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Abstract. Functional Encryption denotes a form of encryption where a
master secret key-holder can control which functions a user can evaluate
on encrypted data. Learning With Errors (LWE) (Regev, STOC’05) is
known to be a useful cryptographic hardness assumption which implies
strong primitives such as, for example, fully homomorphic encryption
(Brakerski-Vaikuntanathan, FOCS’11) and lockable obfuscation (Goyal
et al., Wichs et al., FOCS’17). Despite its stre ngth, however, there is
just a limited number of functional encryption schemes which can be
based on LWE. In fact, there are functional encryption schemes which
can be achieved by using pairings but for which no secure instantiations
from lattice-based assumptions are known: function-hiding inner prod-
uct encryption (Lin, Baltico et al., CRYPTO’17) and compact quadratic
functional encryption (Abdalla et al., CRYPTO’18). This raises the ques-
tion whether there are some mathematical barriers which hinder us from
realizing function-hiding and compact functional encryption schemes
from lattice-based assumptions as LWE.

To study this problem, we prove an impossibility result for function-
hiding functional encryption schemes which meet some algebraic restric-
tions at ciphertext encryption and decryption. Those restrictions are
met by a lot of attribute-based, identity-based and functional encryption
schemes whose security stems from LWE. Therefore, we see our results as
important indications why it is hard to construct new functional encryp-
tion schemes from LWE and which mathematical restrictions have to be
overcome to construct secure lattice-based functional encryption schemes
for new functionalities.

Keywords: Functional encryption · Function-hiding · Impossibility ·
LWE · Lattice-based · Online/offline

1 Introduction

Functional Encryption (FE) schemes are special encryption schemes in which
the holder of a master secret key can issue secret keys for specific functions to
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users. By knowing a secret key for a function f and a ciphertext for a message x,
an adversary shall learn nothing more of x than f(x). FE schemes have proven
to be extremely versatile. Not only does their notion generalize other forms
of encryption like Attribute-Based (ABE) or Identity-Based Encryption (IBE),
but also do we know that compact single-key FE and linearly compact FE for
cubic polynomials together with plausible assumptions imply indistinguishability
obfuscation [10,14,29].

Function-Hiding Functional Encryption (FHFE) schemes are an even
stronger subclass of FE where we demand that an adversary – given a secret
key for a function f and a ciphertext for a message x – learns nothing about
f and x except of f(x); i.e., the secret keys now hide the functions they are
supposed to evaluate.

We know that FE schemes with a bounded number of secret keys, an adver-
sary may learn, are already achievable from minimal assumptions [11]. However,
if we try to achieve security for an unbounded number of secret keys, then
we are left with (function-hiding) inner-product encryption, linearly compact
quadratic FE and FE schemes for constant-degree polynomials which are yielded
by relinearizing. Of course, there are special cases of FE like attribute-based and
identity-based encryption schemes. In those schemes, a ciphertext is accompa-
nied with a non-hidden attribute or identity and decryption is successful iff the
attribute/identity matches the policy of the secret key. However, the main focus
in this work are FE schemes, since we are interested in schemes which perform
various computations on hidden inputs. We stress here that for linearly compact
quadratic FE and function-hiding inner-product FE there are just pairing-based
constructions known so far [3,12,13,21,28].

Learning With Errors (LWE) [30] is a well-established hardness assumption.
It states that it is hard to solve a system of linear equations over a modulus q,
if the solution has sufficient entropy, the coefficients of the equations are chosen
uniformly random from Zq and one column of the presented system has been
perturbed by a small noise-vector whose entries are sampled from a suitable
error-distribution. Because of its strong homomorphic properties, there are fully
homomorphic encryption schemes and lockable obfuscation schemes whose secu-
rity can be proven solely under LWE [17,24,32]. Up to now, it is not possible to
construct those schemes from other standard assumptions. Intuitively, one would
assume that its homomorphic properties imply a lot of different FE schemes. But
as we have stressed, the most complex already existing FE schemes cannot be
replicated by lattice-based constructions. In fact, inner product encryption is
the only FE scheme whose security can be based on LWE (again, putting ABE
and IBE aside). Because of the aforementioned amply homomorphic properties
of LWE, this is very surprising and leads us to the following question:

What hinders us from constructing function-hiding inner-product encryption schemes
whose security can be proven solely from the learning with errors assumption?

We show that there are two properties, both very common under LWE-based FE
schemes, which make it impossible for a function-hiding inner-product encryp-
tion scheme to be secure. The first property lies in the decryption algorithms
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of LWE-based encryption schemes: If we take a close look at the pairing-based
schemes, we see that decryption is always complex, for it involves computing
discrete logarithms of the target group of the pairing. On the other hand,
a lot of LWE-based IBE and FE schemes have simple decryption algorithms
[2,4,6,7,16,19]. In most cases, for moduli q > p > 1, a secret key sk in such a
scheme usually determines a multivariate polynomial gsk(Y1, . . . , Ys) of constant
total degree, while the ciphertext is a vector ct ∈ Z

s
q. At decryption, the polyno-

mial is evaluated at the ciphertext which yields a value gsk(ct) ∈ Zq; this value
will be rounded to the nearest number of Zp, i.e., it will be divided by �q/p� and
then rounded to the nearest integer in {0, . . . , p − 1}. In full detail, this means

Dec(sk, ct) =
⌈

gsk(ct)
�q/p�

⌋
.

We believe that this property already suffices to render a FHFE scheme insecure.
Therefore, we state here the following conjecture:

Conjecture 1. Let FE = (Setup,KeyGen,Enc,Dec) be a correct private-key func-
tional encryption scheme for computing inner-products of vectors in Z

n
p . If there

is a constant d′ ∈ N and a polynomial s in the security parameter, s.t.

– each ciphertext ct sampled by Enc is a vector in Z
s
q,

– each secret key sk sampled by KeyGen is a multivariate polynomial in
Zq[Y1, . . . , Ys] of total degree ≤ d′

– and the decryption algorithm works by

Dec(sk, ct) =
⌈
sk(ct)
�q/p�

⌋
,

then FE cannot be function-hiding secure for an unbounded number of secret
keys.

We leave it as an open question to prove or refute Conjecture 1. Instead, we
prove in this work a weaker version of the above statement. If we are to
take a closer look at the aforementioned IBE and FE schemes and some ABE
schemes [15,23], we can distinguish an additional property which seems to
be common for some LWE-based schemes. They tend to have very algebraic
encryption algorithms. Take, for example, a closer look at ciphertext encryp-
tion in the LWE-based inner-product encryption schemes of Agrawal et al. [7].
For an input vector x ∈ {0, . . . , p − 1}l and two publicly known matrices
A ∈ Z

m×n
q , U ∈ Z

l×n
q , ciphertexts are generated by sampling a uniformly

random vector s ← Z
n
q , two gaussian noise vectors e0 ← DZm,αq, e1 ← DZl,αq

and outputting ct = (As + e0, Us + e1 + b · x) where b is either �q/K� or
pk−1. Note that we can distinguish two parts in this encryption algorithm:
a very complex offline part, where m + l multivariate degree-1 polynomials
g1(X), . . . , gm(X), h1(X), . . . , hl(X) are sampled by only knowing the public key
(A,U, p, q,K) and without looking at the input x:

gi(X1, . . . , Xl) = 〈ai | s〉 + e0,i,

hi(X1, . . . , Xl) = 〈ui | s〉 + e1,i + �q/K� · Xi.
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And, a simple online part which just consists of inserting x in the polynomials
sampled before and outputting the ciphertext ct = (g1(x), . . . , gm(x),
h1(x), . . . , hl(x)). This distinction in a complex offline and a simple online part
can be seen in the other aforementioned schemes, too. Therefore, we extract it
as an additional characteristic of some LWE-based schemes and make it more
precise in the following:

We say Enc is an encryption algorithm of depth d over Zq, if there is a ppt
algorithm Encoffline, s.t. we have for each master secret key msk and input x ∈ Z

n
p :

Enc(msk, x) = {
(r1, . . . , rs) ← Encoffline(msk) (1)
return (r1(x), . . . , rs(x)) (2)

}

where we demand that each ri is a multivariate polynomial in Zq[X1, . . . , Xn] of
total degree ≤ d. We will call line (1) the offline part and line (2) the online part
of Enc. Indeed, with this additional property we can prove an FHFE scheme to
be insecure.

1.1 Contribution

For moduli q = q(λ) > p = p(λ) such that q is prime, q
p is polynomially bounded

and p is not bounded by a constant, we prove the following:

Theorem 1 (Informal Main Theorem). Assume that the prerequisites of
Conjecture 1 hold and that additionally Enc is of depth d over Zq for some
constant d ∈ N.

Then, FE cannot be function-hiding secure for an unbounded number of secret
keys.

To be more precise, we give a bound of the maximum number of secret keys which
can be issued to an adversary before he can break FE (Corollary 4). On a very
high level, our proof idea is to use the algebraic structure of the composition
Dec ◦Enc. By doing so, we show that the decryption noises are generated in
a very algebraic way, are small and contain information about the encrypted
ciphertexts. Therefore, we can prove Theorem1 by analysing them.

As an additional result, we show that private-key encryption schemes where
the encryption algorithms are of constant depth and the ciphertext vectors are
short enough cannot be secure (Theorem 5 and Corollary 3). This result does not
depend on the decryption algorithms of the private-key encryption schemes.

Generality of Our Results. We note here that there are a lot of LWE-based
ABE schemes whose decryption algorithms are too complex to be subsumed by
the equation Dec(sk, ct) = 
sk(ct)/�q/p��. This is because they allow policy-
predicates which cannot be computed by constant-depth circuits. Since the
policy-predicate needs to be computed at decryption, their decryption algorithms
must be at least as complicated as the most complex policy-predicate they allow.
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However, the aforementioned ABE schemes in [15,23] have decryption algorithms
that become simple enough to fit the equation Dec(sk, ct) = 
gsk(ct)/�q/p��, if
we restrict the policy-circuits in those schemes to be of constant depth and if
attributes and policy match at decryption.

Two-Input Quadratic Functional Encryption. We can derive from
Theorem 1 an impossibility result for 2-input quadratic FE schemes. A 2-input
quadratic FE scheme evaluates functions with two distinguished inputs and has
a left and a right encryption algorithm. To decrypt a value f(x, y), one needs a
secret key for f , a left ciphertext for x and a right ciphertext for y. Since such
a scheme contains a secret key for the quadratic function f(x, y) = 〈x | y〉, it
can emulate a function-hiding inner-product encryption scheme, even if it is only
single-key secure.

Corollary 1. Let 2FE = (Setup,KeyGen,EncR,EncL,Dec) be a correct private-
key 2-input functional encryption scheme for quadratic functions f : Zn

p ×Z
n
p →

Zp. If there are s ∈ poly(λ) and a constant d′ ∈ N, s.t.

– EncL is of constant depth d over Zq,
– each ciphertext ctL sampled by EncL is a vector in Z

s
q,

– each pair of a secret key sk and a right ciphertext ctR determines a multivari-
ate polynomial gsk,ctR ∈ Zq[X1, . . . , Xs] of total degree ≤ d′ s.t. the decryption
algorithm works by

Dec(sk, ctL, ctR) =
⌈

gsk,ctR(ct)
�q/p�

⌋
,

then 2FE cannot be single-key secure.

1.2 Interpretation and Open Problems

To prove Theorem 1, we assume that the exterior modulus q of the FHFE scheme
FE is prime. Furthermore, we need that the fraction q/p is bounded by a poly-
nomial in the security parameter λ and that the interior modulus p is for almost
all λ greater than some constant which depends on the depth of FE. Note that
q/p is usually a bound for the error noise used in LWE-based schemes. Since
LWE is assumed to be hard, even if its modulus q is a prime and the deviation
of its error noise is bounded by a polynomial in λ, we do not think that those
requirements are big restrictions for our results.

We see the results in this paper as a useful argument in understanding
the difficulties in constructing LWE-based function-hiding functional encryption
schemes. An even more useful argument would be to close the gap and prove
Conjecture 1. Because of Theorem 1, to prove our conjecture, it now suffices to
transform a function-hiding inner-product encryption scheme which is correct
and secure and fulfils the requirements of the conjecture to one that fulfils the
requirements of Theorem 1. In other words, it suffices to take an FHFE scheme
which already decrypts in an LWE-like manner and simplify its encryption algo-
rithm to one of constant depth which stays secure and correct.
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Another way to extend the results here is to prove Theorem 1 for encryption
algorithms where, in the online part, one first computes a bit-decomposition
G−1(x) of an input vector x and then applies the polynomials sampled in the
offline part to G−1(x). A lot of the techniques here would not be suitable for
this task; indeed, one would need to develop more advanced techniques to show
this.

1.3 Related Work

The idea of decomposing encryption algorithms into simple online and complex
offline parts has already been studied with the purpose of finding FE schemes
with practical usages (we cite [8,26] as examples). However, to the best of our
knowledge, this is the first work where the online/offline structure of encryption
has been used to prove an impossibility result.

Ananth and Vaikuntanathan showed that FE for P/poly with a bounded
number of secret keys can already be achieved from minimal assumptions, i.e.
public-key encryption in the asymmetric setting and one-way functions in the
symmetric setting [11]. The ciphertexts in their schemes are growing linearly with
the number of secret keys which can be handed out to an adversary. It is pre-
sumably hard to improve their result, since we know that a bounded FE scheme
with sufficiently compact ciphertexts would already imply indistinguishability
obfuscation [10,14].

As mentioned, it is hard to construct FE schemes for stronger functionali-
ties. In recent years, researchers circumvented this problem and looked at novel
FE schemes with additional properties: Abdalla, Chotard and other researchers
constructed multi-input and decentralized multi-client inner-product encryption
schemes [1,3,5,20]. Those are inner-product encryption schemes where a func-
tion has multiple inputs and to decrypt one needs a secret key and multiple
suitable ciphertexts. In the decentralized schemes, one gets rid of the master
secret key holder. Jain et al. introduced the notion of 3-restricted FE [9,27],
which can be understood as cubic FE where a ciphertext just hides two out of
three factors.

1.4 Technical Overview

To prove Theorem 1, we need to show the existence of a selective adver-
sary who wins the function-hiding IND-CPA game against the function-hiding
inner-product encryption scheme FE. In this game, the adversary submits an
unbounded number of inputs x0

i and functions f0
j for world 0 and an unbounded

number of inputs x1
i and functions f1

j for world 1. Then, the challenger draws a
random bit b ← {0, 1} and sends the corresponding ciphertexts and secret keys
of world b to the adversary. The adversary wins, if he guesses b correctly and if
the submitted inputs and functions would not tell him trivially in which world
he lives, i.e., if we have for all i and j

f0
j (x0

i ) = f1
j (x1

i ).



Impossibility Results for Lattice-Based FE Schemes 175

We do not directly construct an adversary to break FE. Instead, we show how
an adversary can reduce the problem of breaking FE to the problem of breaking
other encryption schemes with additional properties. To do so, we apply multiple
transformations to FE. Eventually, we end with a private-key encryption scheme
whose ciphertexts are short integer vectors and whose encryption algorithm is
of constant depth. Then, we construct a simple adversary who can break such
encryption schemes.

To make our argument go through, we need the transformations to preserve the
security and correctness of the transformed schemes. It is easy to see that security
is preserved, since we ensure that all changes to FE can be computed by an adver-
sary while he plays the above security game against FE. On the other hand, we can
not always guarantee that our transformations preserve correctness. In fact, one
transformation step applied to FE changes it in such a way that decryption suc-
ceeds only in a non-negligible number of cases. Furthermore, it is important that
at each time we have an encryption algorithm of constant depth. This means, each
transformation step either changes the encryption algorithm without changing its
depth or at most changes its depth to another constant value.

Our proof consists of three major steps:

(1) We first change FE s.t. all ciphertexts have short entries relative to the
modulus q. To do this, the adversary queries a lot of secret keys for the
zero-function and learns, by doing so, the structure of the space of secret
keys. Then, he can exchange a ciphertext with a vector of decryption noises.
Those noises have to be short, because otherwise they would make a correct
decryption impossible. On the other hand, however, we show that those
noises contain enough information about the original ciphertext to make
decryption possible in a non-negligible number of cases. Therefore, we can
assume FE to have short ciphertexts.
Then, we use a straightforward transformation to convert FE to a private-
key encryption scheme SKEq whose ciphertexts are short relative to q and
whose encryption algorithm is of constant depth over Zq.

(2) Since the encryption algorithm of SKEq is of constant depth, SKEq encrypts
a number x by sampling some polynomials, evaluating those polynomials at
x and reducing the result modulo q. To analyse the ciphertexts of SKEq, we
need to get rid of the arithmetic overflows in the online part of its encryption
algorithm. We observe that, if r(X) is a polynomial with small coefficients,
then, for some small x values, r(x) does not change when we reduce it
modulo q. Furthermore, we know the ciphertexts of SKEq to be short relative
to q. By using this fact, we can apply simple changes to the encryption
algorithm of SKEq to ensure that the polynomials sampled by its offline
algorithm have very small coefficients. By doing so, we can change SKEq to
a private-key encryption scheme SKE of constant depth whose ciphertext
vectors are sufficiently short and where no arithmetic overflows do occur in
the online part of its encryption algorithm.

(3) In SKE, a message x gets encrypted by sampling random integer polynomials
r1, . . . , rm of constant degree and computing (r1(x), . . . , rm(x)) as cipher-
text without any arithmetic overflows. Intuitively, such a scheme should not
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be secure and, indeed, we show that such a scheme can only be secure,
if its ciphertexts do not contain any information about the encrypted mes-
sages. But this makes decryption impossible. Since we showed that a correct
and secure FHFE scheme FE can be transformed into a secure private-key
encryption scheme whose ciphertexts contain a non-negligible amount of
information, it follows that FE could not be secure and correct in the first
place.

We now take a closer look at the techniques used in each step.

Replacing Ciphertexts with Decryption Noise. We describe here how to
make the ciphertexts of FE short. For simplicity, let us assume that we have
already relinearized ciphertexts and secret keys, i.e. decryption works by

Dec(sk, ct) =
⌈

〈sk | ct〉
�q/p�

⌋
.

Query a lot of secret keys v1, . . . , vm ← KeyGen(msk, 0) for the zero-function
and draw a ciphertext ctx for an arbitrary input x ∈ Z

n
p . Each vi must decrypt

ctx to zero, since this is the value of the zero-function applied to x. Because of
decryption correctness of FE, we can therefore assume that we have for each vi

|〈vi | ctx〉| ≤
⌊

q

p

⌋
.

Otherwise, 〈vi | ctx〉/�q/p� would not round to zero. We can now exchange ctx
with the following new ciphertext for x:

ct′x = (〈v1 | ctx〉, . . . , 〈vm | ctx〉).

This ciphertext just consists of noise values which are generated when decrypting
ctx with secret keys for the zero-function. Therefore, each entry of ct′x is bounded
by �q/p�. The question remains, how much information about x is left in ct′x and
if it is even possible to recover f(x) from ct′x and skf . We show that in a non-
negligible number of cases a successful decryption is still possible. That is because
of the function-hiding property of FE which vaguely implies that a secret key for
f has to lie in span

Zq
{v1, . . . , vm} with non-negligible probability.

Getting Rid of Arithmetic Overflows. The key observation in step (2)
is that, if we evaluate a polynomial of degree d with small coefficients at a
small input, reducing the result modulo q will not change its value. However,
the polynomials r1(X), . . . , rm(X) sampled in the offline part of the encryption
algorithm of SKEq do not necessarily have small coefficients. We only know them
to have small output values. We prove that there is a constant c, s.t. each c · ri

has sufficiently small coefficients modulo q. The existence of c can be shown by
using a quasi-inverse1 of the Vandermonde matrix V for the tuple (0, 1, . . . , d),
that is an integer matrix whose product with V equals a scaled identity matrix.
1 Calling such matrices quasi-inverses is ambiguous. However, we will stick to this

notion, since we lack better names.
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By simply multiplying ciphertexts of SKEq with c, we can make them behave
like they were outputted from an encryption algorithm of constant depth where
no arithmetic overflows do occur in its online part. Therefore, we can transform
SKEq into SKE.

Quasi-inverses of Vandermonde have been recently used by Esgin et al. to
extract witnesses out of many polynomial relations [22]. However, in this work,
we use a different quasi-inverse than them, which yields better bounds for our
results.

Statistically Distinguishing Random Polynomials. We describe here, how
our adversary breaks SKE in step (3). It suffices to look at the j-th coordinate of
a ciphertext of SKE. At input x, the j-th coordinate is computed by sampling a
random polynomial rj(X) of constant degree d in the offline part and evaluating
it at x. Our adversary works by guessing one x �= 0 and comparing E[rj(x)2]
and E[rj(0)2]. We show, if for each x the means E[rj(x)2] and E[rj(0)2] do not
differ by a non-negligible amount, then rj(X) is of degree at most d − 1 with
overwhelming probability. By inductively using hybrids, one can see that rj(X)
must be of degree 0, i.e. constant, with overwhelming probability. But, if rj(X)
is constant, the value rj(x) does not carry any information about x. Therefore,
if the ciphertexts of SKE contain a non-negligible amount of information about
the encrypted messages, it follows that there must be some j and x �= 0 s.t. our
adversary can successfully distinguish E[rj(x)2] and E[rj(0)2] and, therefore,
successfully distinguish ciphertexts for 0 from ciphertexts for x.

1.5 Organization of This Work

We first introduce some preliminaries in Sect. 2 and some important definitions
and concepts in Sect. 3. Then, in Sect. 4, we give an adversary who breaks private-
key encryption schemes of constant depth which do not make use of arithmetic
overflows. In Sect. 5, we then derive an impossibility result for private-key encryp-
tion schemes of constant depth with short ciphertexts over Zq by transforming
them to schemes we broke in the preceding section. Finally, in Sect. 6, we show
the impossibility of LWE-like FHFE schemes with simple online/offline encryp-
tion by transforming them to schemes of the preceding section.

Due to lack of space, we have ot omit the proofs of some lemmas. The reader
can find those proofs in the full version of this paper [31].

2 Preliminaries

For n ∈ N = {1, 2, 3, . . .}, set [n] := {1, . . . , n}. We define two sets of functions:

poly(λ) := {p : N → N ∃c, d ∈ N ∀λ ∈ N : λc + d ≥ p(λ) ≥ 1} ,

negl(λ) := {ε : N → R ∀c ∈ N : limλ→∞λcε(λ) = 0} .

For functions f, g : N → R, we write f(λ) ≥ g(λ) − negl(λ), if there is an
ε ∈ negl(λ) s.t. we have f(λ) ≥ g(λ) − ε(λ) for all λ.
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For x ∈ R, we define the following roundings: �x� := max {z ∈ Z | z ≤ x},

x� := min {z ∈ Z | z ≥ x} and 
x� := max {z ∈ Z | 2 · |x − z| ≤ 1}.
For two discrete distributions D1,D2 over a set X we define the statistical
distance of (D1,D2) by Δ(D1,D2) := 1

2

∑
x∈X |D1(x) − D2(x)|.

2.1 Statistical Preliminaries

Theorem 2 (Hoeffding’s Inequality). Let n ∈ N and B, t ≥ 0. For n inde-
pendent random variables X1, . . . , Xn with |Xi| ≤ B, we have

Pr
[ ∣∣∣∣X1 + . . . + Xn

n
− E

[
X1 + . . . + Xn

n

]∣∣∣∣ ≥ 2Bt

]
≤ 2e−2nt2 .

Corollary 2. Let D be a memoryless source that outputs real numbers which
are bounded by B ≥ 0. Let r ∈ N and set n = 2r3. Let μ be the mean of D and
let En be the random variable which is sampled by n-fold querying D, summing
its outputs and dividing this sum by n. Then, we have

Pr
[
|En − μ| ≤ B

r

]
≥ 1 − 2e−r.

2.2 Algebraic Preliminaries

Theorem 3. Let f(X) =
∑d

i=0 aiX
i be a polynomial of degree d over R. Then

d! · ad =
d∑

k=0

(−1)d−k

(
d

k

)
f(k).

This theorem can be proven by using discrete derivatives. For example, a proof
can be deduced by trick 2 of [25], Section 5.3. Alternatively, the reader can find
a full proof in [31].

Now, let q ∈ N be a modulus.

Definition 1. For a ∈ Z, we define the absolute value modulo q by

|a mod q| := min
z∈qZ

|a + z| ∈
{

0, . . . ,
⌊q

2

⌋}
.

Lemma 1.(a) For a ∈ Z, we have |a mod q| = 0 ⇔ a ∈ qZ.
(b) For a1, . . . , an ∈ Z, we have |

∑n
i=1 ai mod q| ≤

∑n
i=1 |ai mod q|.

(c) For a, z ∈ Z, we have |z · a mod q| ≤ |z| · |a mod q|.



Impossibility Results for Lattice-Based FE Schemes 179

2.3 Learning Theory-Preliminaries

In this subsection, we study the problem of learning vector subspaces. Let F be
an arbitrary field.

Lemma 2. Let s ∈ N0 = {0, 1, 2, . . .} and let D be a discrete distribution over
F

s. For m ∈ N, we have

Pr
v1,...,vm←D

[vm ∈ span
F
{v1, . . . , vm−1}] ≥ 1 − s

m
.

Proof. Let m > s and fix v1, . . . , vm ∈ supp(D). Denote by Sm the group
of permutations of the set [m] and by T ⊂ Sm the subgroup of order m
which is generated by the cyclic rotation (123 . . . m). For τ ∈ T set Vτ :=
span

F

{
vτ(1), . . . , vτ(m−1)

}
. Since each vi is an s-dimensional vector, we have

m − s ≤# {j ∈ [m] | vj ∈ span
F
{vi | i ∈ [m] \ {j}}} = #

{
τ ∈ T | vτ(m) ∈ Vτ

}
.

Therefore, for each fixed choice v1, . . . , vm ∈ supp(D) we have

Pr
τ←T

[
vτ(m) ∈ Vτ

]
≥ m − s

m
.

Since the vectors v1, . . . , vm are identically and independently distributed, we
furthermore have

Pr
v1,...,vm←D

[vm ∈ span
F
{v1, . . . , vm−1}] = Pr

v1,...,vm←D
τ←T

[
vτ(m) ∈ Vτ

]
.

Combining both things, we get

Pr
v1,...,vm←D

[vm ∈ span
F
{v1, . . . , vm−1}] = Pr

v1,...,vm←D
τ←T

[
vτ(m) ∈ Vτ

]

=
∑

v1,...,vm∈supp(D)

Pr
τ←T

[
vτ(m) ∈ Vτ

]
· Pr

w1,...,wm←D
[∀i : wi = vi]

≥
∑

v1,...,vm∈supp(D)

m − s

m
· Pr

w1,...,wm←D
[∀i : wi = vi] =

m − s

m
.

��

Theorem 4. Let s ∈ N0 and let D be a discrete distribution over F
s. Then,

there exists an algorithm which makes s queries to D and O(s3)-fold use of the
four basic arithmetic operations in F to compute a number k ≤ s, a matrix
B ∈ F

s×k which consists of k samples of D and a second matrix B+ ∈ F
k×s s.t.

with V := B · Fk

(a) we have B+ · B = 1k×k,
(b) B · B+ is the identity on V , i.e., for all v ∈ V , we have B · B+ · v = v,
(c) a certain proportion of the samples of D lies in V , i.e. Prv←D [v ∈ V ] ≥ 1

s .
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3 Definitions

In this section, we give basic definitions and state elementary lemmas for this
work.

3.1 Functional Encryption

Throughout this work, let λ denote the security parameter. Let (Fλ)λ be a
family of function descriptions with a family of domains (Xλ)λ and codomains
(Yλ)λ. We tacitly assume in the following that the size of each f ∈ Fλ, x ∈ Xλ

and y ∈ Yλ is bounded by a polynomial in λ, that we can efficiently sample
uniformly random elements of those families and that there is a deterministic
polytime evaluation algorithm which on input (f, x) ∈ Fλ × Xλ outputs the
correct value y ∈ Yλ. We denote the output of this algorithm by f(x).

Definition 2. A functional encryption scheme FE = (Setup,KeyGen,
Enc,Dec) for the family (Fλ)λ is a quadruple of four ppt algorithms where

Setup(1λ) on input 1λ generates a master secret key msk,
KeyGen(msk, f) on input msk and a function f ∈ Fλ generates a secret key skf ,

Enc(msk, x) on input msk and an input value x ∈ Xλ generates a ciphertext
ctx,

Dec(skf , ctx) on input a secret key skf and a ciphertext ctx outputs a value
y ∈ Yλ.

We call FE correct, if we have for each samplable2 (fλ)λ ∈ (Fλ)λ an ε ∈ negl(λ),
s.t. it holds for all (xλ)λ ∈ (Xλ)λ

Pr

⎡
⎣Dec (skf , ctx) = fλ(xλ)

msk ← Setup(1λ),

skf ←KeyGen(msk, fλ),

ctx ←Enc(msk, xλ)

⎤
⎦ ≥ 1 − ε(λ).

We call FE better than guessing (by 1
r ), if there exists a polynomial r ∈ poly(λ)

s.t. we have for each (xλ)λ ∈ (Xλ)λ and each samplable (fλ)λ ∈ (Fλ)λ

Pr

⎡
⎣Dec (skf , ctx) = fλ(xλ)

msk ← Setup(1λ)

skf ←KeyGen(msk, fλ),

ctx ←Enc(msk, xλ)

⎤
⎦ ≥ 1

r(λ)
+

1
#Yλ

− negl(λ).

We call FE useless, if we have for each polynomial r ∈ poly(λ)

Pr
msk←Setup(1λ)

[
∀x, y ∈ Xλ : Δ (Enc(msk, x),Enc(msk, y)) <

1
r(λ)

]
≥ 1 − negl(λ).

2 By being samplable, we mean here that there is a uniform deterministic poly-time
algorithm which on input 1λ outputs fλ.
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While being correct is a common requirement for encryption schemes, being use-
less implies that a successful decryption is almost impossible, since the cipher-
texts contain nearly no information. Being better than guessing, however, implies
that in some cases the ciphertexts and secret keys contain enough information
for a successful decryption. Now, one would assume that a scheme cannot be
useless and better than guessing at the same time and, indeed, we have the
following lemma:

Lemma 3. Let #Yλ ≥ 2 for all λ and let (Fλ)λ contain a samplable (fλ)λ s.t.
each fλ is surjective. Then, we have:

(a) If FE is correct, it is better than guessing.
(b) If FE is useless, it is not better than guessing.

3.2 Encryption Algorithms

Now, let R be a ring with an associated valuation |·|R : R → N0. In this work,
we always assume R = Z or R = Zq for a prime q = q(λ). In the first case
|·|

Z
= |·| is the archimedean absolute value. In the latter case |·|

Zq
= |· mod q| is

the absolute value modulo q we defined in Definition 1.
Furthermore, let Xλ = {0, . . . , N}n now consist of n-dimensional vectors for

a polynomial n = n(λ) ∈ poly(λ) and some N = N(λ).

Definition 3. We say the scheme FE or rather its encryption algorithm Enc is
of length s over R, if the output of Enc is always an element of Rs. Furthermore,
we say in this case that Enc is of

(a) width B, if the infinity-norm of almost all ciphertexts is bounded by B. I.e.,
there is an ε ∈ negl(λ), s.t. we have for each (xλ)λ ∈ (Xλ)λ

Pr
msk←Setup(1λ)

[ ∃i ∈ [s] : |ci|R > B | c ← Enc(msk, xλ)] ≤ ε(λ),

(b) depth d, if Enc consists of two parts: an offline part – a ppt algorithm
Encoffline which on input msk generates s polynomials over R[X1, . . . , Xn]
of total degree ≤ d – and an online part which generates a ciphertext by
evaluating the polynomials sampled by Encoffline at the input x. I.e., Enc
works as follows

Enc(msk, x) :
(p1, . . . , ps) ← Encoffline(msk)
ctx := (p1(x), . . . , ps(x))
return ctx

where we demand that each pi is a polynomial of total degree ≤ d over R.
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3.3 Security Notions

In this work, we study the notion of selective and function-hiding IND-CPA
security where the adversary is allowed to submit a priori multiple challenge
inputs (x0

i , x
1
i ) and a bounded number of challenge functions (f0

j , f1
j ). To be

feasible, the adversary must ensure that the output values f b
j (xb

i ) do not already
tell him, if he lives in world 0 or world 1, i.e. he must ensure f0

j (x0
i ) = f1

j (x1
i ).

The challenger will send the adversary the ciphertexts and secret keys for one
random bit b ← {0, 1}. To win, the adversary has to guess the bit b.

Definition 4. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption
scheme for the family (Fλ)λ and let m ∈ poly(λ). We say that FE is selectively
m-bounded function-hiding IND-CPA secure (m-fh-IND-CPA secure),
if each ppt adversary A has a negligible advantage in winning the following game:

Step 1: The adversary A submits two lists3 of possible inputs (x0
i )

n
i=1, (x

1
i )

n
i=1

and two lists of possible functions (f0
j )m

j=1, (f
1
j )m

j=1 to the challenger C.
Step 2: The challenger C generates a master secret key msk ← Setup(1λ) and

draws a secret bit b ← {0, 1}. Then, C computes ctxb
i

:= Enc(msk, xb
i ) for each

i = 1, . . . , n, skfb
j

:= KeyGen(msk, f b
j ) for each j = 1, . . . , m and sends the

lists (ctxb
i
)n
i=1 and (skfb

j
)m
j=1 to A.

Step 3: The adversary A guesses b.

The adversary wins the above game, if he guesses b correctly, and, if we have
f0

j (x0
i ) = f1

j (x1
i ) for all i = 1, . . . , n and j = 1, . . . , m. The advantage of A is

defined by

Adv(A) := 2Pr[A wins] − 1 = Pr[A wins | b = 0] + Pr[A wins | b = 1] − 1.

We call FE selectively unbounded function-hiding IND-CPA secure
(fh-IND-CPA secure), if FE is m-fh-IND-CPA secure for each polynomial
m ∈ poly(λ), and we call FE selectively IND-CPA secure
(IND-CPA secure), if FE is 0-fh-IND-CPA secure.

3.4 Private-Key Encryption

We define private-key encryption schemes as a special case of functional encryp-
tion schemes:

Definition 5. A private-key encryption scheme is a functional encryption
scheme SKE = (Setup,KeyGen,Enc,Dec) for a function family (Fλ)λ where each
Fλ only contains the identity function Id : Xλ → Xλ.

3 The size n is determined by the descryiption of A and bounded by A’s running time.
n may be zero, which means that A is always sending two empty lists of inputs.
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When discussing private-key encryption schemes we sometimes omit KeyGen from
the header of the scheme and write Dec(msk, ·) instead of Dec(KeyGen(msk, Id), ·).
Note that we call SKE IND-CPA secure, if it is selectively 0-bounded function-
hiding IND-CPA secure in the sense of Definition 4. This differs from the usual
security notion in literature, where the adversary is usually allowed to submit only
one pair of challenge messages and can inquire ciphertexts adaptively. However, by
using a hybrid argument, one can show that the security loss which occurs by allow-
ing multiple challenge messages is polynomially bounded. If we consider message
spaces of superpoly size, then we can construct private-key encryption schemes
which are selectively, but not adaptively, secure. Therefore, the security notion for
SKE we use here is weaker than the usual one in literature.

3.5 Transformations

Definition 6. Let FE = (Setup,KeyGen,Enc,Dec), FE′ = (Setup′,KeyGen′,
Enc′,Dec′) be two functional encryption schemes for the same functionality. We
say that FE is virtually FE′, if Setup = Setup′, KeyGen = KeyGen′, Dec = Dec′

and there is an ε ∈ negl(λ), s.t. for all sequences (xλ)λ ∈ (Xλ)λ the statistical
distance between the following two distributions is bounded from above by ε:

{
(msk, ctx) | msk ← Setup(1λ), ctx ← Enc(msk, xλ)

}
,{

(msk, ct′x) | msk ← Setup(1λ), ct′x ← Enc′(msk, xλ)
}

.

Now, let FE be a functional encryption scheme for functions (Fλ) with inputs
(Xλ) and let FE be one for functions (F ′

λ) with inputs (X ′
λ). We say there

is an adversarial transformation from FE to FE′, if there are ppt algo-
rithms Tct, Tsk, TF , TX s.t. we have the following equalities of distributions for
all x′ ∈ X ′

λ, f ′ ∈ F ′
λ, msk ∈ supp(Setup):

Setup′(1λ) = Setup(1λ),
Enc′(msk, x′) = Tct(Enc(msk, TX(x′))),

KeyGen′(msk, f ′) = Tsk(KeyGen(msk, TF (f ′))).

If (Fλ) = (F ′
λ), then we always assume TF = IdFλ

and TX = IdXλ
.

Let k ∈ N be constant and let (FEi)k
i=1 be a sequence of functional encryption

schemes. We say there is a virtual adversarial transformation from FE1 to
FEk, if, for each i = 1, . . . , k−1, FEi is virtually FEi+1 or there is an adversarial
transformation from FEi to FEi+1.

We can now observe the following facts:

Lemma 4.(a) If FE is virtually FE′, then FE is m-fh-IND-CPA secure, correct,
better than guessing resp. useless iff FE′ is so.

(b) If FE is m-fh-IND-CPA secure and there is an adversarial transformation
from FE to FE′, then FE′ is m-fh-IND-CPA secure.
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At some points, we want to ensure that an encryption algorithm Enc of width
B never outputs a ciphertext whose largest entry is not bounded by B. We can
ensure such a behaviour by replacing each ciphertext of Enc which is too big
with the zero vector. It is clear that this change just has a statistically negligible
impact on a scheme. One can even ensure that by doing so we do not harm the
depth of Enc:

Lemma 5. For n = 1, let FE be of length s, width B and depth d over R.
If d is constant and B is polynomial, then FE is virtually a scheme FE′ =
(Setup′,KeyGen′,Enc′,Dec′) of length s and depth d over R where we have
Enc′(msk′, x) ∈ {−B, . . . , B}s for all λ, x ∈ Xλ and msk′ ∈ supp(Setup′(1λ)).

4 Online/Offline Encryption Without Overflows

In this section, we show that private-key encryption schemes of polynomial width
that are better than guessing cannot be IND-CPA secure, if their encryption
algorithms have a very simple online part in which no arithmetical overflows do
occur.

Theorem 5. Let d ∈ N be constant, N ≥ 2d and let SKE be a private-key
encryption scheme of depth d and width B ∈ poly(λ) with message space Xλ =
{0, . . . , N} over Z.

If SKE is selectively IND-CPA secure, then SKE is useless.

Proof (Theorem 5 Part 1). Let SKE be an IND-CPA secure scheme of length s,
depth d and width B over Z for messages Xλ = {0, . . . , N}. If we define SKE′ =
(Setup′,Enc′,Dec′) like in Lemma 5, then SKE is virtually SKE′. In particular,
SKE′ is of the same length and depth and is secure and useless iff SKE is so.
Furthermore, SKE′ is now strictly of width B, i.e., it never outputs a ciphertext
outside of {−B, . . . , B}s. It now suffices to prove that SKE′ is useless. �

To prove Theorem 5, we define an adversary which we will show to have a non-
negligible advantage against SKE′, if SKE′ is not useless.

Definition 7. Let r ∈ poly(λ), N ≥ 2d and s ≥ 1. Set m = 2r3.
We define the following selective adversary A which plays the IND-CPA

security-game in Definition 4 with the scheme SKE′:

Step 1: The adversary A draws y ← [2d] and then, for b = 0, 1, submits the
following two lists of 3m messages each:

xb
i =

⎧⎪⎨
⎪⎩

0, if i ∈ {1, . . . , m},

b · y, if i ∈ {m + 1, . . . , 2m},

y, if i ∈ {2m + 1, . . . , 3m}.

He submits two empty lists of possible functions.
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Step 2: The adversary A receives a list of ciphertexts (ct′
xb

i
)3m
i=1. Let ct′

xb
i ,j

denote
the j-th entry of ct′

xb
i
. For k = 0, 1, 2 and j = 1, . . . , s he computes the arith-

metical means

ck,j :=
1
m

(k+1)m∑
i=1+km

(ct′xb
i ,j)

2

Step 3: If there is a j s.t. |c2,j − c1,j | > 2B
r , the adversary outputs 0. Otherwise,

if there is a j s.t. |c0,j − c1,j | > 2B
r , he outputs 1. If none of the above require-

ments should be met, then the adversary outputs a random bit b′ ← {0, 1}.

The following lemma shows in which cases A has a non-negligible advantage.

Lemma 6. Let r ∈ poly(λ) s.t. r ≥ λ. For a fixed msk′, set CT′
y = Enc′(msk′, y).

The adversary in Definition 7 has a non-negligible advantage in the selective
IND-CPA game against SKE′, if the following probability is non-negligible

Pr
msk′←Setup′(1λ)

[
∃j ∈ [s], y∗ ∈ [2d] :

∣∣∣E [(CT′
y∗,j

)2]− E

[(
CT′

0,j

)2]∣∣∣ > 4
B

r

]
.

Proof. Fix for this proof a master secret key msk′ ∈ supp(Setup′(1λ)) and denote
by CT′

y
2 the distribution of drawing ct′y ← Enc′(msk′, y) and squaring all its

entries. In step 2, A approximates the means of CT′
0
2
,CT′

b·y
2 and CT′

y
2. By

Bounded we denote the event that for each k = 0, 1, 2 the distance between ck

and its mean is at most B/r, i.e. the event Bounded holds iff

max
(∣∣∣
∣∣∣c0 − E

[
CT′

0
2
]∣∣∣
∣∣∣
∞

,
∣∣∣
∣∣∣c1 − E

[
CT′

b·y
2
]∣∣∣
∣∣∣
∞

,
∣∣∣
∣∣∣c2 − E

[
CT′

y
2
]∣∣∣
∣∣∣
∞

)
≤ B

r
.

Since Enc′ always outputs values bounded by B, we have, according to Corollary 2,
that the probability that event Bounded will occur is at least (1 − 2e−r)3s ≥ 1 −
6se−r. Therefore, for each fixed msk′, it follows

Pr [A fails b = 0] ≤ Pr
[
||c0 − c1||∞ > 2

B

r

]
+

1
2

≤Pr [¬Bounded] +
1
2

≤ 6se−r +
1
2
.

Similarly, for each fixed msk′ ∈ supp(Setup′(1λ)), we get Pr [A fails b = 1] ≤
6se−r + 1

2 .
Now, assume additionally for msk′ that the following event Seperated does hold

Seperated : ∃y∗ ∈ [2d] :
∣∣∣
∣∣∣E [CT′

0
2
]

− E

[
CT′

y∗
2
]∣∣∣
∣∣∣
∞

> 4
B

r
.
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Let y denote the value drawn by A in step 1. If Seperated holds for msk′, then

Pr [A wins b = 0, y = y∗]

≥Pr
[
||c2 − c1||∞ > 2

B

r
b = 0, y = y∗

]

≥Pr[Bounded] · Pr
[
||c2 − c1||∞ > 2

B

r
Bounded, b = 0, y = y∗

]

≥(1 − 6se−r) · 1 = 1 − 6se−r.

Similarly, we get Pr [A wins b = 1, y = y∗] ≥ 1 − 6se−r. Therefore, for msk′ ←
Setup′(1λ), we get now

Pr [A wins Seperated]

=
1
2d

(Pr [A wins Seperated, y = y∗] +
2d − 1

2d
Pr [A wins Seperated, y �= y∗])

≥ 1
2d

(1 − 6se−r) +
2d − 1

2d

(
1
2

− 6se−r

)
≥ 1

4d
+

1
2

− 6se−r.

Now, if we set ε := Pr [Seperated], we have

Pr [A wins] = ε · Pr [A wins Seperated] + (1 − ε) · Pr [A wins ¬Seperated]

≥ ε

(
1
4d

+
1
2

− 6se−r

)
+ (1 − ε)

(
1
2

− 6se−r

)
= ε

1
4d

+
1
2

+ 6se−r.

Since our lemma requires ε to be non-negligible and r ≥ λ, it follows that A has
a non-negligible advantage. ��

To conclude the proof of Theorem5, we need to show that the prerequisites
of Lemma 6 do occur, if SKE′ is not useless. In fact, we show a purely math-
ematical statement in the following which implies the uselessness of SKE′, if
the prerequisites of Lemma 6 are not met. Our statement says that for a dis-
tribution of polynomials the means of the squared outputs of the polynomials
for x = 0, . . . , 2d need to be widespread, because, otherwise, it is very unlikely
for the sampled polynomials to be non-constant. If the polynomials sampled by
Enc′

offline(msk′) are with overwhelming probability constant, then, of course, the
sampled ciphertexts do not carry any information about the encrypted input x.

Lemma 7. Let D be a distribution over integer polynomials of degree d > 0. If
there is a function ε = ε(λ) s.t. for all x ∈ {1, . . . , 2d} we have

∣∣∣∣ E
p←D

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ ε,

then it follows

Pr
p←D

[deg p ≤ d − 1] ≥ 1 − 2ε.
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Proof. For p ← D, we set f(X) := p(X)2 − p(0)2. Then, f is a random inte-
ger polynomial of degree 2d. If we have p(X) =

∑d
i=0 aiX

i, then the leading
coefficient of f is a2

d. Now, by Theorem 3, it follows

(2d)! · a2
d =

2d∑
i=0

(−1)2d−i

(
2d

i

)
f(i).

Hence

E
p←D

[
a2

d

]
=

1
(2d)!

∣∣∣∣∣
2d∑

i=0

(−1)2d−i

(
2d

i

)
E

p←D
[f(i)]

∣∣∣∣∣
≤ 1

(2d)!

2d∑
i=0

(
2d

i

) ∣∣∣∣ E
p←D

[f(i)]
∣∣∣∣ ≤ 1

(2d)!

2d∑
i=0

(
2d

i

)
· ε =

22d

(2d)!
ε ≤ 2ε.

If we draw p(X) =
∑d

i=0 aiX
i ← D, it follows

Pr [deg p = d] =
∑

i∈Z\{0}
Pr [ad = i] ≤

∑
i∈Z\{0}

i2 · Pr [ad = i] = E
p←D

[
a2

d

]
≤ 2ε. ��

Lemma 7 already implies that the offline algorithm of an IND-CPA secure
encryption scheme of depth d and polynomial width will – with overwhelm-
ing probability – sample polynomials of degree d − 1. In the following theorem,
we generalize this observation for arbitrary degrees d − k.

Theorem 6. Let D be a distribution over integer polynomials of degree d. If
there are functions ε = ε(λ) and B = B(λ) s.t. for all x ∈ {1, . . . , 2d} and
p ∈ supp(D) we have

∣∣p(x)2 − p(0)2
∣∣ ≤ B2 and

∣∣∣∣ E
p←D

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ 1
2
ε,

then we have for all k = 0, . . . , d

Pr
p←D

[deg p ≤ d − k] ≥ 1 − (2 + 2B2)kε.

Theorem 6 is proven by using induction over k where the base case and the
induction step both follow by Lemma7. Since its proof is very technical, we
omit it here. We can now finish the proof of Theorem5.

Proof (Theorem 5 Part 2). Let A be the adversary in Definition 7. For A to have
negligible advantage against SKE′, according to Lemma 6, it is necessary to have
for all r = 4r′B ∈ poly(λ)

Pr
[
∀j ∈ [s], y ∈ [2d] :

∣∣∣E [(CT′
y,j

)2]− E

[(
CT′

0,j

)2]∣∣∣ ≤ 1
r′

]
≥ 1 − negl(λ)
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where we take the probability over msk′ ← Setup′(1λ). But now, by Theorem6,
we have for each r ∈ (2 + 2B2)d · poly(λ)

Pr
[
∀j ∈ [s] : Pr

(p1,...,ps)←Enc′
offline

[deg pj = 0] ≥ 1 − (2 + 2B2)d 1
r

]
≥ 1 − negl(λ).

Therefore, the uselessness of SKE′ and, in particular, the uselessness of SKE
follow. ��

5 Online/Offline Encryption with Short Ciphertexts

In Sect. 4, we showed that encryption schemes of constant depth and polynomial
width without arithmetic overflows cannot be secure. In this section, we show
the same result for encryption schemes of constant depth and polynomial width
which may make use of arithmetic overflows but have short ciphertexts. We do
so by transforming such schemes to encryption schemes without arithmetic over-
flows. I.e., if the ciphertexts are of short width, we can transform their encryption
algorithm to one of constant depth over Z by using a simple multiplication trick.
As before, throughout this section, let λ denote the security parameter and let
B = B(λ), d = d(λ) and N = N(λ) be arbitrary variables depending on λ. Let
s ∈ poly(λ). Additionally, introduce a modulus variable q = q(λ). We prove in
this section the following theorem:

Theorem 7. Let q be a prime, N ≥ d+1 and let SKEq be a private-key encryp-
tion scheme of depth d and width B over Zq for messages Xλ = {0, . . . , N}
s.t.

2(d + 1)2 · (d!)3 · dd · Nd · B ≤ q − 1.

If SKEq is selectively IND-CPA secure, then there exists a virtual adversarial
transformation to an encryption scheme SKE of depth d and width (d!)2B over
Z for messages Xλ = {0, . . . , N} which preserves selective IND-CPA security and
– in both directions – correctness, being better than guessing and uselessness.

Theorems 7 and 5 imply together the following impossibility result:

Corollary 3. Let q be a prime and let SKEq be a private-key encryption scheme
of depth d and width B for messages x = 0, . . . , N over Zq s.t. N ≥ 2d and

2(d + 1)2 · (d!)3 · dd · Nd · B ≤ q − 1.

If SKEq is selectively IND-CPA secure, B ∈ poly(λ) and d ∈ N constant, then
SKEq is useless.

Proof. Because of Theorem 7, there is an IND-CPA secure private-key encryption
scheme SKE over Z of polynomial width (d!)2B and constant depth d ∈ N for
messages Xλ = {0, . . . , N} which is useless iff SKEq is useless. Since N ≥ 2d,
SKE is useless according to Theorem 5. ��
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To prove Theorem 7, let q > 2 be a prime and define a map ι : Zq →
{− q−1

2 , . . . , 0, . . . , q−1
2 } ⊂ Z by setting for all a ∈ Zq

ι(a mod q) := a + zq for z ∈ Z s.t. |a + zq| = |a mod q| .

Then, ι preserves absolute values and we have

ι(a mod q) mod q = a mod q.

One first idea for proving Theorem 7 could be to just apply ι component-wise
to each ciphertext, i.e. treat each ciphertext modulo q as it would be an integer
vector. Technically, we would replace Enc by ι ◦ Enc. While ι ◦ Enc would be
indeed of length s and width B over Z, it is not clear, if it would be of depth
d over Z. To make this precise, for p ∈ Zq[X], we denote by I(p mod q) the
coefficient-wise application of ι, i.e.

I

(
d∑

i=0

aiX
i mod q

)
:=

d∑
i=0

ι(ai mod q)Xi.

Then, we have the equation I(p mod q) mod q = p mod q again. Now, for ι◦Enc
to be of depth d over Z, we would need a suitable offline algorithm. We could,
for example, take I ◦Encoffline as candidate. If p is a polynomial over Zq sampled
by Encoffline, we would then need the following kind of equality for all x ∈ Xλ

ι(p(x) mod q) = I(p mod q)(x). (3)

While Eq. (3) holds for polynomials p with small coefficients, it does not hold in
general. Therefore, we need to apply minor changes to the polynomials sampled
by Encoffline as we will see later. To this end, consider the Vandermonde matrix
for the tuple (0, 1, . . . , d)

V := ((i − 1)j−1)i,j=1,...,d+1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2d

...
...

1 d d2 . . . dd

⎞
⎟⎟⎟⎟⎟⎠

∈ Z
(d+1)×(d+1).

We can deduce the coefficients of a polynomial by applying V −1 to its output
values. However, V −1 has very large entries modulo q, therefore we use the
following integer quasi-inverse W with bounded entries.

Lemma 8. There exists an integer matrix W ∈ Z
(d+1)×(d+1) whose entries are

bounded by (d!)3dd, s.t. V · W = W · V = (d!)2 · Id(d+1)×(d+1).

Lemma 9. Let q > 2 be a prime, set c = (d!)2 and let p ∈ Zq[X] be a polynomial
of degree d. Furthermore, let N ≥ d + 1. If we have for all x = 0, . . . , d

|p(x) mod q| ≤ q − 1
2(d + 1)2 · (d!)3 · dd · Nd

,
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then we have for all x = 0, . . . , N

I(c · p mod q)(x) = ι(c · p(x) mod q).

Proof. It is clear that we have for any integer polynomial p and any x ∈ Z

I(c · p mod q)(x) mod q = c · p(x) mod q = ι(c · p(x) mod q) mod q.

Therefore, in our case, it suffices to show that the absolute value of
I(c · p mod q)(x) is bounded by q−1

2 , since ι(c · p(x) mod q) is a value of
{− q−1

2 , . . . , q−1
2 } which differs from I(c · p mod q)(x) only by a value in qZ.

Let p(X) =
∑d

i=0 aiX
i ∈ Zq[X] and set a = (a0, . . . , ad) ∈ Z

d+1
q to be the

column vector of p′s coefficients. Then, we have

V · a mod q =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2d

...
...

1 d d2 . . . dd

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

a0

a1

a2

...
ad

⎞
⎟⎟⎟⎟⎟⎠

mod q =

⎛
⎜⎜⎜⎜⎜⎝

p(0)
p(1)
p(2)

...
p(d)

⎞
⎟⎟⎟⎟⎟⎠

mod q.

Let W = (wi,j)i,j ∈ Z
(d+1)×(d+1) be the quasi-inverse of V from Lemma 8. Since

WV a = ca mod q, we have for each ai

c · ai mod q =
d∑

i=0

wi,jp(j) mod q.

In particular, we have now

|c · ai mod q| =

∣∣∣∣∣
d∑

i=0

wi,jp(j) mod q

∣∣∣∣∣ ≤
d∑

i=0

|wi,j | · |p(j) mod q| .

Set
B := max

x=0,...d
|p(x) mod q| ≤ q − 1

2(d + 1)2 · (d!)3 · dd · Nd
.

Since each |wi,j | is bounded by (d!)3dd and each |p(j) mod q| is bounded by B,
we get

|c · ai mod q| ≤
d∑

i=0

|wi,j | · |p(j) mod q| ≤
d∑

i=0

(d!)3ddB = (d + 1)(d!)3ddB.
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Therefore, we have for all x = 0, . . . , N

|I(c · p mod q)(x)|

=

∣∣∣∣∣
d∑

i=0

ι (c · ai mod q) xi

∣∣∣∣∣ ≤
d∑

i=0

∣∣ι (c · ai mod q)xi
∣∣

≤
d∑

i=0

|ι (c · ai mod q)| ·
∣∣xi

∣∣ ≤
d∑

i=0

(d + 1)(d!)3ddB · |x|i

≤(d + 1)(d!)3ddB ·
(

d∑
i=0

N i

)
≤ (d + 1)(d!)3ddB · (d + 1)Nd ≤ q − 1

2
.

Ergo, the claim follows. ��
Proof (Theorem 7). Because of Lemma 5, we can – by using the same argument
we used in the first part of the proof of Theorem 5 – w.l.o.g. assume that the
encryption algorithm of SKEq = (Setupq,Encq,Decq) never outputs a ciphertext
whose entries modulo q are not bounded by B. Set

c := (d!)2 ∈ Z, h := c−1 mod q ∈ Zq

and define a scheme SKE = (Setup,Enc,Dec) over Z by applying the following
adversarial transformation to SKEq:

Setup(1λ) :=Setupq(1
λ),

Enc(msk, x) := ι(c · Encq(msk, x) mod q),
Dec(msk, ct) :=Decq(msk, (h · ct mod q)).

It is clear that SKEq is correct, better than guessing (resp. useless) iff SKE is
correct, better than guessing (resp. useless), since we have

(h · (ι(c · ct mod q)) mod q) = (h · (c · ct) mod q) = ct mod q.

Since SKEq is IND-CPA secure and the above transformations are adversarial,
SKE is IND-CPA secure.

It remains to show that Enc is an encryption algorithm of depth d and width
cB over Z. Now, for each (ct1, . . . , cts) ← Encq(msk, x), we have

|ι(c · ctj mod q)| = |c · ctj mod q| ≤ c · |ctj mod q| ≤ cB,

therefore Enc is of width cB over Z. To show that Enc is of depth d we have to
give a feasible offline algorithm Encoffline for Enc = ι(c · Encq). This is done by
setting

Encoffline(msk) := I(c · Encoffline,q(msk) mod q).
Let x ∈ {0, . . . , N}. If we fix the randomness r of Enc(msk, x, r) and set
(p1, . . . , ps) = Encoffline,q(msk, r) and (p′

1, . . . , p
′
s) = Encoffline(msk, r), then

Enc(msk, x, r) = ι(c · Encq(msk, x, r) mod q)
= (ι(c · p1(x) mod q), . . . , ι(c · ps(x) mod q))
(∗)
= (I(c · p1 mod q)(x), . . . , I(c · ps mod q)(x)) = (p′

1(x), . . . , p′
s(x)),
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where eq. (∗) follows from Lemma 9. Therefore, Enc(msk, x) is of depth d. ��

6 Lattice-Based Function-Hiding Functional Encryption

In this section, let n(λ) ≥ 1 be a polynomial in λ and let q(λ) > p(λ) ≥ N(λ) ≥ 1.
Further, let Xλ = {0, . . . , p}n, Yλ = {0, . . . , p} and let (Fλ)λ be a function family
which contains (besides other functions) the zero-function 0 ∈ Fλ – which maps
each x ∈ Xλ to zero – and the projection π1 ∈ Fλ – which maps each x ∈ Xλ to
its first coordinate.

Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme for
(Fλ)λ of depth d1 and length s over Zq and let d2 ∈ N be a constant s.t. each
secret key sk ∈ supp(KeyGen) is a polynomial in Zq[X1, . . . , Xs] of total degree
≤ d2 with

Dec(sk, ct) = 
sk(ct)/�q/p�� .

Finally, set m =
(
s+d2

d2

)
. We prove in this section the following theorem:

Theorem 8. If q is a prime and FE is selectively (m + 1)-bounded function-
hiding IND-CPA secure and correct, then there exists an adversarial transfor-
mation from FE to a private-key encryption scheme of depth d := d1 · d2, width
�q/p� and length m over Zq for messages x = 0, . . . , N which is selectively IND-
CPA secure and better than guessing.

Corollary 4 (Impossibility Result). Assume that q is a prime, d1 is con-
stant and q

p is bounded by a polynomial in λ and that for almost all λ ∈ N we
have

p(λ) ≥ (d + 1)2 · 2d+1 · (d!)3 · d2d.

Then, FE cannot be both selectively (m + 1)-bounded function-hiding IND-CPA
secure and correct.

Proof. Assume that FE is both and set N = 2d. Because of Theorem 8, we can
transform FE to a private-key encryption scheme over Zq with depth d and width
B := �q/p� for messages X ′

λ = {0, . . . , 2d} which is IND-CPA secure and better
than guessing. Then, we have

B =
⌊

q

p

⌋
≤ q − 1

p
≤ q − 1

2(d + 1)2 · (d!)3 · dd · (2d)d
.

Now, according to Corollary 3, this encryption scheme must be useless and there-
fore cannot be better than guessing. In particular, FE cannot be correct. ��

We prove Theorem 8 by applying adversially three transformations to FE. First,
we relinearize the ciphertexts and secret keys s.t. decryption becomes evaluating
a scalar product, dividing by �q/p� and rounding down. Second, we draw m secret
keys v1, . . . , vm ← KeyGen′(msk, 0) for the zero-function and replace a ciphertext
ct′ with a vector of decryption noises 〈ct′ | vi〉. Because of decryption correctness,
each noise value must be small; therefore, we get a new ciphertext of small width.
By using sufficiently many secret keys, we can ensure that the new ciphertext
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contains enough information s.t. the probability of a correct decryption becomes
high enough. We will not always be able to decrypt correctly, but we show that
we are still better than guessing by 1

m . In fact, this is implied by Lemma 10 which
states that a secret key of a non-zero function must sufficiently resemble a secret
key of the zero-function. As a last step, we convert the current FE scheme into a
private-key encryption scheme for messages x ∈ {0, . . . , N} which is better than
guessing and of small width over Zq. Since all transformations can be applied by
an adversary, the scheme stays IND-CPA secure (however, we lose some security
in the second transformation step, since we have to ask for m secret keys). If we
started with a FE scheme of constant depth, then the final scheme will also be
of constant depth.

Proof (Theorem 8 Step 1). As a first step, we relinearize the ciphertexts and
secret keys of FE. Note that each polynomial sk ∈ Zq[X1, . . . , Xs] of total
degree ≤ d2 can be written as a vector of its coefficients. This yields a linear
transformation

Φ : {sk ∈ Zq[X1, . . . , Xs] | deg sk ≤ d2} −→ Z
(s+d2

d2
)

q .

On the other hand, there is a polynomial map Φ+ : Zs
q −→ Z

m
q of degree d2 which

maps each vector to a vector of different products of its entries s.t. we have for
all sk ∈ Zq[X1, . . . , Xs] of total degree ≤ d2 and all ct ∈ Z

s
q

sk(ct) = 〈Φ (sk) | Φ+ (ct)〉. (4)

Now, we define a new scheme FE′ = (Setup′,KeyGen′,Enc′,Dec′) by setting

Setup′(1λ) := Setup(1λ), KeyGen′(msk′, f) := Φ
(
KeyGen(msk′, f)

)
,

Enc′(msk′, x) := Φ+
(
Enc(msk′, x)

)
, Dec′(sk′, ct′) :=

⌈
〈sk′ | ct′〉/�q/p�

⌋
.

Applying Φ and Φ+ together forms an adversarial transformation, therefore FE′

is (m + 1)-fh-IND-CPA secure. Because of Eq. (4), FE′ is correct. Further, Enc′

is of depth d := d1 · d2 and its outputs are vectors of length m =
(
s+d2

d2

)
. �

Lemma 10. For each sampleable (fλ)λ ∈ (Fλ)λ there is an ε ∈ negl(λ) s.t.

Pr

⎡
⎣sk′

f ∈ span
Zq

{v1, . . . , vm}
msk′ ← Setup′(1λ)

v1, . . . , vm ← KeyGen′(msk, 0)

sk′
f ← KeyGen′(msk′, fλ)

⎤
⎦ ≥ 1

m + 1
− ε(λ).

Proof. Lemma 2 states

P1 := Pr

⎡
⎢⎣sk′

0 ∈ span
Zq

{v1, . . . , vm}
msk′ ← Setup′(1λ)

v1, . . . , vm ← KeyGen′(msk′, 0)

sk′
0 ← KeyGen′(msk′, 0)

⎤
⎥⎦ ≥ 1 − 1

m + 1
.

Consider an adversary A who plays the IND-CPA game from Definition 4 against
FE′ and works as follows:
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Step 1: For b = 0, 1 and i = 1, . . . , m + 1, the adversary sets

gb
i :=

{
0, if i ≤ m or b = 0,

fλ, if i = m + 1 and b = 1.

and submits two empty lists of possible inputs and two lists of possible
functions (g0

i )m+1
i=1 , (g1

i )m+1
i=1 .

Step 2: After receiving (sk′
gb

i
)m+1
i=1 , A computes V := span

Zq

{
sk′

gb
1
, . . . , sk′

gb
m

}
.

Step 3: The adversary outputs 0, if sk′
gb

m+1
∈ V , and 1 otherwise.

If we set

P2 := Pr

⎡
⎣sk′

f ∈ span
Zq

{v1, . . . , vm}
msk′ ← Setup′(1λ),

v1, . . . , vm−1 ← KeyGen′(msk′, 0),

sk′
f ← KeyGen′(msk′, fλ)

⎤
⎦ ,

then we can compute the advantage of A by

ε := Pr[A wins | b = 0] + Pr[A wins | b = 1] − 1 = P1 + (1 − P2) − 1 = P1 − P2.

ε is negligible, since FE′ is (m + 1)-fh-IND-CPA secure. Therefore

P2 = P1 − ε(λ) ≥ 1
m + 1

− ε(λ). ��

Proof (Theorem 8 Step 2). Let FE′ = (Setup′,KeyGen′,Enc′,Dec′) be a correct
and (m + 1)-fh-IND-CPA secure functional encryption scheme where Enc′ is of
depth d and length m over Zq. Let furthermore Dec′ be computed by

Dec′(sk′, ct′) =
⌈
〈sk′ | ct′〉/�q/p�

⌋
.

We now adversarially transform FE′ to a functional encryption scheme FE′′ for
the same functionality which is 1-fh-IND-CPA secure, better than guessing and
whose encryption algorithm has depth d, width �q/p� and length m over Zq.

In the IND-CPA game against FE′, our adversary first queries m secret keys
v1, . . . , vm ← KeyGen′(msk′, 0) for the zero function and then makes use of the
algorithm B described in Theorem 4 to compute V,A,A+ ← B(v1, . . . , vm) s.t.
V = span

Zq
{v1, . . . , vm} and A ∈ Z

m×k
q , A+ ∈ Z

k×m
q are matrices with

V = A · Zk
q and A · A+v = v for all v ∈ V.

After our adversary queried m secret keys, FE′ remains 1-fh-IND-CPA secure.
However, by doing so, the adversary gained the additional data V,A,A+ with
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which he can transform FE′ to FE′′ = (Setup′′,KeyGen′′,Enc′′,Dec′′) by setting:

Setup′′(1λ) := Setup′(1λ) Enc′′(msk′′, x) := AT · Enc′(msk′′, x)

KeyGen′′(msk′′, f) :
sk′

f ← KeyGen′(msk′, f)

if sk′
f ∈ V

sk′′
f := A+ · sk′

f

else

sk′′
f := ⊥

return sk′′
f

Dec′′(sk′′, ct′′) :
if sk′′ = ⊥

y ← {0, . . . , p}
else

y ← Dec′(sk′′, ct′′)
return y

FE′′ has the following properties:

Security: The above changes can be applied by an adversary while he plays the
IND-CPA game from Definition 4. Therefore, FE′′ is 1-fh-IND-CPA secure, since
our adversary has to query m secret keys for the zero function which does not
leak any information about encrypted messages.

Depth and Length: Since the transformation of the encryption algorithm is
done by multiplication with the matrix AT ∈ Z

k×m
q , the depth of the encryption

algorithm does not change. Furthermore, Enc′′ is of length4 k ≤ m over Zq.

Width: We have to show that Enc′′ is of width �q/p�. To this end, let (xλ)λ ∈
(Xλ)λ, draw msk′′ ← Setup′′(1λ), ct′′ ← Enc′′(msk′′, xλ) and fix a component
ct′′i of ct′′ = (ct′′1 , . . . , ct′′k) ∈ Z

k
q . Note that the columns of the matrix A =

(vj1 | . . . |vjk
) are some of the vectors v1, . . . , vm ← KeyGen′(msk′, 0) according to

Theorem 4. Since ct′′ = AT ct′ for some ct′ ← Enc′(msk′, xλ), there is, because
of the correctness of FE′, an ε0 ∈ negl(λ) s.t. for all (xλ)λ ∈ (Xλ)λ

Pr
[
|ct′′i | ≤

⌊
q

p

⌋]
= Pr

[∣∣vT
ji

· ct′
∣∣ ≤

⌊
q

p

⌋]
≥ Pr

[⌈
vT

ji
· ct′

�q/p�

⌋
= 0

]

= Pr

⎡
⎢⎣Dec′(vji

, ct′) = 0
msk′ ← Setup′(1λ)

vji ← KeyGen′(msk′, 0),

ct′ ← Enc′(msk′, x)

⎤
⎥⎦ ≥ 1 − ε(λ)

where in the first three terms we take the randomness over the computation of
msk′′ and ct′′. Therefore, Enc′′ is of width �q/p�.
Better than Guessing: It remains to show that FE′′ is better than guessing.
Fix (xλ)λ ∈ (Xλ)λ and a samplable (fλ)λ ∈ (Fλ)λ and draw msk′′ ← Setup′′(1λ),

4 Note that k is not fixed but rather a random variable. However, this is not a problem,
since we can always pad the output of Enc′′ to be of length m over Zq.
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sk′′
f ← KeyGen′′(msk′′, fλ), ct′′x ← Enc′′(msk′′, xλ). Then, we have

Pr
[
Dec′′(sk′′

f , ct′′x) = f(x)
]

= Pr
[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f = ⊥

]
· Pr

[
sk′′

f = ⊥
]

+ Pr
[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f �= ⊥

]
· Pr

[
sk′′

f �= ⊥
]

=
1

p + 1
· Pr

[
sk′′

f = ⊥
]
+ Pr

[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f �= ⊥

]
· Pr

[
sk′′

f �= ⊥
]
.

Now, we have sk′′
f �= ⊥ iff sk′

f ∈ V . Because of Lemma 10, the probability for
this is at least 1

m+1 − ε1 for some ε1 ∈ negl(λ). If sk′
f ∈ V , we have

Dec′′(sk′′
f , ct′′x) =Dec′(sk′′

f , ct′′x) =

⌈
〈sk′′

f | ct′′x〉
�q/p�

⌋
=

⌈
〈A+ sk′

f | AT ct′x〉
�q/p�

⌋

=

⌈
〈AA+ sk′

f | ct′x〉
�q/p�

⌋
= Dec′(sk′

f , ct′x).

The last term equals fλ(xλ) with probability at least 1−ε2 for some ε2 ∈ negl(λ).
Now, let λ be big enough s.t. 1 − ε2(λ) ≥ 1

p(λ)+1 , then

Pr
[
Dec′′(sk′′

f , ct′′x) = f(x)
]

=
1

p + 1
· Pr

[
sk′′

f = ⊥
]
+ Pr

[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f �= ⊥

]
· Pr

[
sk′′

f �= ⊥
]

≥ 1
p + 1

· (1 − Pr
[
sk′′

f �= ⊥
]
) + (1 − ε2) · Pr

[
sk′′

f �= ⊥
]

=
1

p + 1
+ Pr

[
sk′′

f �= ⊥
](

1 − ε2 − 1
p + 1

)

≥ 1
p + 1

+
(

1
m + 1

− ε1

)(
1 − ε2 − 1

p + 1

)

≥ 1
p + 1

+
p

(m + 1)(p + 1)
− negl(λ). (5)

Therefore, FE′′ is better than guessing by p
(m+1)(p+1) . �

Since (Fλ)λ contains the projection onto the first coordinate, there is a straight-
forward way to adversially transform FE′′ to a private encryption scheme over
Zq with width �q/p� and depth d which is better than guessing and selectively
IND-CPA secure. For this purpose set X̃λ = {0, . . . , N(λ)}.

Proof (Theorem 8 Step 3). Let FE′′ = (Setup′′,KeyGen′′,Enc′′,Dec′′) be the func-
tional encryption scheme of the preceding step. Then, FE′′ is 1-fh-IND-CPA
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secure, better than guessing and of depth d and width B := �q/p� over Zq.
Additionally, FE′′ has the special property that for all samplable (fλ)λ there is
an ε ∈ negl(λ), s.t. we have for all (xλ)λ

Pr
msk′′←Setup′′(1λ)

⎡
⎣Dec′′(sk′′

f , ct′′x) = fλ(xλ)
sk′′

f ← KeyGen′′(msk′′, fλ)

ct′′x ← Enc′′(msk′′, xλ)

sk′′
f �= ⊥

⎤
⎦ ≥ 1 − ε(λ).

We adversarially transform FE′′ to a private-key encryption scheme SKE′′′ =
(Setup′′′,Enc′′′,KeyGen′′′,Dec′′′) of depth d and width B over Zq for the message
space X̃λ which is IND-CPA secure and better than guessing. For this end set:

Setup′′′(1λ) := Setup′′(1λ)
Enc′′′(msk′′′, x) := Enc′′(msk′′′, (x, 0 . . . , 0))

KeyGen′′′(msk′′′, Id
˜Xλ

) := KeyGen′′(msk′′′, π1)

Dec′′′(sk′′′, ct′′′) :
if sk′′′ = ⊥

y ← {0, . . . , N}
else

y ← Dec′′(sk′′′, ct′′′)
return y

Note that this adversarial transformation is the only one in this work, where we
have two functional encryption schemes for different functionalities. Now, SKE′′′

is IND-CPA secure, because FE′′ is 1-fh-IND-CPA secure (in fact, FE′′ being
0-fh-IND-CPA secure would already suffice). Enc′′′ is of depth d and width B
over Zq, since Enc′′ is so. The computations marked by the number (5) in the
preceding transformation step show – mutatis mutandis – that SKE′′′ is better
than guessing by N

(m+1)·(N+1) . ��
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