �∈ Mg+1 or H[Mj] �∈ M(j + 1), for j ∈ {g + 1, . . . , i − 1}, do nothing.

(Ensure freshness.)
3. Send (eval, sid, (H[Mi], m, r)) to Wq

ro(FRO).
4. On response (eval, sid, (H[Mi], m, r), v′), if (v ≤ D) and (v′ = v), remove

any entries of the form (g − 1, M ′′, m, r′′, v′′) from T and add
(g − 1, M ∪ Mg, m, r, v) instead. Set M ′ := M ′ ∪ ((g − 1, m), P ′).

Finally, empty M buf and output (sent, sid, M ′).
– Upon receiving (fetch-requests, sid), forward the message to Fauth, and

output its response.
– Upon receiving (Maintain, sid), if dr = 0, execute in a

(Maintain, sid)-interruptible manner the following:
1. If dn = 0, then execute MaintainNetwork.
2. Send (send, sid, (challenge, cτ), Pi), to all Pi ∈ P.
3. Set dr := 1. If du = 1, send (clock-update, sidC) to Gclock.

– Upon receiving (clock-update, sidC), if dr = 1 and du = 0, send
(clock-update, sidC) to Gclock. Set du := 1.

Procedure MaintainNetwork :
1. Send (fetch, sid) to Fauth.
2. On response (sent, sid,M), do the following:

(a) Sample rτ ← {0, 1}λ, and let M τ := {rτ}.
(b) For any tuple of the form ((challenge, c), P ′) ∈ M , for P ′ ∈ P, set

M τ := M τ ∪ {c}, and remove this message from M .
(c) Set M buf := M .

3. Send (eval, sid,M τ) to FRO. On response (eval, sid,M τ , v), set cτ := v.
4. Set dn := 1.

Lemma 3. Let p := D
2λ . The protocol Wrapped-Channel-LimD,q UC-

realizes functionality Wp,q
flt-lim(Fauth) in the (Gclock,Wq

ro(FRO),Fauth,FRO)-
hybrid model.

Next, we observe that Wflt-lim(Fauth) is sufficient to implement Freg. The
protocol is similar to protocol Graded-Agreement, with two differences: (i) parties

156 J. Garay et al.

start sending messages through Wflt-lim(Fauth) after n + 2 rounds have passed,
and (ii) during the KeyAgreement phase of the protocol, parties take in account
messages with grade bigger than n at the first round, n − 1 at the second, . . . , 0
at the last one. The rest of the protocol is exactly the same. Note, that parties
can always forward the messages received during the KeyAgreement phase, since
the grade of the relevant messages is bigger than 0. The analysis of [1] is built
on the same idea.

As a result, we are able to implement Freg, and subsequently Fmpc, with-
out having to assume a “fresh” CRS. With the techniques described above, the
following theorem can be proven.

Theorem 2. Let n > 2t and q ∈ N
+. Then, there exists a protocol that UC-

realizes functionality Fmpc in the (Gclock, Fsc, Wq
ro(FRO), Fsig,FRO)-hybrid

model.

Acknowledgements. Juan Garay, Rafail Ostrovsky and Vassilis Zikas were sup-
ported in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2019-1902070008. This work was
performed in part while Juan Garay was consulting for Stealth Software Technologies,
Inc., and supported in part by DARPA/SPAWAR N66001-15-C-4065. Aggelos Kiayias
was supported in part by EU Project No.780477, PRIVILEDGE. Rafail Ostrovsky
was also supported in part by NSF-BSF Grant 1619348, DARPA/SPAWAR N66001-
15-C-4065, US-Israel BSF grant 2012366, JP Morgan Faculty Award, Google Faculty
Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. This work was done in
part while Vassilis Zikas was visiting the Simons Institute for the Theory of Comput-
ing, UC Berkeley, and UCLA. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
views or policies, either expressed or implied, of the Department of Defense, DARPA,
ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

References

1. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with no
trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_19

2. Back, A.: Hashcash (1997). http://www.cypherspace.org/hashcash
3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:

composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 913–930 (2018)

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_11

https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
http://www.cypherspace.org/hashcash
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 157

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10. ACM (1988)

6. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptol-
ogy ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.org/2016/919

7. Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoğlu,
Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40–55. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61769-8_4

8. Cachin, C., Maurer, U.M.: Unconditional security against memory-bounded adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, October 2001

11. Canetti, R.: Universally composable signature, certification, and authentication.
In: 17th IEEE Computer Security Foundations Workshop (CSFW-17 2004), Pacific
Grove, CA, USA, 28–30 June 2004, p. 219 (2004)

12. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_2

14. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_22

15. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2016)
16. Cohen, R., Haitner, I., Omri, E., Rotem, L.: Characterization of secure multiparty

computation without broadcast. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016,
Part I. LNCS, vol. 9562, pp. 596–616. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49096-9_25

17. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X_22

18. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8_3

19. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

20. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288–323 (1988)

21. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. In: Malcolm, M.A., Strong, H.R. (eds.) 4th ACM Sympo-
sium Annual on Principles of Distributed Computing, pp. 59–70. Association for
Computing Machinery, August 1985

http://eprint.iacr.org/2016/919
https://doi.org/10.1007/3-540-61769-8_4
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-46035-7_22
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/978-3-319-78375-8_3

158 J. Garay et al.

22. Fitzi, M.: Generalized communication and security models in Byzantine agreement.
Ph.D. thesis, ETH Zurich (2002)

23. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6_10

24. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. J. Cryptol. 24(4), 615–658 (2011)

25. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling
Byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454 (2017). http://eprint.iacr.org/2017/454

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York
(1987)

27. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5_24

28. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

29. Katz, J., Miller, A., Shi, E.: Pseudonymous broadcast and secure computation
from cryptographic puzzles. Cryptology ePrint Archive, Report 2014/857 (2014).
http://eprint.iacr.org/2014/857

30. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7_12

31. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

32. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

33. Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of
faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 339–350. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-
3_195

34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory
of Computing, pp. 73–85. ACM Press, May 1989

35. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

36. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Com-
puter Society Press, November 1982

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-36594-2_27
http://eprint.iacr.org/2014/857
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1007/3-540-55210-3_195

	Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era
	1 Introduction
	2 Model
	3 Inapplicability of Strong BA Impossibility
	3.1 Modeling a Communication-Restricted Network
	3.2 The Impossibility Theorem, Revisited

	4 Implementing a Communication-Restricted Network
	5 Implementing a Registration Functionality
	5.1 The Registration Functionality
	5.2 The Identity-Assignment Protocol

	6 Removing the Freshness Assumption
	References

