
Indistinguishability Obfuscation
Without Maps: Attacks and Fixes

for Noisy Linear FE

Shweta Agrawal1(B) and Alice Pellet-Mary2(B)

1 IIT Madras, Chennai, India
shweta.a@gmail.com

2 imec-COSIC, KU Leuven, Leuven, Belgium
alice.pelletmary@kuleuven.be

Abstract. Candidates of Indistinguishability Obfuscation (iO) can be
categorized as “direct” or “bootstrapping based”. Direct constructions
rely on high degree multilinear maps [28,29] and provide heuristic guar-
antees, while bootstrapping based constructions [2,7,33,36,38,39] rely,
in the best case, on bilinear maps as well as new variants of the Learn-
ing With Errors (LWE) assumption and pseudorandom generators. Recent
times have seen exciting progress in the construction of indistinguishabil-
ity obfuscation (iO) from bilinear maps (along with other assumptions)
[2,7,33,38].

As a notable exception, a recent work by Agrawal [2] provided a con-
struction for iO without using any maps. This work identified a new prim-
itive, called Noisy Linear Functional Encryption (NLinFE) that provably
suffices for iO and gave a direct construction of NLinFE from new assump-
tions on lattices. While a preliminary cryptanalysis for the new assump-
tions was provided in the original work, the author admitted the neces-
sity of performing significantly more cryptanalysis before faith could be
placed in the security of the scheme. Moreover, the author did not sug-
gest concrete parameters for the construction.

In this work, we fill this gap by undertaking the task of thorough crypt-
analytic study of NLinFE. We design two attacks that let the adversary
completely break the security of the scheme. Our attacks are completely
new and unrelated to attacks that were hitherto used to break other can-
didates of iO. To achieve this, we develop new cryptanalytic techniques
which (we hope) will inform future designs of the primitive of NLinFE.

From the knowledge gained by our cryptanalytic study, we suggest
modifications to the scheme. We provide a new scheme which overcomes
the vulnerabilities identified before. We also provide a thorough anal-
ysis of all the security aspects of this scheme and argue why plausible
attacks do not work. We additionally provide concrete parameters with
which the scheme may be instantiated. We believe the security of NLinFE
stands on significantly firmer footing as a result of this work.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 110–140, 2020.
https://doi.org/10.1007/978-3-030-45721-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_5

Indistinguishability Obfuscation Without Maps 111

1 Introduction

Indistinguishability Obfuscation (iO) is one of the most sought-after primitives in
modern cryptography. While introduced in a work by Barak et al. in 2001 [11],
the first candidate construction for this primitive was only provided in 2013
[29]. In this breakthrough work, the authors not only gave the first candidate
for iO but also demonstrated its power by using it to construct the first full
fledged functional encryption (FE) scheme. This work led to a deluge of ever
more powerful applications of iO, ranging from classic to fantastic [13,15,18,19,
34,35,37,45]. Few years later, iO is widely acknowledged to be (almost) “crypto
complete”. We refer the reader to [36] for a detailed discussion.

However, constructions of iO have been far from perfect. The so called “first
generation” constructions relied on the existence of multilinear maps of poly-
nomial degree [9,29,30,47], “second generation” relied on multilinear maps of
constant degree [36,38,39], and in a sequence of exciting recent works, “third
generation” candidates rely only on multilinear maps of degree 2 (i.e. bilinear
maps) along with assumptions on the complexity of certain special types of
pseudorandom generators and new variants of the Learning With Errors (LWE)
assumption [2,7,33]. It is well known that degree 2 maps can be instantiated
on elliptic curve groups, so this brings us closer to realizing iO from believable
assumptions than ever before.

iO Without maps: All the above constructions rely on multilinear maps of degree
≥2. While there exist candidates for multilinear maps of degree ≥3, they have
been subject to many attacks [8,20,22–27,27,32,43,44] and their security is
poorly understood. On the other hand, bilinear maps are well understood and
considered safe to use (at least in the pre-quantum world). Recent works [2,7,33]
have come tantalizingly close to basing iO on bilinear maps while minimizing the
additional assumptions required. There is hope that these efforts will converge
to a candidate whose security we may trust.

While realizing iO from degree 2 maps (along with other plausible assump-
tions) is a very worthy goal, it is nevertheless only one approach to take. Any
cryptographic primitive, especially one of such central importance, deserves to be
studied from different perspectives and based on diverse mathematical assump-
tions. Two works (that we are aware of) attempt to construct iO without using
any maps – one by Gentry, Jutla and Keane [31] and another by Agrawal [2].
The work by Gentry et al. [31] constructs obfuscation schemes for matrix prod-
uct branching programs that are purely algebraic and employ matrix groups
and tensor algebra over a finite field. They prove security of their construction
against a restricted class of attacks. On the other hand, the work of Agrawal for-
malizes a “minimal” (as per current knowledge) primitive called “Noisy Linear
Functional Encryption” (NLinFE) which is showed to imply iO and provides a
direct construction for this using new assumptions on NTRU lattices, which are
quite different from assumptions used so far for building multilinear maps or iO.

Comparison with other approaches. The instantiation of iO via Agrawal’s direct
construction of NLinFE (henceforth referred to simply as NLinFE) has both

112 S. Agrawal and A. Pellet-Mary

advantages and disadvantages compared to other cutting-edge constructions.
For instance, [31] has the advantage that it constructs full fledged iO directly,
while NLinFE has the advantage that untested assumptions are used to con-
struct a much simpler primitive. Next, consider constructions that use bilinear
maps [2,7,33]. On the positive side, NLinFE has potential to be quantum secure,
which evidently is not a property that bilinear map based constructions can hope
to achieve. Additionally, the NLinFE supports outputs of super-polynomial size,
while bilinear map based constructions can support only polynomially sized out-
puts. In particular, this leads to the latter constructions relying on a complicated
and inefficient (albeit cool) “security amplification” step in order to be useful for
iO. Moreover, there is a qualitative advantage to Agrawal’s direct construction:
while bilinear map based constructions use clever methods to compute a PRG
output exactly, the direct construction of NLinFE relaxes correctness and settles
for computing the PRG output only approximately – this allows for the usage of
encodings that are not powerful enough for exact computation.

On the other hand, Agrawal’s encodings are new, while assumptions over
bilinear maps have stood the test of time (in the pre-quantum world). While
bilinear map based constructions must also make new, non-standard assump-
tions, these constructions come with a clean proof from the non-standard
assumptions. Meanwhile, Agrawal’s NLinFE came with a proof in a very weak
security game that only permits the adversary to request a single ciphertext,
and that too from a non-standard assumption. Moreover, the author did not
suggest concrete parameters for the construction, and admitted the necessity
of substantially more cryptanalysis before faith could be placed in these new
assumptions.

Our results. In this work, we undertake the task of thorough cryptanalytic study
of Agrawal’s NLinFE scheme. We design two attacks that let the adversary com-
pletely break the security of the scheme. To achieve this, we develop new crypt-
analytic techniques which (we hope) will inform future designs of the primitive
of NLinFE.

As mentioned above, Agrawal proved the security of her NLinFE in a weak
security game where the attacker is only permitted to request a single ciphertext.
Our first attack shows that this is not a co-incidence: an attacker given access
to many ciphertexts can manipulate them to recover a (nonlinear) equation
in secret terms, which, with some effort, can be solved to recover the secret
elements. We emphasize that this attack is very different in nature from the
annihilation attacks [43] studied in the context of breaking other constructions
of iO. We refer to this attack as the multiple ciphertext attack. To demonstrate
our attack, we formalize an assumption implicitly made by [2], and design an
attack that breaks this assumption – this in turn implies an attack on the scheme.
We implement this attack and provide the code as supplementary material with
this work.

Our second attack, which we call the rank attack exploits a seemingly harm-
less property of the output of decryption in NLinFE. Recall that the primitive of
NLinFE enables an encryptor to compute a ciphertext CT(z), a key generator to

Indistinguishability Obfuscation Without Maps 113

compute a secret key SK(v) and the decryptor, given CT(z) and SK(v) to recover
〈z, v〉 + Nse, where Nse must satisfy some weak pseudorandomness properties.

A detail that is important here is that for NLinFE to be useful for iO, the
term Nse above must be a linear combination of noise terms, each multiplied
with a different (public) modulus. In more detail, the noise term Nse output by
NLinFE has the structure

∑
i piμi where pi for i ∈ [0,D − 2] are a sequence of

increasing moduli and μi are unstructured noise terms. Moreover, for decryption
to succeed, these moduli must be public.

The NLinFE construction takes great care to ensure that the noise terms
computed via NLinFE are high degree polynomials in values that are spread out
over the entire ring, and argues (convincingly, in our opinion) that these may
not be exploited easily. However, while some of the μi in the above equation are
indeed “strong” and difficult to exploit, we observe that some of them are not.
Moreover, since the moduli pi are public, the μi can be “separated” into different
“levels” according to the factor pi. Hence, it is necessary that the noise at each
“level” be “strong”, but NLinFE fails to enforce this. Therefore, while there exist
strong terms in some levels, the existence of a weak noise term in even one other
level enables us to isolate them and use them to construct a matrix, whose rank
reveals whether the message bit is 0 or 1.

From the knowledge gained by our cryptanalytic study, we suggest fixes to
the scheme. The first attack can be overcome by disabling meaningful manip-
ulation between different encodings. We achieve this by making the encodings
non-commutative. The second attack can be overcome by ensuring that the noise
terms for all levels are equally strong. We then provide a new scheme which over-
comes the vulnerabilities described above. We also provide a thorough analysis
of all the security aspects of this scheme and argue why plausible attacks do not
work. We additionally provide concrete parameters with which the scheme may
be instantiated.

Comparison with other attacks on iO. While Agrawal’s NLinFE construction is
quite different from previous iO constructions needing fresh cryptanalysis, there
are still some high-level similarities between the rank attack we propose and
previous attacks on candidate obfuscators [20,21,23,26]. In more detail, these
attacks also combine public elements in a clever way to obtain a matrix, and
computing the eigenvalues or the rank of this matrix then enables an attacker
to break the scheme. We note however that while the main idea of the attack is
the same (we compute a matrix and its rank leaks some secret information), the
way we obtain the matrix is completely different from [20,21,26].

1.1 Our Techniques

We proceed to describe our techniques. We begin by defining the primitive of
noisy linear functional encryption.

Noisy linear functional encryption. Noisy linear functional encryption (NLinFE)
is a generalization of linear functional encryption (LinFE) [1,3]. Recall that in
linear FE, the encryptor provides a CTz which encodes vector z ∈ Rn, the key

114 S. Agrawal and A. Pellet-Mary

generator provides a secret key SKv which encodes vector v ∈ Rn and the decryp-
tor combines them to recover 〈z,v〉. NLinFE is similar to linear FE, except that
the function value is recovered only up to some bounded additive noise term,
and indistinguishability holds even if the challenge messages evaluated on any
function key are only “approximately” and not exactly equal. The functional-
ity of NLinFE is as follows: given a ciphertext CTz and a secret key SKv, the
decryptor recovers 〈z, v〉+ noisez,v where noisez,v is specific to the message and
function being evaluated.

It is well known that functional encryption (FE) for the function class NC1

which achieves sublinear1 ciphertext is sufficient to imply iO [6,16]. Agrawal [2]
additionally showed the following “bootstrapping” theorem.

Theorem 1.1 ([2]) (Informal). There exists an FE scheme for the circuit class
NC1 with sublinear ciphertext size and satisfying indistinguishability based secu-
rity, assuming:

– A noisy linear FE scheme NLinFE with sublinear ciphertext size satisfying
indistinguishability based security and supporting superpolynomially large out-
puts.

– The Learning with Errors (LWE) Assumption.
– A pseudorandom generator (PRG) computable in NC0.

Since the last two assumptions are widely believed, it suffices to construct
an NLinFE scheme to construct the all-powerful iO.

The NLinFE Construction. Agrawal provided a direct construction of NLinFE
which supports superpolynomially large outputs, based on new assumptions that
are based on the Ring Learning With Errors (RLWE) and NTRU assumptions
(we refer the reader to Sect. 2 for a refresher on RLWE and NTRU).

The starting point of Agrawal’s NLinFE scheme is the LinFE scheme of [3],
which is based on LWE (or RLWE). NLinFE inherits the encodings and secret
key structure of LinFE verbatim to compute inner products, and develops new
techniques to compute the desired noise. Since the noise must be computed
using a high degree polynomial for security [10,40], the work of [2] designs new
encodings that are amenable to multiplication as follows.

Let R = Z[x]/〈xn + 1〉 and Rp1 = R/(p1 · R), Rp2 = R/(p2 · R) for some
primes p1 < p2. Then, for i ∈ {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete
Gaussian over ring R. Set

h1i =
f1i

g1
, h2j =

f2j

g2
∈ Rp2 ∀ i, j ∈ [w]

Thus, [2] assumes that the samples {h1i, h2j} for i, j ∈ [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
1 Here “sublinear” refers to the property that the ciphertext size is sublinear in the

number of keys requested by the FE adversary.

Indistinguishability Obfuscation Without Maps 115

secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i ∈ [w], let D̂(Λ2), D̂(Λ1) be discrete Gaussian distributions
over lattices Λ2 and Λ1 respectively. Then, sample

e1i ← D̂(Λ2), where Λ2 � g2 · R. Let e1i = g2 · ξ1i ∈ small,

e2i ← D̂(Λ1), where Λ1 � g1 · R. Let e2i = g1 · ξ2i ∈ small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j ∈ [w], it holds that:

h1i · e2j = f1i · ξ2j , h2j · e1i = f2j · ξ1i ∈ small

Now, sample small secrets t1, t2 and for i ∈ [w], compute

d1i = h1i · t1 + p1 · e1i ∈ Rp2

d2i = h2i · t2 + p1 · e2i ∈ Rp2

Then, note that the products d1i ·d2j do not suffer from large cross terms for
any i, j ∈ [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original
labels. In more detail,

d1i · d2j =
(
h1i · h2j

) · (t2 t2) + p1 · noise
where noise = p1 · (

f1i · ξ2j · t1 + f2j · ξ1i · t2 + p1 · g1 · g2 · ξ1i · ξ2j

) ∈ small

The encoding d1i ·d2j can be seen an RLWE encoding under a public label – this
enables the noise term p1 ·noise above to be added to the inner product computed
by LinFE, yielding the desired NLinFE. The actual construction [2] does several
more tricks to ensure that the noise term is high entropy and spread across the
ring – we refer the reader to Sect. 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we call
the RLWE problem with correlated noise. The distribution of the elements in
this problem are similar to the one obtained by the encryption procedure of
the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.

116 S. Agrawal and A. Pellet-Mary

The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that d1i =
h1i ·t1+p1 ·e1i where e1i lives in the ideal g2 ·R. Now, consider the corresponding
element in another ciphertext: d′

1i = h1i · t′1 +p1 ·e′
1i where e′

1i is also in the ideal
g2 ·R. The key observation we make is that the noise e1i does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {d2i} – it
also annihilates large terms in the encodings of other ciphertexts, namely {d′

2i}.
This allows us to perform mix and match attacks, despite the fact that each

encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

d1id
′
2j =

(
h1ih2j

) · (t1t′2) + p1 · small

d2jd
′
1i =

(
h2jh1i

) · (t2t′1) + p1 · small

We see above that the labels h1ih2j can be computed in two different ways (but
the secrets are different). In a symmetric manner, if we consider other indices i′

and j′ for the ciphertext elements above, we can obtain

d1id2j =
(
h1ih2j

) · (t1t2) + p1 · small

d2j′d1i′ =
(
h2j′h1i′

) · (t2t1) + p1 · small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element d1i = h1i · t1 + p1 · e1i,
we can change the h1i and t1 elements independently (the secret t1 changes
with the ciphertext and the label h1i changes with the index of the element in
the ciphertext). By varying these two elements independently, one can obtain
2 × 2 encodings (for 2 different choices of h1i and 2 different choices of t1), and
consider the 2 × 2 matrix associated. More formally, let us write

d1i = h1i · t1 + p1 · e1i, d1i′ = h1i′ · t1 + p1 · e1i′

d′
1i = h1i · t′1 + p1 · e′

1i, d′
1i′ = h1i′ · t′1 + p1 · e′

1i′

these encodings. We consider the matrix
(

d1i d1i′

d′
1i d′

1i′

)

=
(

t1
t′1

)

· (
h1i h1i′

)
+ p1 ·

(
e1i e1i′

e′
1i e′

1i′

)

.

This matrix is the sum of a matrix of rank 1 with large coefficients plus a full rank
matrix with small coefficients that are multiples of g2. These properties ensure
that its determinant will be of the form g2/g1 · small. By doing the same thing
with the encodings d2i, we can also create an element of the form g1/g2 · small.
By multiplying these two elements, we finally obtain a linear combination of the
encodings which is small. We can then distinguish whether the encodings are
random or are RLWE with correlated noise elements. For more details, please
see Sect. 4.

Indistinguishability Obfuscation Without Maps 117

Unravelling the structure of the Noise. Our second attack, the so called “rank
attack” exploits the fact that for the NLinFE noise to be useful for bootstrapping,
it needs to be linear combination of noise terms, each of which is multiple of a
fixed and public modulus pi, for i ∈ [0,D − 2]. As discussed above, the noise
terms that are multiples of distinct pi may be separated from each other and
attacked individually. In these piece-wise noise terms, we first isolate the noise
term that encodes the message, which is 0 or m (say). Thus, our isolated noise
term is of the form Nse or Nse + m depending on the challenge. Here, Nse is a
complicated high degree multivariate polynomial, but we will find a way to learn
the challenge bit without solving high degree polynomial equations.

To do so, we examine the noise term more carefully. As mentioned above, this
term is a high degree, multivariate polynomial which looks difficult to analyze.
However, we observe that each variable in this polynomial may be categorized
into one of three “colours” – blue if it is fixed across all ciphertexts and secret
keys, red if it is dependent only on the secret key and black if it is dependent
only on the ciphertext. Next, we observe that if the challenge is 0, then the
above polynomial may be expressed as a sum of scalar products, where in every
scalar product one vector depends only on the secret key and the other one
depends only on the cipher text. Concatenating all these vectors, one obtains a
term 〈a,b〉, where a depends only on the secret key and b depends only on the
ciphertext (and they are both secret). The dimension of a and b is the sum of
the dimension of all the vectors involved in the sum above, let us denote this
dimension by N .

Assume that we can make N + 1 requests for secret keys and ciphertexts.
Now, in NLinFE, the message m itself depends on both the secret key and the
ciphertext2 – we denote by mij the message corresponding to the i-th secret key
and the j-th ciphertext, and note that mij is known to the NLinFE adversary.
We write ci,j = 〈ai,bj〉 + (0 or mij) the noise term obtained when computing
decryption with the i-th secret key and the j-th ciphertext. Define C and M the
N ×N matrices (ci,j)i,j and (mij)i,j respectively. Similarly, let A be the matrix
whose rows are the ai and B be the matrix whose columns are the bj .

Then, depending on the challenge, we claim that C or C − M is of rank at
most N . To see this, note that we have C = A · B + (0 or M), where A has
dimension (N + 1) × N and B has dimension N × (N + 1), so that A · B has
rank at most N . On the other hand, the other matrix is of the form A · B ± M ,
which has full rank with good probability. We finish the attack by arguing that
the adversary is indeed allowed to make N + 1 requests for secret keys and
ciphertexts. Thus, by computing the rank of C and C − M, we can learn the
challenge bit. For details, please see Sect. 5.

Fixing the construction. In light of the attacks described above, we propose a
variant of Agrawal’s NLinFE construction [2], designed to resist these attacks.

2 This is created by the bootstrapping step. Intuitively mij is itself a noise term, which
depends on both SK and CT, and we seek to “flood” this term using NLinFE. Please
see [2] for more details.

118 S. Agrawal and A. Pellet-Mary

Recall that for the multi-ciphertexts attack, we used the commutativity of
the elements to ensure that, when multiplying elements in a certain way, the
labels and secrets were the same. Hence, we prevent this attack by replacing
the product of scalars h1i · t1 in the encodings by an inner product 〈h1i , t1〉,
where the elements h1i and t1 have been replaced by vectors of dimension κ (the
security parameter). This fix does not completely prevent the multi-ciphertexts
attack, but the generalization of this attack to this non commutative setting
requires a very large modulus, and is therefore not applicable to the range of
parameters required for correctness.

To fix the rank attack, we first observe that we do not need to construct
directly an NLinFE scheme with structured noise. Indeed, assume first that we
have an NLinFE scheme with arbitrary noise, and we would like to have a noise
term which is a multiple of p0. Then, when we want to encode a vector z, we
simply encode z/p0 with our NLinFE with arbitrary noise. By decrypting the
message, one would then recover 1/p0 · 〈z,v〉 + noise, and by multiplying this by
p0, we obtain 〈z,v〉 + p0 · noise, with the desired noise shape. More generally, if
we want a noise term which is a sum of multiples of pi’s, we could use an additive
secret sharing of z, i.e., compute random vectors zi such that

∑
i zi = z, and

then encode zi/pi with the NLinFE scheme with arbitrary noise. By decrypting
every ciphertexts, one could then recover 1/pi · 〈zi,v〉 + noise for all i’s, and by
scaling and summing them, one will have a noise term of the desired shape.

Once we have made this observation that an NLinFE scheme with arbitrary
noise is sufficient for our purpose, we can prevent the rank attack by removing
the moduli pi from Agrawal’s construction. This means that the noise term we
obtain at the end cannot be split anymore into smaller noise terms by looking at
the “levels” created by the moduli. We now only have one big noise term, which
contains noise terms of high degree and so seems hard to exploit. For technical
reasons, we in fact have to keep one modulus, but the general intuition is the
same as the one given here. For more details, please see Sect. 6.

2 Preliminaries

2.1 Noisy Linear Functional Encryption (NLinFE)

Let R be a ring, instantiated either as the ring of integers Z or the ring of
polynomials Z[x]/f(x) where f(x) = xn + 1 for n a power of 2. We let Rpi

=
R/piR for some prime pi, i ∈ [0, d] for some constant d. Let B1, B2 ∈ R

+ be
bounding values, where B2

B1
= superpoly(κ). Let N > 0 be an integer (N will be

the maximal number of key queries that an attacker is allowed to make). We
define the symmetric key variant below.

Definition 2.1. A (B1, B2, N)-noisy linear functional encryption scheme FE
is a tuple FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) of four probabilistic
polynomial-time algorithms with the following specifications:

– FE.Setup(1κ, R�
pd−1

) takes as input the security parameter κ and the space of
message and function vectors R�

pd−1
and outputs the public key and the master

secret key pair (PK,MSK).

Indistinguishability Obfuscation Without Maps 119

– FE.Keygen(MSK,v) takes as input the master secret key MSK and a vector
v ∈ R�

pd−1
and outputs the secret key SKv.

– FE.Enc(MSK, z) takes as input the public key PK and a message z ∈ R�
pd−1

and outputs the ciphertext CTz.
– FE.Dec(SKv,CTz) takes as input the secret key of a user SKv and the cipher-

text CTz, and outputs y ∈ Rpd−1 ∪ {⊥}.
Definition 2.2 (Approximate Correctness). A noisy linear functional
encryption scheme FE is correct if for all v, z ∈ R�

pd−1
,

Pr

[
(PK,MSK) ← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK,v),FE.Enc(MSK, z)

)
= 〈v, z〉 + noisefld

]
= 1 − negl(κ)

where noisefld ∈ R with ‖noisefld‖ ≤ B2 and the probability is taken over the coins
of FE.Setup, FE.Keygen, and FE.Enc.

Security. Next, we define the notion of Noisy-IND security and admissible adver-
sary.

Definition 2.3 (Noisy-IND Security Game). We define the security game
between the challenger and adversary as follows:

1. Public Key: Challenger returns PK to the adversary.
2. Pre-Challenge Queries: Adv may adaptively request keys for any functions

vi ∈ R�
pd−1

. In response, Adv is given the corresponding keys SK(vi).
3. Challenge Ciphertexts: Adv outputs the challenge message pairs (zi

0, z
i
1) ∈

R�
pd−1

×R�
pd−1

for i ∈ [Q], where Q is some polynomial, to the challenger. The
challenger chooses a random bit b, and returns the ciphertexts {CT(zi

b)}i∈[Q].
4. Post-Challenge Queries: Adv may request additional keys for functions of

its choice and is given the corresponding keys. Adv may also output additional
challenge message pairs which are handled as above.

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between the adver-
sary’s success probability and 1/2.

Definition 2.4 (Admissible Adversary). We say an adversary is admissible
if it makes at most N key requests and if for any pair of challenge messages
z0, z1 ∈ R�

pd−1
and any queried key vi ∈ R�

pd−1
, it holds that |〈vi, z0 −z1〉| ≤ B1.

Structure of Noise. The bootstrapping step in [2] requires that

|〈vi, z0 − z1〉| =
d−2∑

i=0

pi · noisech,i

for some noise terms noisech,i. Hence the flooding noise noisefld that is added by
the NLinFE must also be structured as

∑d−2
i=0 pi · noisefld,i.

120 S. Agrawal and A. Pellet-Mary

Definition 2.5 (Noisy-IND security). A (B1, B2, N) noisy linear FE scheme
NLinFE is Noisy-IND secure if for all admissible probabilistic polynomial-time
adversaries Adv, the advantage of Adv in the Noisy-IND security game is negli-
gible in the security parameter κ.

The works of [2,6,14,16] show that as long as the size of the ciphertext
is sublinear in N , a (B1, B2, N) − NLinFE scheme implies indistinguishability
obfuscation.

2.2 Sampling and Trapdoors

Ajtai [4] showed how to sample a random lattice along with a trapdoor that per-
mits sampling short vectors from that lattice. Recent years have seen significant
progress in refining and extending this result [5,42,46].

Let R = Z[x]/(f) where f = xn + 1 and n is a power of 2. Let Rq � R/qR
where q is a large prime satisfying q = 1 mod 2n. For r ∈ R, we use ‖r‖ to refer
to the Euclidean norm of r’s coefficient vector.

We will make use of the following algorithms from [42]:

1. TrapGen(n,m, q): The TrapGen algorithm takes as input the dimension of the
ring n, a sufficiently large integer m = O(n log q) and the modulus size q and
outputs a vector w ∈ Rm

q such that the distribution of w is negligibly far
from uniform, along with a “trapdoor” Tw ∈ Rm×m for the lattice Λ⊥

q (w) =
{
x : 〈w, x〉 = 0 mod q

}
.

2. SamplePre(w,Tw, a, σ): The SamplePre algorithm takes as input a vector w ∈
Rm

q along with a trapdoor Tw and a syndrome a ∈ Rq and a sufficiently large
σ = O(

√
n log q) and outputs a vector e from a distribution within negligible

distance to DΛa
q (w),σ·ω(

√
log n) where Λa

q(w) =
{
x : 〈w, x〉 = a mod q

}
.

2.3 Random Matrices over Zq

Lemma 2.6. Let q be a prime integer and A be sampled uniformly in
(Z/(qZ))m×m. Then

P
(
det(A) ∈ (Z/(qZ))×)

=
m∏

i=1

(

1 − 1
qi

)

≥ 4 ln(2)
q

.

Proof. The first equality is obtained by counting the number of invertible m ×
m matrices in Z/(qZ). For the lower bound, we observe that 1 − 1/qi ≥ 1/2
for all 1 ≤ i ≤ m. By concavity of the logarithm function, this implies that
log(1 − 1/qi) ≥ −2/qi for all i ≥ 1 (recall that the logarithm is taken in base 2).
We then have

log
m∏

i=1

(

1 − 1
qi

)

=
m∑

i=1

log
(

1 − 1
qi

)

≥
m∑

i=1

−2
qi

≥ −2
q

· 1
1 − 1/q

≥ −4
q

.

Taking the exponential we obtain that P (det(A) ∈ (Z/(qZ))×) ≥ 2−4/q ≥ 1 −
4 ln(2)

q as desired. �

Indistinguishability Obfuscation Without Maps 121

Lemma 2.7 (Corollary 2.2 of [17]). Let q be a prime integer and A be sam-
pled uniformly in (Z/(qZ))m×m. For any x ∈ (Z/(qZ))×, we have

P
(
det(A) = x | det(A) ∈ (Z/(qZ))×)

=
1

|(Z/(qZ))×| =
1

q − 1
.

In other words, det(A) is uniform in (Z/(qZ))× when conditioned on being
invertible.

Corollary 2.2 of [17] even gives explicit values for the probability P(det(A) = x)
for any x. Here, we only use the fact that these values are the same whenever
the gcd of x and q is constant (in our case, the gcd is always 1 because x is
invertible). Observe also that Corollary 2.2 of [17] is stated for a prime power q,
and can be extended to any modulus q by Chinese reminder theorem (but we
only use it here in the case of a prime modulus q).

3 Agrawal’s Construction of Noisy Linear FE

We begin by recapping the construction of NLinFE by Agrawal [2]. The construc-
tion uses two prime moduli p1 and p2 with p1 � p2. The message and function
vectors will be chosen from Rp1 while the public key and ciphertext are from
Rp2 . The construction will make use of the fact that elements in Rp1 as well as
elements sampled from a discrete Gaussian distribution denoted by D, are small
in Rp2 .

NLinFE.Setup(1κ, 1w): On input a security parameter κ, a parameter w denoting
the length of the function and message vectors, do the following:

1. Sample prime moduli p0 < p1 < p2 and standard deviation σ for discrete
Gaussian distributions D, D̂ and D̂′ according to the parameter specification
of [2].

2. Sample w ← Rm
p2

with a trapdoor Tw using the algorithm TrapGen as defined
in Sect. 2.2.

3. Sample E ∈ Dm×w and set a = ETw ∈ Rw
p2

.
4. For i ∈ {1, . . . , r}, � ∈ {1, . . . , k}, sample f �

1i, f
�
2i ← D and g�

1, g
�
2 ← D. If

g�
1, g

�
2 are not invertible over Rp2 , resample. Set

h�
1i =

f �
1i

g�
1

, h�
2i =

f �
2i

g�
2

∈ Rp2

5. Sample a PRF seed, denoted as seed.

Output

MSK =
(

w,Tw,a,E,
{
f �
1i, f

�
2i

}
i∈[r],�∈[k]

,
{
g�
1, g

�
2}�∈[k]

}
, seed

)

122 S. Agrawal and A. Pellet-Mary

NLinFE.Enc(MSK, z): On input public key MSK, a message vector z ∈ Rw
p1

, do:

1. Construct Message Encodings. Sample ν ← Dm, η ← Dw and t1, t2 ← D.
Set s = t1 · t2. Compute:

c = w · s + p1 · ν ∈ Rm
p2

, b = a · s + p1 · η + z ∈ Rw
p2

2. Sample Structured Noise. To compute encodings of noise, do the following:
(a) Define lattices:

Λ�
1 � g�

1 · R, Λ�
2 � g�

2 · R

(b) Sample noise terms from the above lattices as:

e�
1i ← D̂(Λ�

2), ẽ
�
1i ← D̂′(Λ�

2), e�
2i ← D̂(Λ�

1), ẽ
�
2i ← D̂′(Λ�

1) ∀i ∈ [r], � ∈ [k]

Here D̂(Λ�
1), D̂′(Λ�

1) are discrete Gaussian distributions on Λ�
1 and

D̂(Λ�
2), D̂′(Λ�

2) are discrete Gaussian distributions on Λ�
2.

3. Compute Encodings of Noise.
(a) Let

d�
1i = h�

1i · t1 + p1 · ẽ�
1i + p0 · e�

1i ∈ Rp2 ∀i ∈ [r], � ∈ [k].

Here, p1 · ẽ�
1i behaves as noise and p0 · e�

1i behaves as the message. Let
d�
1 = (d�

1i).
(b) Similarly, let

d�
2i = h�

2i · t2 + p1 · ẽ�
2i + p0 · e�

2i ∈ Rp2 ∀i ∈ [r], � ∈ [k].

Here, p1 · ẽ�
2i behaves as noise and p0 · e�

2i behaves as the message. Let
d�
2 = (d�

2i).
4. Output Ciphertext. Output message encodings (c,b) and noise encodings

(d�
1,d

�
2) for � ∈ [k].

NLinFE.KeyGen(MSK,v,v×): On input the master secret key MSK, a NLinFE
function vector v ∈ Rw

p1
and its corresponding noise polynomial (represented

here as a quadratic polynomial) v× ∈ RL
p1

, where L = |1 ≤ j ≤ i ≤ r|, do the
following.

1. Sampling Basis Preimage vectors.
(a) Sample short eij ∈ Rm using SamplePre (please see Sect. 2.2) with ran-

domness PRF(seed, ij) such that

〈w, eij〉 = hij , where hij �
∑

�∈[k]

h�
1ih

�
2j + p0 · Δij + p1 · Δ̃ij

Above Δij , Δ̃ij ← D ∈ R for 1 ≤ j ≤ i ≤ r.

Let E× = (eij) ∈ Rm×L, h× = (hij) ∈ RL
p2

where L = |1 ≤ j ≤ i ≤ r|.

Indistinguishability Obfuscation Without Maps 123

2. Combining Basis Preimages to Functional Preimage. Define

kv = E · v + E× · v× ∈ Rm (3.1)

3. Output (kv,v).

NLinFE.Dec(CTz,SKv): On input a ciphertext CTz =
(

c,b, {d�
1,d

�
2}�∈[k]

)
and

a secret key kv for function v, do the following

1. Compute encoding of noise term on the fly as:

d× � (
∑

�∈[k]

d�
1 ⊗ d�

2) ∈ RL
p2

2. Compute functional ciphertext as:

bv = vTb + (v×)Td× ∈ Rp2

3. Compute bv − kT
vc mod p1 and output it.

Remark on the parameters. In the above scheme, one should think of B1 as being
poly(κ), B2 = superpoly(κ) · B1 and N = (kr log(p2))1+ε for some ε > 0.

4 Multi-ciphertext Attack on Agrawal’s NLinFE

Agrawal [2] provided a proof of security for her construction (under a non-
standard assumption) in a weak security game where the adversary may only
request a single ciphertext. In this section, we show that her construction is in
fact insecure if the adversary has access to multiple ciphertexts.

The problem appearing in Agrawal’s NLinFE construction is a variant of the
RLWE problem, where the random elements in RLWE samples are chosen from
some NTRU-like distribution, are kept secret, and the noise terms are correlated
to these elements. In this section, we first formally define a variant of the RLWE
problem, which we call the RLWE problem with correlated noise. The distribution
of the elements in this problem are similar to the one obtained by the encryption
procedure of the NLinFE described above. We then show that this problem can
be solved in polynomial time by an attacker, hence resulting in an attack on
Agrawal’s NLinFE construction.

Definition 4.1 (RLWE with correlated noise). Let R be some ring isomorphic
to Zn (for instance R = Z[X]/(Xn + 1) for n a power of two, and the isomor-
phism is the coefficient embedding). We define the RLWE problem with correlated
noise as follows. Let m, k, q, σ, σ′ be some parameters (q will be the modulus, m
the number of samples and σ and σ′ are small compared to q). We let Dσ be
the discrete Gaussian distribution over R with parameter σ and U(Rq) be the
uniform distribution over Rq. Sample

124 S. Agrawal and A. Pellet-Mary

– g1, g2 ← Dσ

– f1i, f2i ← Dσ for all 1 ≤ i ≤ k
– t1[j], t2[j] ← Dσ for all 1 ≤ j ≤ m
– e1i[j], e2i[j] ← Dσ′ for all 1 ≤ i ≤ k and 1 ≤ j ≤ m
– u1i[j], u2i[j] ← U(Rq) for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

The RLWE problem with correlated noise is to distinguish between
(

f1i

g1
t1[j] + e1i[j] · g2 mod q,

f2i

g2
t2[j] + e2i[j] · g1 mod q

)

i,j

and
(u1i[j], u2i[j])i,j .

Remark 4.2. This RLWE problem with correlated noise differs from the classical
RLWE problem in 4 different ways:

– Instead of being uniform, the elements a are of the form fi

g mod q with fi

and g small modulo q,
– There are multiple secrets t1[j] and t2[j],
– The elements fi

g are secret,
– The noise is correlated with the elements fi

g (instead of following a small
Gaussian distribution).

We observe that if we obtain m ciphertexts from the NLinFE construction
described above, and if we only keep in each ciphertext the part corresponding to
� = 1, then the elements obtained follow the RLWE distribution with correlated
noise. The notation [j] refers to the j-th ciphertext, and we dropped the index
� since we are only considering � = 1.

The next lemma explains how we can solve the RLWE problem with corre-
lated noise in polynomial time, using 4 pairs of elements (obtained by varying i
and j).

Lemma 4.3. Assume k,m ≥ 2 and that the modulus q is a prime integer con-
gruent to 1 modulo 2n. Let (b1i[j], b2i[j])1≤i,j≤2 be obtained from either the
RLWE distribution with correlated noise or the uniform distribution over Rq.
Let us define

b :=(b1,1[1] · b2,1[1] · b1,2[2] · b2,2[2] + b1,1[2] · b2,1[2] · b1,2[1] · b2,2[1]
− b1,1[2] · b2,1[1] · b1,2[1] · b2,2[2] − b1,1[1] · b2,1[2] · b1,2[2] · b2,2[1]) mod q.

If the bβi[j] come from the uniform distribution, then ‖b‖∞ ≥ q/4 with high
probability (over the random choice of the (b1i[j], b2i[j])1≤i,j≤2). Otherwise, ‖b‖∞
is small compared to q.

Proof. Let us first consider the case where the bβi[j] are uniform modulo q and
independent. Observe that b can be written as the determinant of a product of
two matrices

M1 =
(

b1,1[1] b1,1[2]
b1,2[1] b1,2[2]

)

and M2 =
(

b2,1[1] b2,1[2]
b2,2[1] b2,2[2]

)

.

Indistinguishability Obfuscation Without Maps 125

These two matrices are uniform over Rq. Because q ≡ 1 mod 2n, we have that
xn +1 =

∏
i(x−αi) mod q and so Rq � Zq[x]/(x−α1)× · · ·×Zq[x]/(x−α1) �

(Zq)n. By Chinese reminder theorem, all the matrices Mb mod (x − αi) are
uniform and independent matrices in Zq. Now, by Chinese reminder theorem
and Lemma 2.6, we have that

P(det(M1) �∈ R×
q) = P(∃i, det(M1 mod (x − αi)) �∈ Z×

q) ≤ O

(
n

q

)

.

Because n � q, this implies that M1 and M2 are invertible with high probability.
Recall from Lemma 2.7 that, when conditioned on being invertible, the determi-
nant of M1 and M2 are uniformly distributed over the invertible elements of Rq.
Hence, we conclude that with high probability, the product det(M1) · det(M2)
is uniform in R×

q and so is likely to have infinity norm larger than q/4.
Let us now assume that the bβi[j] come from the RLWE distribution with

correlated noise. Then, we have

b=

(
f1,1

g1
t1[1] + e1,1[1] · g2

) (
f2,1

g2
t2[1] + e2,1[1] · g1

) (
f1,2

g1
t1[2] + e1,2[2] · g2

) (
f2,2

g2
t2[2] + e2,2[2] · g1

)

+

(
f1,1

g1
t1[2] + e1,1[2] · g2

) (
f2,1

g2
t2[2] + e2,1[2] · g1

) (
f1,2

g1
t1[1] + e1,2[1] · g2

) (
f2,2

g2
t2[1] + e2,2[1] · g1

)

−
(

f1,1

g1
t1[2] + e1,1[2] · g2

) (
f2,1

g2
t2[1] + e2,1[1] · g1

) (
f1,2

g1
t1[1] + e1,2[1] · g2

) (
f2,2

g2
t2[2] + e2,2[2] · g1

)

−
(

f1,1

g1
t1[1] + e1,1[1] · g2

) (
f2,1

g2
t2[2] + e2,1[2] · g1

) (
f1,2

g1
t1[2] + e1,2[2] · g2

) (
f2,2

g2
t2[1] + e2,2[1] · g1

)
,

where the computations are performed modulo q. Observe that in the products
and sums above, all the elements are small. The only things that can be large
are the division modulo q by g1 and g2. We are going to show that if we develop
the products above, then all the terms containing divisions by g1 or g2 are
annihilated. So b will be a polynomial of degree 4 of small elements (with no
denominator) and hence it will be small compared to q.

Let us consider the first line of the equation above
(

f1,1

g1
t1[1] + e1,1[1] · g2

)
·
(

f2,1

g2
t2[1] + e2,1[1] · g1

)
·
(

f1,2

g1
t1[2] + e1,2[2] · g2

)
·
(

f2,2

g2
t2[2] + e2,2[2] · g1

)
.

When we develop this product, we are going to produce terms with denomi-
nators of degree 0, 1, 2, 3 and 4 in the gβ . Observe that the third line is the same
as the first line, where we have exchanged t1[1] and t1[2] and the corresponding
noises. So every term of the first line containing f1,1

g1
t1[1] · f1,2

g1
t1[2] will be the

same as the analogue term in the third line, and so will be annihilated. Simi-
larly, the fourth line is the same as the first line, where we have exchanged t2[1]
and t2[2] and the corresponding noises. So every term of the first line containing
f2,1
g2

t2[1] · f2,2
g2

t2[2] will be the same as the analogue term in the fourth line, and
so will be annihilated. Using this remark, we argue below that all the terms with
denominators in the first line are annihilated.

126 S. Agrawal and A. Pellet-Mary

– The term of degree 4 contains f1,1
g1

t1[1] · f1,2
g1

t1[2] and so is annihilated by the
third line.

– The terms of degree 3 have to contain 3 denominators out of the 4. So they
contain either f1,1

g1
t1[1] · f1,2

g1
t1[2] or f2,1

g2
t2[1] · f2,2

g2
t2[2]. In both cases, they are

annihilated.
– The terms of degree 2 containing either f1,1

g1
t1[1] · f1,2

g1
t1[2] or f2,1

g2
t2[1] · f2,2

g2
t2[2]

are annihilated. It remains the terms of degree 2 whose denominator is g1g2.
But these terms are multiplied by a noise which is a multiple of g1 and another
noise which is a multiple of g2. Hence the denominator is annihilated and these
terms are just polynomials in the small elements.

– The terms of degree 1 have denominator g1 or g2. But they are multiplied by
noises that are multiples of g1 and g2. Hence the denominator is annihilated
and these terms are polynomials in the small elements.

To conclude, all the terms are either eliminated thanks to the symmetries, or
the denominators are removed by multiplication by g1 and g2. Similarly, we can
show that this holds for all the four lines. The sage code for the above attack
is provided as supplementary material with the paper. So b is a polynomial of
constant degree in the gβ , fβi, tβ [j] and eβi[j], which are all much smaller than
q. Hence, b is also much smaller than q.

Concluding the attack. To conclude the attack on Agrawal’s NLinFE scheme, let
us now explain how the distinguishing attack described above can be used to
recover the secret elements of the RLWE with correlated noise instance. We have
seen in Lemma 4.3 that, from four instances of RLWE with correlated noise, one
can compute a quantity b which is significantly smaller than the modulus q. This
means that one can recover b over the ring R, without reduction modulo q. Let
us consider such an element b, obtained from the four RLWE with correlated
noise instances (b1i[j], b2i[j]), (b1i′ [j], b2i′ [j]), (b1i[j′], b2i[j′]), (b1i′ [j′], b2i′ [j′]) (for
simplicity, the lemma above is stated with i, j = 1 and i′, j′ = 2, but it can
be generalized to any choice of (i, j, i′, j′), with i �= i′ and j �= j′). Computing
b as in Lemma 4.3, we obtain a polynomial over R of degree 8 in 16 variables
(the gβ , the t[j]’s, the fβ,i and the eβ,i[j]). More generally, if we consider all
the equations one can create by computing b as above for i, j, i′, j′ varying in
{1, · · · , �}, with i �= i′ and j �= j′, then one can obtain �2(� − 1)2 equations of
degree 8 in 2 + 3� + 2�2 variables. Choosing � = 3 provides 36 equations in 29
variables, hence one may hope that this system has a unique solution, and that
solving it would reveal the values of the secret parameters.

Recall that solving a system of polynomial equations is hard in general, but
the hardness increases with the number of variables. Hence, if the number of
variable is constant (here equal to 29), solving a polynomial system of equations
should be easy. One way to solve such a system is by computing a Gröbner
basis of the ideal generated by the multivariate polynomials. This can be done
in the worst case in time doubly exponential in the number of variables (see for
instance [12,41]), which is constant in our case, as we have a constant number

Indistinguishability Obfuscation Without Maps 127

of variables.3 Once we have a Gröbner basis corresponding to our system of
equations, we can solve it by computing the roots of a constant number of
univariate polynomials over K. Since we know that the solution of our system
is in R29, it is sufficient to compute the roots of the polynomials over K with
precision 1/2, and then round them to the nearest integer element. Solving these
univariate polynomial equations can hence be done in polynomial time (in the
size of the output).

Alternatively, to avoid numerical issues, we could choose a large prime num-
ber p, which we know is larger than all the noise terms arising in the equations,
and then solve the system in R/(pR). Hopefully, the system is still overdeter-
mined modulo p, and so has a unique solution which corresponds to the solution
over R. Thanks to the fact that p is larger than the noise terms, recovering them
modulo p reveals them exactly, so we can recover the solution over R from the
one over R/(pR). This approach can also be done in time doubly exponential in
the number of variables, and polynomial in the degree of K and in log(p).

To conclude, the elements b enables us to recover equations of degree 8 in a
constant number of variables, which can then be solved efficiently. This means
that we can recover the secret elements gβ , t[j], fβ,i and eβ,i[j] of the RLWE with
correlated noise instances in polynomial time (given sufficiently many instances).

5 Rank Attack on Agrawal’s NLinFE

In this section, we present a novel “rank attack” against the NLinFE scheme. The
attack exploits the property that the NLinFE scheme must compute a noise term
with special structure: in detail, the noise term must be expressible as a linear
combination of noise terms which are multiples of moduli pi for i ∈ [0,D − 2].
The moduli pi in this case are public – this enables the attacker to recover noise
terms at different “levels”, namely, corresponding to different moduli. The attack
exploits the fact that while the noise terms corresponding to some moduli are
highly non-linear and difficult to exploit, those corresponding to some others are
in fact linear and may be exploited by carefully arranging them into a matrix
and computing its rank. We provide details below.

5.1 Exploiting the Noise Obtained After Decrypting a Message

Let us first explicit the noise obtained after decryption. When computing bv−kT
vc

for a valid ciphertext and secret key, one obtain something much smaller than p2,
which can hence be recovered exactly. This noise is the following

3 In all this discussion, we are interested in the theoretical complexity. In practice,
solving an arbitrary overdetermined system with 29 variables could take a lot of
time, but this time would not increase with the security parameter κ, hence, it is
constant for our purposes.

128 S. Agrawal and A. Pellet-Mary

bv − k
T
vc

= v
T
z + p1v

T
η − p0(v

×
)
T

Δ · s − p1(v
×
)
T

Δ̃ · s − p1(v
T
E + (v

×
)
T
E

×
)ν

+
∑
�,i,j

v
×
ij

[
p1 ·

(
p1 · (g�

2 · ξ̃
�
1i · g

�
1 · ξ̃

�
2j) + p0 · (g�

2 · ξ̃
�
1i · g

�
1 · ξ

�
2j + g

�
2 · ξ

�
1i · g

�
1 · ξ̃

�
2j)

+ (f
�
1i · t1 · ξ̃

�
2j + f

�
2j · t2 · ξ̃

�
1i)

)
+ p0 ·

(
p0 · (g�

2 · ξ
�
1i · g

�
1 · ξ

�
2j) + (f

�
1i · t1 · ξ

�
2j + ·f�

2j · t2 · ξ
�
1i)

)]
,

where Δ and Δ̃ are vectors of dimension L whose elements are respectively the
Δij and Δ̃ij . This noise term is quite complicated, but since it involves multiples
of p1 and p0, one can distinguish the noise terms that are multiples of p0, p

2
0, p1, p

2
1

and p0p1. Here, we assume that the noise terms that are multiplied to the pi’s are
small enough so that the different multiples do not overlap. While this should be
true for correctness that p1 is much larger than the multiples of p0 appearing in
the term above, this might not be true for instance when splitting the multiple
of p0 from the multiple of p20 (one could for instance think of p0 = 4). As we
should see below however, this will not be a problem for our attack. To see this,
let us write p0 · small1 + p20 · small2 + p1 · small3 the noise term above. As we have
said, for correctness, it should hold that, when reducing this term modulo p1,
we obtain p0 · small1 + p20 · small2 over R. Now, dividing by p0 and reducing the
obtained term modulo p0, we recover small1 mod p0. In the rank attack below,
we exploit the noise term small1, which we might know only modulo p0 (and not
over R). However, all we do on this noise terms is linear algebra, and does not
depend on the ring in which we are considering the elements. Hence, we could
as well perform the attack in Rp0 if we recovered only small1 mod p0.

Recall also that in the distinguishing game, the adversary chooses two mes-
sages z0 and z1 with the constraint that vT z0 = vT z1 + p0 · μ for any vector v
for which she has a secret key (with a small μ). She then gets back the encryp-
tion of one of the two messages and wants to know which one was encoded. In
other words, if z is the encrypted message, the adversary knows that vT z = x or
x+p0 ·μ for some known values of x and μ (with p0 ·μ smaller than some bound
B1), and wants to distinguish between these two cases. We can then assume that
the adversary removes x from the noise term, and is left with either 0 or p0 · μ.
The adversary can then obtain the following noise terms

∑

�

⎛

⎝
∑

i,j

v×
ij · ξ̃�

1iξ̃
�
2j

⎞

⎠ g�
2g

�
1 (5.1)

∑

�

⎛

⎝
∑

i,j

v×
ij · ξ�

1iξ
�
2j

⎞

⎠ g�
2g

�
1 (5.2)

∑

�

⎛

⎝
∑

i,j

v×
ij · (ξ̃�

1iξ
�
2j + ξ̃�

1iξ
�
2j)

⎞

⎠ g�
2g

�
1 (5.3)

Indistinguishability Obfuscation Without Maps 129

∑
i,j,�

v×
ij ·

(
f �
1i · t1 · ξ�

2j + f �
2j · t2 · ξ�

1i

)
+ (v×)T Δ · s + (0 or μ) (5.4)

∑
i,j,�

v×
ij ·

(
f �
1i · t1 · ξ̃�

2j + f �
2j · t2 · ξ̃�

1i

)
+ (v×)T Δ̃ · s + vT η + (vTE + (v×)TE×)ν

(5.5)

In the noise terms above, the blue elements are secret and are fixed for all
ciphertexts and secret keys, the red elements are known and depend only on the
secret key, the black elements are secret and depend only on the ciphertexts and
the brown element is the challenge. The value μ of the challenge can be chosen
by the adversary, and the adversary has to decide, given the above noise terms,
whether (5.4) contains 0 or μ. Recall also that the vector v can be chosen by
the adversary whereas the vector v× is chosen by the challenger as the polyno-
mial that computes a PRG. The blue and red elements above can be modified
independently, by considering another secret key or another ciphertext.

5.2 Rank Attack to Distinguish Bit

The rank attack focuses on the noise term (5.4). As this noise term contains the
challenge, it suffices to distinguish between a noise term with 0 or a noise term
with μ to break the NLinFE construction. Let us rewrite the equation in a more
convenient way.

∑

i,j,�

v×
ij · (

f �
1i · t1 · ξ�

2j + f �
2j · t2 · ξ�

1i

)
+ (v×)T Δ · s + (0 or μ)

=
∑

�

(∑

j

(∑

i

v×
ij · f �

1i

)
· ξ�

2j · t1

)
+

∑

�

(∑

j

(∑

i

v×
ij · f �

2i

)
· ξ�

1j · t1

)

+ ((v×)T Δ) · s + (0 or μ).

Recall that in the equations above, the blue terms are fixed, the red terms depend
only on the secret key and the black terms depend only on the ciphertext. Hence,
one can observe that if the challenge is 0, then the equation above is a sum of
products, where in every product one term depends only on the secret key and
the other one depends only on the ciphertext. Concatenating all these elements
into two vectors, one obtains (5.4) = 〈a,b〉, where a depends only on the secret
key and b depends only on the ciphertext (and they are both secret).

The dimension of a and b is the number of terms in the sum above. In our
case, this dimension is 2rk+1. To see this, note that � ∈ [k] and j ∈ [r], and that
we are summing over � and j so we obtain a sum of kr scalars. Hence, this term
may be expressed as one big inner product of two vectors of dimension 2rk + 1.

Assume that we can make N := 2rk + 2 requests for secret keys and cipher-
texts, and let us write ci,j = 〈ai,bj〉 + (0 or μij) the noise term obtained when
evaluating the NLinFE scheme with the i-th secret key and the j-th ciphertext.

130 S. Agrawal and A. Pellet-Mary

Recall that the values μij are chosen by the adversary. Define C and M the
N × N matrices (ci,j)i,j and (μij)i,j respectively.

Then, depending on the challenge, we claim that C or C − M is of rank at
most N − 1. To see this, note that we have C = A · B + (0 or M), where A has
dimension N × N − 1 and B has dimension N − 1 × N , so that A · B has rank
at most N − 1. On the other hand, the other matrix is of the form A · B ± M ,
which has full rank with good probability (even if M has only rank 1, the sum
of a matrix of rank N − 1 and a matrix of rank 1 is likely to have rank N if the
two matrices are independent, which is the case here).4 Hence, computing the
determinant of the matrix C allows to determine what was the challenge, and
to break the security of the NLinFE scheme.

The case of degree >2. In the general case, if the degree of the NLinFE scheme
is d instead of 2, then the same reasoning applies. The only difference is that
the vectors a and b will have dimension d · k · r + 1, so one needs to be able to
make N := d · k · r + 2 key and ciphertext queries for the attack. More precisely,
in degree d, the term (5.4) becomes

(5.4) =

d∑
δ=1

k∑
�=1

∑
1≤i1,··· ,id≤r

v×
i1,··· ,id

(∏
j �=δ

f �
j,ij

· tj

)
ξ�

δ,iδ
+ (v×)T Δ · s + (0 or μ)

=
d∑

δ=1

k∑
�=1

∑
1≤i1,··· ,id≤r

v×
i1,··· ,id

(∏
j �=δ

f �
j,ij

∏
j �=δ

tj

)
ξ�

δ,iδ
+ (v×)T Δ · s + (0 or μ)

=
d∑

δ=1

k∑
�=1

∑
1≤i1,··· ,id≤r

v×
i1,··· ,id

(∏
j �=δ

f �
j,ij

∏
j �=δ

tj

)
ξ�

δ,iδ
+ (v×)T Δ · s + (0 or μ)

=

d∑
δ=1

k∑
�=1

r∑
iδ=1

(∑
1≤ij≤r,j �=δ

v×
i1,··· ,id

·
∏
j �=δ

f �
j,ij

· ξ�
δ,iδ

·
∏
j �=δ

tj

)
+ (v×)T Δ · s + (0 or μ).

For the first term, we are now summing dkr elements, and each one corresponds
to the product of two scalars. Hence, the left term can be written as one inner
product of two vectors of dimension d · k · r, with one vector depending only on
the secret key and one depending only on the ciphertext. The analysis of the
term (v×)T Δ · s is the same as before. To conclude, taking N = d · k · r + 2
and performing the same attack as above enables us to distinguish whether the
challenge is 0 or μ.

4 Observe that even if the μij are somehow chosen by the adversary, they cannot be
chosen arbitrarily. Indeed, μij is the scalar product between the vector corresponding
to the i-th secret key, with the difference of the two messages of the j-th pair of
challenge messages. Hence, the matrix M has rank at most w, where w is the size
of these vectors. However, as said above, it is sufficient to have M of rank at least
1 for the attack to go through, and this can be ensured by the attacker (it simply
needs to take M �= 0).

Indistinguishability Obfuscation Without Maps 131

We thus obtain the bound N := d · k · r + 2 on the number of key requests
that can be performed by the attacker. Since k, r = poly(κ), the adversary can
obtain this number of keys to conduct the above attack.

6 Modifying Construction to Fix Attacks

In this section, we describe an approach to fix the above two attacks (which
we will refer to as “the multiple ciphertext attack” and as the “rank attack”
respectively).

Intuitively, the reason for the multiple ciphertext attack to work is commuta-
tivity: we mix and match the LWE labels and secrets across multiple ciphertexts
to compute the large term in two different ways. An over-simplification is that if
two ciphertexts CT1 and CT2 have LWE secrets s and t respectively, and a and
b are labels, then CT1 contains encodings with large terms as and bs and CT2

contains encodings with large terms at and bt. But now, (as) · (bt) = (bs) · (at),
which implies that we can multiply encodings from different ciphertexts in two
different ways to get the same large term, which may then be removed by sub-
traction. While the attack developed in Sect. 4 is more elaborate, the intuition
remains the same as in the simplification discussed here.

The reason the the rank attack on the other hand is the presence of the
moduli p0 and p1, which allow to separate the noise terms, and obtain one noise
term which is only linear in the freshly chosen error elements.

Fixing the multiple ciphertext attack. As shown by the above discussion, the chief
vulnerability exploited by the attack is commutativity of polynomials. However,
if we replace scalar product by inner product, we get that the first ciphertext
contains the terms 〈a, s〉 and 〈b, s〉 and the second ciphertext contains the terms
〈a, t〉 and 〈b, t〉. Attempting to launch the above attack shows that:

〈a, s〉 · 〈b, t〉 �= 〈b, s〉 · 〈a, t〉
This prevents the mix and match attacks of the kind discussed in Sect. 4

since each large term now uniquely corresponds to a single product of encodings
and may not be generated in two different ways. As explained in the full version,
the multiple ciphertext attack can still be generalized to this setting, but the
modulus q will need to be exponential in the dimension of the vectors for the
attack to work, and so we can prevent the attack by choosing the dimension to
be larger than log q.

Fixing the rank attack. In order to fix the rank attack, we propose to remove
the modulus p0 from the encodings, i.e., consider encodings of the form d�

1i =
〈h�

1i, t1〉 + p1 · e�
1i + ẽ�

1i. This way, it will be harder to split the noise term at
the end (we will only have three “levels” 1, p1 and p21 instead of 5 before), and
we will show that the noise terms obtained this way seem hard to exploit now.
One may want to also remove the modulus p1 from the construction, and only
consider one noise term, but as we should see in the construction, the modulus

132 S. Agrawal and A. Pellet-Mary

p1 is needed for correctness (not only for the shape of the output noise), and so
cannot be removed easily.

Recall that the modulus p0 were present because we wanted to flood a noise
term of the form noise0 · p0 (the modulus p1 is used because the messages are
living in Rp1). In more generality, in the bootstrapping procedure used in [2] to
construct iO, we will want to flood a noise term of the form noise0 · p0 + · · · +
noiseD−2 · pD−2 for some integer D related to the degree of the FE scheme we
want to construct. We will also want the message space of the NLinFE scheme to
be RpD−1 and the ciphertext space to be RpD

, with p0 < p1 < · · · < pD for prime
numbers pi. We also want for the bootsrapping procedure that the noise output
by the NLinFE scheme be of the form noise′

0 · p0 + · · · + noise′
D−2 · pD−2, so that

when we add this noise to the original noise, we still have a linear combination
of the pi’s, with i ≤ D − 2.

From arbitrary flooding noise to structured flooding noise. When we remove the
moduli from Agrawal’s construction as discussed above, we obtain an NLinFE
scheme where the flooding noise term is arbitrary in R, and so not of the desired
shape noise′

0 ·p0 + · · ·+noise′
D−2 ·pD−2. We can however use this NLinFE scheme

to construct a new NLinFE′ scheme, with a flooding noise term of the desired
shape. Intuitively, the idea is to use an additive secret sharing of the messages
z = z0 + · · · + zD−2, and then encode z0/p0, · · · , zD−2/pD−2 using the NLinFE
scheme without moduli. To recover the scalar product 〈v, z〉, one then compute
p0 · 〈v, z0/p0〉 + · · · + pD−2 · 〈v, zD−2/pD−2〉, and so the noise term will have the
desired shape.

More precisely, the NLinFE′ scheme proceeds as follows

NLinFE′.Setup(1κ, 1w): Run NLinFE.Setup(1κ, 1w) D − 1 times to obtain D − 1
master secret keys MSKi and output (MSK0, · · · ,MSKD−2).

NLinFE′.Enc((MSK0, · · · ,MSKD−2), z): where z ∈ Rw
pD−1

.
1. Sample (z0, · · · , zD−3) uniformly at random in RpD−1 and define zD−2

such that
∑D−2

i=0 zi = z.
2. For i in {0, · · · ,D − 2}, compute CTi = NLinFE.Enc(MSKi, zi/pi). Here,

the division by pi is performed modulo pD−1, and is possible because pi

is coprime with pD−1 for all i ≤ D − 2.
Output CTz = (CT0, · · · ,CTD−2).

NLinFE′.KeyGen(MSK,v,v×): output

SKv = (NLinFE.KeyGen(MSK0,v,v×), · · · ,NLinFE.KeyGen(MSKD−2,v,v×)).

NLinFE′.Dec(CTz,SKv): where z ∈ Rw
pD−1

.
1. Parse CTz as CTz = (CT0, · · · ,CTD−2) and SKv as SKv = (SK1, · · · ,

SKD−2).
2. Compute yi = NLinFE.Dec(CTi,SKi) ∈ RpD−1 for 0 ≤ i ≤ D − 2.

Output
∑D−2

i=0 piyi mod pD−1.

For correctness, observe that in the NLinFE′ decryption algorithm, we have
yi = 〈zi/pi,v〉 + noisei by correctness of NLinFE (if the ciphertexts and secret

Indistinguishability Obfuscation Without Maps 133

keys are valid). So the output is indeed of the form 〈z,v〉 +
∑

i noisei · pi: we
have 〈z,v〉 plus a noise term of the desired shape.

We conclude that, for the bootstrapping procedure of [2], it is sufficient to
construct an NLinFE scheme, with message space RpD−1 , ciphertext space RpD

and arbitrary flooding noise. The new NLinFE construction we propose below
satisfies these conditions.

6.1 The New NLinFE Construction

Below, we present a modified variant of the NLinFE construction of [2], designed
to avoid the multiple ciphertext attack and the rank attack, as discussed above.

NLinFE.Setup(1κ, 1w): On input a security parameter κ, a parameter w denoting
the length of the function and message vectors, do the following:

1. Sample W ← Rm×κ2

pD
with a trapdoor T using the algorithm TrapGen.

2. Sample E ∈ Dm×w and set A = ETW ∈ Rw×κ2

pD
(recall that D is a discrete

Gaussian distribution over R of parameter σ).
3. For i ∈ {1, . . . , r}, � ∈ {1, . . . , k}, sample f �

1i, f
�
2i ← Dκ and g�

1, g
�
2 ← D. If

g�
1, g

�
2 are not invertible over RpD

, resample.
Set

h�
1i =

f �
1i

g�
1

, h�
2i =

f �
2i

g�
2

∈ Rκ
pD

4. Sample a PRF seed, denoted as seed.

Output

MSK =
(

W,T,A,E,
{
f �
1i, f

�
2i

}
i∈[r],�∈[k]

,
{
g�
1, g

�
2}�∈[k]

}
, seed

)

NLinFE.Enc(MSK, z): On input public key MSK, a message vector z ∈ Rw
pD−1

,
do:

1. Sample t1, t2 ← Dκ. Set s = t1 ⊗ t2 ∈ Rκ2
.

2. Construct Message Encodings. Sample ν ← Dm, η ← Dw and compute:

c = Ws + pD−1 · ν ∈ Rm
pD

, b = As + pD−1 · η + z ∈ Rw
pD

,

where z ∈ Rw
pD−1

is seen as a vector of R with coefficients in (−pD−1
2 , pD−1

2]
and then reduced modulo pD.

3. Sample Structured Noise. To compute encodings of noise, do the follow-
ing:
(a) Define lattices:

Λ�
1 � g�

1 · R, Λ�
2 � g�

2 · R

(b) Sample noise terms from the above lattices as:

e�
1i ← D̂(Λ�

2), ẽ
�
1i ← D̂(Λ�

2), e�
2i ← D̂(Λ�

1), ẽ
�
2i ← D̂(Λ�

1) ∀i ∈ [r], � ∈ [k].

Here D̂(Λ�
1) is a discrete Gaussian distribution on Λ�

1 and D̂(Λ�
2) is a

discrete Gaussian distributions on Λ�
2, both of parameter σ.

134 S. Agrawal and A. Pellet-Mary

4. Compute Encodings of Noise.
(a) Let

d�
1i = 〈h�

1i, t1〉 + pD−1 · e�
1i + ẽ�

1i ∈ RpD
∀i ∈ [r], � ∈ [k].

Let d�
1 = (d�

1i).
(b) Similarly, let

d�
2i = 〈h�

2i, t2〉 + pD−1 · e�
2i + ẽ�

2i ∈ Rp2 ∀i ∈ [r], � ∈ [k].

Let d�
2 = (d�

2i).
5. Output Ciphertext. Output message encodings (c,b) and noise encodings

(d�
1,d

�
2) for � ∈ [k].

NLinFE.KeyGen(MSK,v,v×): On input the master secret key MSK, NLinFE func-
tion vectors v ∈ Rw

pD−1
and v× ∈ RL with coefficients small compared to

pD−1, do the following.

1. Sampling Basis Preimage vectors.
(a) Sample short eij ∈ Rm using SamplePre with randomness PRF(seed, ij)

such that

WTeij = hij , where hij �
∑

�∈[k]

h�
1i ⊗ h�

2j + pD−1Δij + Δ̃ij .

Above Δij , Δ̃ij ← Dκ2 ∈ Rκ2
for 1 ≤ j ≤ i ≤ r.

Let E× = (eij) ∈ Rm×L

where L = |1 ≤ j ≤ i ≤ r|.
2. Combining Basis Preimages to Functional Preimage. Define

kv = E · v + E× · v× ∈ Rm (5.6)

3. Output (kv,v,v×).

NLinFE.Dec(CTz,SKv): On input a ciphertext CTz =
(

c,b, {d�
1,d

�
2}�∈[k]

)
and

a secret key kv for function v, do the following

1. Compute encoding of noise term on the fly as:

d× � (
∑

�∈[k]

d�
1 ⊗ d�

2) ∈ RL
pD

2. Compute functional ciphertext as:

bv = vTb + (v×)Td× ∈ RpD

3. Compute (bv − kT
vc mod pD) mod pD−1 and output it.

Indistinguishability Obfuscation Without Maps 135

Correctness. In this section, we establish that the above scheme is correct. To
simplify the analysis, we let smallD−1 denote any term which is small compared
to pD−1 and smallD be any term which is small compared to pD. We also assume
that summing polynomially many smalli terms or multiplying a constant number
of them results in an element which is still a smalli (for i = D − 1 or D). We
also assume that the parameters are set so that σ is small compared to pD−1

and that pD−1 is small compared to pD.
Let us do the analysis by walking through the steps performed by the decrypt

algorithm:

1. We compute an encoding of a correlated noise term on the fly as described in
Fig. 1.

Computing Encoding of Correlated Noise Term for the new construction

We compute d�
1i · d�

2j . Recall that

d�
1i = 〈h�

1i, t1〉 + pD−1 · e�
1i + ẽ�

1i ∈ RpD

d�
2j = 〈h�

2j , t2〉 + pD−1 · e�
2i + ẽ�

2i ∈ RpD

Recall also that e�
1i, ẽ

�
1i are sampled from lattice Λ�

2 and e�
2i, ẽ

�
2i are sampled from

lattice Λ�
1.

Let e�
1i = g�

2 · ξ�
1i, ẽ�

1i = g�
2 · ξ̃�

1i,

and e�
2i = g�

1 · ξ�
2i, ẽ�

2i = g�
1 · ξ̃�

2i

Now, we may compute:

d�
1i · d�

2j =
(
〈h�

1i, t1〉 + pD−1 · e�
1j + ẽ�

1j

)
·
(
〈h�

2j , t2〉 + pD−1 · e�
2j + ẽ�

2j

)

= 〈h�
1i ⊗ h�

2j , (t1 ⊗ t2)︸ ︷︷ ︸
s

〉 + pD−1 ·
(

pD−1 · (g�
2 · ξ�

1i · g�
1 · ξ�

2j)︸ ︷︷ ︸
smallD

+ (g�
2 · ξ̃�

1i · g�
1 · ξ�

2j + g�
2 · ξ�

1i · g�
1 · ξ̃�

2j)︸ ︷︷ ︸
smallD−1

+(〈f �
1i, t1〉 · ξ�

2j + 〈f �
2j , t2〉 · ξ�

1i)︸ ︷︷ ︸
smallD−1

)

+
(
(g�

2 · ξ̃�
1i · g�

1 · ξ̃�
2j) + (〈f �

1i, t1〉 · ξ̃�
2j + 〈f �

2j , t2〉 · ξ̃�
1i)

)
︸ ︷︷ ︸

smallD−1

(recall that smalli is a term that is small compared to pi for i = D − 1 or D).

Thus,
∑
�∈[k]

d�
1i · d�

2j = 〈
∑
�∈[k]

h�
1i ⊗ h�

2j

)
, s〉 + pD−1 · smallD + smallD−1. (6.2)

Fig. 1. Computing encoding of noise term as polynomial of encodings in the new
construction of Sect. 6.

136 S. Agrawal and A. Pellet-Mary

2. The decryption equation is:

bv − kT

vc = (vTb + (v×)Td×) − kT

vc

3. Recall that b = A · s + pD−1 · η + z ∈ Rw
pD

. Hence,

vTb = vTA · s + pD−1 · smallD + vTz

4. Let H×
ij =

(∑

�∈[k]

h�
1i ⊗ h�

2j

)
be the (i, j)th row of H× ∈ RL×κ2

pD
. Since

d× = H×s + pD−1 · smallD + smallD−1

and v× ∈ RL is small compared to pD−1, we have

(v×)Td× = (v×)TH×s + pD−1 · smallD + smallD−1

Hence we have

vTb + (v×)Td× =
(
vTA + (v×)TH×)

s + pD−1 · smallD + smallD−1 + vTz

5. Next, note that

kT

vW = vTA + (v×)TH× + pD−1 · smallD−1 + smallD−1 � av ∈ R1×κ2

pD

6. Recall that c = W · s + pD−1 · ν hence,

kT

vc = aT

vs + pD−1 · 〈ν,kv〉
= (vTA + (v×)TH×) s + smallD−1 + pD−1 · smallD

7. Hence, bv − kT
vc = vTz + smallD−1 + pD−1 · smallD. The right hand side

of this equation is smaller than pD by assumption (if the parameters are
carefully chosen), hence, by computing bv − kT

vc in RpD
, we recover vTz +

smallD−1 +pD−1 · smallD over R. Now, reducing this term modulo pD−1 leads
to vTz + smallD−1 mod p1, where smallD−1 is small compared to pD−1.

On the degree of the noise term. As was already observed in Agrawal’s original
construction [2], the construction above is described with a noise term of degree
d = 2, but it could easily be generalized to any constant degree d. In the case
of a general degree d, we would have d-tuples of encodings (d�

1i, · · · , d�
di), where

the noise in d�
ai is a multiple of

∏
b	=a g�

b. Then, when computing d×, one would
consider all possible products d�

1i1
· · · d�

d,id
and obtain a noise term of degree d.

Please see the full version for details. For simplicity, we described above the variant
with d = 2, but we show in the full version that for security we need d ≥ 3.

Indistinguishability Obfuscation Without Maps 137

7 Setting the Parameters

We provide in the full version a discussion on the security of the new NLinFE
scheme described above. In particular, we generalize the attacks presented in
Sects. 4 and 5 and argue that our new scheme is not vulnerable to them. Below,
we provide an instantiation of the parameters of the scheme which we believe is
secure, even against a quantum computer (see the full version for more details).
Recall that the parameter N is the maximal number of key requests that an
attacker is allowed to performed and that this parameter should be superlin-
early larger than the ciphertext size for the NLinFE scheme to imply iO. In our
construction, the ciphertext size is (rk+m+w) log(pD). One can check that the
choices of parameters proposed below ensure that this size is bounded by N1−ε

for some ε > 0, hence the construction implies iO.

– κ is the security parameter and B1 = poly(κ) is given as input
– d = 3
– k = κ3 and r = κ
– σ = 2κ · B1

– pD−1 = σ2d and pD = σ6d

– m = κd · log pD

– w is arbitrary up to κd+1

– N = κd+2.5.

Acknowledgments. This work was supported in part by CyberSecurity Research
Flanders with reference number VR20192203 and by the Research Council KU Leuven
grant C14/18/067 on Cryptanalysis of post-quantum cryptography.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

3. Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear
functions from standard assumptions, and applications. In: Crypto (2016)

4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/3-540-48523-6_1

138 S. Agrawal and A. Pellet-Mary

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

7. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8 10

8. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. Eprint 2016 (2016)

9. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46497-7 21

10. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
649–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 21

11. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

12. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 Gröbner basis
algorithm. J. Symb. Comput. 70, 49–70 (2015)

13. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC, pp. 439–448 (2015)

14. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: TCC, pp. 391–418 (2016)

15. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

16. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS 2015, p. 163 (2015)

17. Brent, R.P., McKay, B.D.: Determinants and ranks of random matrices over ZM.
Discret. Math. 66(1–2), 35–49 (1987)

18. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: STOC, pp. 429–437 (2015)

19. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 19

20. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 10

21. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 20

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-96881-0_20

Indistinguishability Obfuscation Without Maps 139

22. Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Statistical zeroizing attack:
cryptanalysis of candidates of BP obfuscation over GGH15 multilinear map. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694,
pp. 253–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 9

23. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

24. Cheon, J.H., Hhan, M., Kim, J., Lee, C.: Cryptanalyses of branching program
obfuscations over GGH13 multilinear map from the NTRU problem. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 184–210.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 7

25. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 12

26. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over CLT13. Eprint 2016 (2016)

27. Ducas, L., Pellet-Mary, A.: On the statistical leak of the GGH13 multilinear map
and some variants. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I.
LNCS, vol. 11272, pp. 465–493. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2 16

28. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

30. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

31. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products (2018)
32. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)

EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 21

33. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

34. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: FOCS (2014)

35. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC, pp. 419–428 (2015)

36. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

https://doi.org/10.1007/978-3-030-26954-8_9
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-319-96878-0_7
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-030-03326-2_16
https://doi.org/10.1007/978-3-030-03326-2_16
https://doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20

140 S. Agrawal and A. Pellet-Mary

37. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 5

38. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

39. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS (2016)

40. Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local PRGs
with applications to indistinguishability obfuscation. IACR Cryptology ePrint
Archive (2017). http://eprint.iacr.org/2017/301

41. Mayr, E.W.: Some complexity results for polynomial ideals. J. Complex. 13(3),
303–325 (1997)

42. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

43. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

44. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 6

45. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

46. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

47. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 439–467. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
http://eprint.iacr.org/2017/301
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-662-46803-6_15

	Indistinguishability Obfuscation Without Maps: Attacks and Fixes for Noisy Linear FE
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	2.1 Noisy Linear Functional Encryption (NLinFE)
	2.2 Sampling and Trapdoors
	2.3 Random Matrices over Zq

	3 Agrawal's Construction of Noisy Linear FE
	4 Multi-ciphertext Attack on Agrawal's NLinFE
	5 Rank Attack on Agrawal's NLinFE
	5.1 Exploiting the Noise Obtained After Decrypting a Message
	5.2 Rank Attack to Distinguish Bit

	6 Modifying Construction to Fix Attacks
	6.1 The New NLinFE Construction

	7 Setting the Parameters
	References

