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Abstract. We present the first protocols for private information
retrieval that allow fast (sublinear-time) database lookups without
increasing the server-side storage requirements. To achieve these effi-
ciency goals, our protocols work in an offline/online model. In an offline
phase, which takes place before the client has decided which database
bit it wants to read, the client fetches a short string from the servers. In
a subsequent online phase, the client can privately retrieve its desired
bit of the database by making a second query to the servers. By pushing
the bulk of the server-side computation into the offline phase (which is
independent of the client’s query), our protocols allow the online phase
to complete very quickly—in time sublinear in the size of the database.
Our protocols can provide statistical security in the two-server setting
and computational security in the single-server setting. Finally, we prove
that, in this model, our protocols are optimal in terms of the trade-off
they achieve between communication and running time.

1 Introduction

A private information retrieval protocol [CGKS95,CGKS98] takes place between
a client, holding an index i ∈ [n], and a database server, holding a string
x = x1x2 · · · xn ∈ {0, 1}n. The protocol allows the client to fetch its
desired bit xi ∈ {0, 1} from the database while hiding the client’s index
i from the server, and using total communication that is sublinear in the
database size n. A beautiful line of work, starting with that of Chor, Goldre-
ich, Kushilevitz, and Sudan [CGKS95], constructs private information retrieval
(PIR) protocols with extremely small communication complexity, either when
the client can access multiple non-colluding servers holding replicas of the
database [Amb97,CG97,BI01,BIKR02,Yek08,Efr12,DG16] or under computa-
tional assumptions [KO97,CMS99,KO00,GR05,OS07].
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Fig. 1. A comparison of traditional two-server PIR (left) and offline/online PIR with
sublinear online time (right). The servers store replicas of a database x ∈ {0, 1}n.

PIR is a fundamental privacy-preserving primitive: it has applications to
private messaging [SCM05,AS16,ACLS18], certificate transparency [LG15], pri-
vate media browsing [GCM+16], online anonymity [MOT+11,KLDF16], privacy-
preserving ad targeting [Jue01], and more. In spite of the promise of PIR and
the great advances in PIR protocols, there have been essentially no large-scale
deployments of PIR technology to date. A primary reason is that while modern
PIR protocols have very small communication requirements—as small as poly-
logarithmic in the database size—the computational burden they put on the
server is still prohibitively expensive.

In particular, in all existing PIR schemes, the work at the servers grows
linearly with the database size. That is, the servers essentially take a linear scan
over the entire database to respond to each query. Beimel et al. [BIM04] proved
that this limitation is in fact inherent: even in the multi-server setting, every
secure PIR scheme on an n-bit database must incur Ω(n) total server-side work.
(If the servers probe fewer than n database bits on average in responding to a
client’s query, then it is likely that the client is reading one of the probed bits.)

This Ω(n) server-side cost is the major bottleneck for PIR schemes in theory,
since all other costs in today’s PIR protocols (communication, client time, etc.)
are sublinear, or even polylogarithmic, in the database size. This Ω(n) server-
side cost is also the major bottleneck for PIR schemes in practice, as evidenced
by the many heroic efforts to reduce the server-side computational cost in built
PIR systems [LG15,AS16,GCM+16,TDG16,ACLS18].

In Sect. 1.4, we survey the known approaches to reducing the server-side
computation in PIR-like schemes. All of these methods increase the storage
requirements at the servers and the methods based on standard assumptions
(i.e., not requiring obfuscation) increase the required server storage by potentially
large polynomial factors. These increased storage costs present new barriers to
deployment.
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1.1 A New Approach: Offline/Online PIR with Sublinear Online
Time

In this paper, we propose a new approach for reducing the server-side computa-
tional burden of PIR. Our idea is to push the (necessary) linear-time server-side
computation into a query-independent offline phase, which allows a subsequent
online phase to complete in sublinear time (Fig. 1). More precisely, we construct
PIR schemes in which the client and servers interact in two phases:

– In an offline phase, which takes place before the client has decided which bit
of the database it wants to retrieve, the client fetches a one-time-use “hint”
from the database servers.

– In a subsequent online phase, which takes place after the client has decided
which bit of the database it wants to retrieve, the client sends a query to the
database servers. Given the servers’ answers to this query, along with the hint
prefetched earlier, the client can recover its database bit of interest.

Prior work has developed PIR offline/online schemes [DIO01,BIM04,BLW17,
PPY18]. In this paper, we construct the first offline/online PIR schemes that
simultaneously:

1. run in online time sublinear in the database size, and
2. do not increase the storage requirements at the servers.

(See Sect. 1.4 and Table 1 for a comparison to prior work.) Furthermore, our
schemes are based on very simple assumptions—one-way functions in the
two-server setting and linearly homomorphic encryption in the single-server
setting—and are concretely efficient. The remaining performance bottleneck of
our schemes is that one of the servers must perform an amount of offline com-
putation in that is linear in the database size.

Our schemes advance the state of the art in PIR by enabling two new usage
models:

1. Do the heavy computation in advance. Our schemes shift the heavy
server-side computation out of the critical path of the client’s request. For
example, we envision deployments of our PIR schemes in which the client
and server execute the offline phase overnight, while the user is asleep and
when computation is relatively inexpensive. In the morning, when the user
wakes up and wants to, say, privately fetch an article from Wikipedia, she
can run the online phase to get her article in sublinear time.
The idea of moving expensive cryptographic work into an input-independent
offline phase has seen tremendous success in the setting of multiparty compu-
tation [BDOZ11,DPSZ12]. Our schemes achieve the same goal for PIR.

2. Process a series of queries in sublinear amortized total time. Often,
a user wants to make a series of adaptive queries to the same database (e.g.,
as one does when jumping from one Wikipedia article to the next). In this
setting, our two-server PIR scheme allows the client to reuse a single hint,
fetched in the offline phase, to make arbitrarily many adaptive online queries
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to the database. By reusing the hint, the amortized total server-side cost
of each query—including both the costs of the offline and online phases—
falls to sublinear in the database size. As far as we know, ours is the first
PIR scheme that achieves sublinear amortized total time for adaptive queries
without dramatically increasing the client or servers’ storage requirements.

1.2 Our Results

We give the following results for offline/online private information retrieval with
sublinear online time:

Two-server PIR. We give a two server offline/online scheme with sublinear
online time. Specifically, for a database consisting of n bits, the offline phase
requires the client to interact with one server, which performs ˜O(n) offline com-
putation. (The notation ˜O(·) hides arbitrary polylogarithmic factors. In this
section, we also elide fixed polynomials in the security parameter.) In the online
phase, the client interacts with the second server, which answers the client’s
query in time ˜O(

√
n). We give a scheme with statistical security that has total

communication ˜O(
√

n). Assuming that one-way functions exist, the online com-
munication cost falls to O(log n).

Two-server PIR with sublinear amortized total time. We extend our
two-server scheme to allow the client to reuse a single offline-phase interaction
to make a series of polynomially many adaptive online-phase queries. With this
scheme, the online cost of each query is still ˜O(

√
n), but after q online queries,

the average total computational cost—including the offline-phase computation—
falls to ˜O(n/q +

√
n), or sublinear in the database size.

Single-server PIR. We show how to combine a linearly homomorphic encryp-
tion scheme and a standard single-server PIR scheme to obtain a single-server
offline/online PIR scheme with sublinear online time. The resulting scheme uses
˜O(n2/3) total communication and the server runs in online time ˜O(n2/3). Fur-
thermore, neither the client nor the server performs any public-key cryptographic
operations in the online phase. Under the stronger assumption that fully homo-
morphic encryption exists, we obtain a single-server scheme with communication
and online time ˜O(

√
n). One drawback is that, unlike its two-server counterpart,

our single-server scheme supports only a single online query after each offline
interaction, and thus we do not achieve sublinear amortized total time. The
main benefit of shifting the heavy server-side computation to the offline phase
remains.

A lower bound. Finally, we prove a lower bound for offline/online PIR schemes
in which the servers store the database in unencoded form and keep no additional
state. Specifically, we show that any scheme of this form, that uses C bits of
communication in the offline phase, and that probes T bits of the database in
the online phase, must satisfy C ·T ≥ ˜Ω(n). This shows that in this model, as far
as communication and online server time are concerned, our two-server scheme
and the FHE-based single-server scheme are optimal, up to logarithmic factors.
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1.3 Limitations

The primary drawback of our new PIR protocols is that they use more total
communication than standard PIR schemes do. Today’s PIR schemes (with lin-
ear online server-side time) can achieve polylogarithmic communication in the
computational setting [CMS99,GR05,IP07,BGI16,DGI+19] and subpolynomial
communication (nO(

√
log log n/ log n)) in the two-server information-theoretic set-

ting [DG16]. In contrast, our schemes with sublinear online time have commu-
nication ˜Ωλ(

√
n). While we show that it is possible to reduce the online-phase

communication in the computational setting, our lower bound (Theorem 23)
implies that any offline/online PIR scheme with online time ˜O(

√
n)—such as

ours—must have ˜Ω(
√

n) total communication. This limitation is therefore inher-
ent to PIR schemes that have sublinear online server time and in which the
servers store the database in unmodified form.

In many settings, we expect that the
√

n communication cost will be
acceptable. Indeed, a number of built systems using PIR [GDL+14,GCM+16,
AMBFK16,ACLS18] already suffice with

√
n communication complexity, since

server-side computational cost is the limiting factor. If
√

n communication is
still too high, we show in Corollary 18 that it is possible to amortize the

√
n

offline communication cost of our two-server scheme over polynomially many
online reads, each of which requires only logarithmic communication. So, our
results are still relevant to communication-sensitive settings, when having low
amortized complexity is sufficient.

1.4 Related Work

Beimel, Ishai, and Malkin [BIM04] proved that the servers in any secure PIR
scheme must collectively probe all n bits of the database (on average) to respond
to a client’s query. We survey the existing strategies for eliminating this key
performance bottleneck.

Store the database in encoded form. One ingenious way to circumvent the
Ω(n)-server-time lower bound is to have the servers store the database in encoded
form. Beimel et al. [BIM04] introduced the notion of PIR with preprocessing, in
which the servers perform a one-time preprocessing of the database x ∈ {0, 1}n

and store the database in encoded form E(x) ∈ {0, 1}N , where E is a public
encoding function and N � n. In the two-server setting, their PIR schemes with
preprocessing achieve n1/2+ε total communication and n1/2+ε server-side time,
for any ε > 0. The downside of this approach is that the server-side encoding can
be quite large. For example, to achieve n0.6 server-side time and communication
using their two-server scheme requires the server to store an encoded database
of size N = n3.2. Even for modest database sizes (e.g., n ≈ 220), the encoded
database would be much too large to materialize in practice (many petabytes).
While it would be fascinating to construct improved schemes for two-server PIR
with preprocessing—perhaps with encoding size N = 10n and online time and
communication n1/3—this goal appears far out of reach.
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Table 1. A comparison of PIR schemes when cast into the offline/online model, on
database size n, in which each client makes q adaptive online queries, and in which m
clients execute the offline phase before the first client executes the online phase.

– The offline and online costs are per-query costs. Thus, if a scheme has a offline phase
of server cost n, which can be reused over q online queries, we write its per-query
offline cost as n/q.

– If a scheme has a one-time offline phase that can be reused for an unbounded
number of clients and queries (as in [BIM04,BIPW17]), we view the scheme as
having zero offline cost.

– The extra storage cost is the number of bits, in addition to the database, that client
and server must hold between the offline and online phases.

All columns omit poly(λ) factors, for security parameter λ, and also low-order polylog(n)
factors. Here, ε > 0 is an arbitrarily small constant and c refers to some constant in N.

The schemes of Beimel et al. apply only to the multi-server setting. Two recent
works [BIPW17,CHR17] study doubly efficient PIR, which are in some sense
single-server PIR-with-preprocessing schemes. In the designated-client model of
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doubly efficient PIR, the client encodes the database using a long-term secret key
(hidden from the server) and stores the encoded database on the server. Under a
new cryptographic assumption, the client can subsequently privately query this
encoded database many times, and the server can answer the query in time sub-
linear in the database size. In the public-key analogue of doubly efficient PIR, a
server that stores a single database encoding enables multiple mutually distrust-
ing clients to query the database using a short public key. Boyle et al. [BIPW17]
construct a public-key doubly efficient PIR scheme with sublinear query time,
under a new cryptographic assumption and in a model with virtual black-box
obfuscation.

Hamlin et al. [HOWW18] introduce a notion of private anonymous data
access (“PANDA”) schemes, in which many clients can access an encoded
database such that (1) as in standard PIR schemes, the server does not learn
which bits of the database a client is reading and (2) the server can respond to
a client’s request in time sublinear—even polylogarithmic—in the database size.
Unlike in doubly efficient PIR schemes, the server in PANDA may store muta-
ble state. Hamlin et al. give an instantiation of a PANDA scheme from fully
homomorphic encryption [Gen09]. A limitation of the existing PANDA schemes
is that they require the server storage and time to grow with the number of mali-
cious clients interacting with the system. In our setting, in which the number
of malicious clients could be unbounded, the storage and online server time of a
PANDA scheme would also be unbounded.

The general framework of PIR with preprocessing is extremely promising,
since preprocessing schemes can plausibly allow both polylogarithmic total com-
munication and total work—which is impossible in the offline/online setting.
That said, these preprocessing schemes necessarily increase the storage costs at
the servers, by large polynomial factors in many cases. The single-server prepro-
cessing schemes additionally rely on relatively heavy cryptographic assumptions.
In contrast, in our schemes, the servers store the database x in unencoded form
and keep no additional state. The trade-off is that, in our schemes, the client
and servers must run the linear-server-time offline phase once per client (Sect. 4)
or once per query (Sects. 3 and 5).

Use linear additional storage per query. Beimel, Ishai, and Malkin [BIM04,
Section 7.2], building on earlier work of Di Crescenzo, Ishai, and Ostro-
vsky [DIO98,DIO01], give an alternative way to reduce the server-side online
time in PIR. In their model, the client submits a request to the servers in an
offline phase. The servers use this request to generate a one-time-use n-bit encod-
ing of the n-bit database, which the servers store. In a subsequent online phase,
the client can privately query the servers for a database bit and the servers
use their precomputed encoding to respond in sublinear online time. The total
communication and online server-side work in these schemes can be as low as
polylog(n) [Ish19]. However, the server-side storage costs can be large: for each
client, the servers must store n additional bits until that client makes its online
query. If m clients concurrently access the database, the storage requirements at
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the servers increase to mn bits. (In contrast, the schemes in our work require no
extra server-side storage.)

Use linear online time. Another line of work reduces the server-side com-
putational burden of PIR protocols by working in the offline/online model we
consider. To our knowledge, all prior protocols in the offline/online model require
linear online time at the servers.

Boneh, Lewi, and Wu [BLW17] show that “privately constrained PRFs” imply
a two-server online/offline scheme in which only one of the servers needs to
be active in the online phase. The scheme has polylogarithmic communication
complexity, yet the online server’s work is linear in the database size. Subse-
quent work [BKM17,CC17,BTVW17] constructs such PRFs from standard lat-
tice assumptions.

Towards reducing the server’s computation time in PIR protocols, Patel,
Persiano, and Yeo [PPY18] introduce the notion of private stateful information
retrieval. They give single-server schemes in which, after an offline phase, the
client can privately retrieve a bit from the database while requiring the server to
only perform a number of online public-key operations sublinear in the database
size, along with a linear number of symmetric-key operations. The offline phase of
their protocol requires the client to download a linear number of bits in the offline
phase and the server must perform a linear number of total operations in the
online phase. Their schemes do allow amortizing the linear-communication offline
phase over multiple subsequent queries, although the online time is always linear.
In contrast, our protocols have total communication and online time sublinear
in the database size, even for a single query.

Demmler, Herzberg, and Schneider [DHS14] give a scheme which reduces the
computational burden of each server by means of sharding the database. The
combined work of all servers in their scheme is still linear.

Marginally sublinear online time. The original PIR paper [CGKS95] points
out that a three-party communication protocol of Pudlák and Rödl [PR93, The-
orem 3.5] yields a two-server PIR protocol. (See also the subsequent journal
version [PRS97].) In particular, on an n-bit database, that protocol has total
communication α(n) = O(n log log n

log n ), or just slightly sublinear. Closer inspection
of this protocol reveals that one of the two servers can additionally be made
to run in sublinear time α(n), and thus this early scheme can be cast as an
offline/online PIR scheme with just slightly sublinear offline communication. As
far as we know, no prior work has drawn attention to this fact.

Lipmaa [Lip09] constructs a computational single-server PIR protocol with
preprocessing. In its offline phase, the server encodes the database as a branching
program with (n + o(n))/ log n nodes, and stores the branching program, using
n + n/polylog(n) bits. In the online phase, the server homomorphically evalu-
ates the branching program, using a protocol of Ishai and Paskin [IP07], which
requires O(n/ log n) public key operations, or slightly sublinear in the database
size. (The homomorphic ciphertexts must be no shorter than the security param-
eter λ = ω(log n), and so, strictly speaking, the number of bit operations in the
online phase is still linear. However, the running time is dominated by the public
key operations.)
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The complexity of these two protocols is much larger than ours but we still
find it interesting to see such radically different ways to construct two-server
PIR with sublinear online time.

Amortize work. It is also possible to improve the computational efficiency of
PIR by having each PIR server jointly process a batch of queries. If a server
can process a batch of Q queries to an n-bit database at o(Qn) cost, processing
queries in a batch yields sublinear amortized time per query at the server. This
general strategy is fruitful both when the batched queries originate from the
same client [IKOS04,Hen16,ACLS18] and from different clients [BIM04,IKOS06,
LG15].

Our multi-query scheme of Sect. 4 similarly allows the client to amortize the
server’s linear-time offline computation over many queries—as in batch PIR. The
difference is that our multi-query scheme allows the client to make its queries
adaptively (one at a time), while batch-PIR schemes require the client to make
all queries in a batch non-adaptively (all at once).

Relax the security property. One final approach to reducing the online server
time in PIR is to aim for a weaker security property than standard crypto-
graphic PIR schemes do. Toledo, Danezis, and Goldberg give PIR schemes with
a differential-privacy-style notion of security and show that when some leakage
of the client’s query to the server is allowed, the servers can run in sublinear
online time [TDG16].

1.5 Technical Overview

To illustrate our techniques, we start by presenting a simplified version of our
two-server offline/online PIR scheme with statistical security. The online phase
of this protocol runs in time o(n), and the protocol’s total communication is
o(n).

A toy protocol. Two servers hold a replica of the database x ∈ {0, 1}n. The
two phases of the protocol proceed as follows:

Offline phase. This phase takes place before the client has decided which bit it
wants to read from the database.

– The client divides the database indices {1, . . . , n} at random into
√

n disjoint
sets (S1, . . . , S√

n), each of size
√

n, and sends these sets to the first server.
(Sending these sets explicitly would take Ω(n log n) communication, which is
too much. We explain later how to reduce the communication in this step.)

– The first server receives the sets (S1, . . . , S√
n) from the client. For each such

set Sj , it computes the parity of the database bits indexed by the set. That
is, for j ∈ {1, . . . ,√n}, the server computes the parity hj ← ∑

i∈Sj
xi mod 2.

The server sends these parity bits (h1, . . . , h√
n) to the client.

– The client stores the sets (S1, . . . , S√
n) and the parity bits (h1, . . . , h√

n).

Online phase. This phase begins once the client has decided on the index i ∈ [n]
of the bit it wants to read from the database.
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– The client finds the set Sj that contains its desired index i. The client then
removes a single item i∗ from the set Sj , which it chooses as follows:

• With probability 1 − (
√

n − 1)/n the client chooses i∗ ← i.
• With the remaining probability, the client chooses i∗ randomly from the

set of all other elements in Sj .
The client then sends the set S′ ← Sj �{i∗} to the second server.

– Upon receiving the set S′ from the client, the second server computes and
sends back to the client the parity of the database bits indexed by the set:
a ← ∑

i∈S′ xi mod 2. Computing the answer requires the second server to
probe at most |S′| = O(

√
n) bits of the database, which allows the server to

run in only ˜O(
√

n) time.
– Finally, when the client receives the answer from the second server, it recovers

the value of the database bit xi∗ by computing xi∗ ← hj −a mod 2. Crucially,
since the client has chosen i∗ with a bias towards i, it recovers the value xi

of its bit of interest with high probability 1 − O(1/
√

n). (By iterating the
scheme λ times in parallel, the client can drive the failure probability down
to at most 2−λ.)

With a bit of work, it is possible to show that the set S′ that the client sends to
the second server is a uniformly random subset of [n] of size

√
n − 1. Thus, the

values that both servers see are distributed independently of the index i that the
client is trying to read.

The resulting scheme already achieves the main goal of interest: in the online
phase, the server can respond to the client’s query in time O(

√
n). However, the

toy scheme also has two major shortcomings:

1. The communication in the offline phase is super-linear : sending the sets
(S1, . . . , S√

n) to the first server requires Ω(n log n) bits.
2. The scheme requires Θ(n log n) bits of client storage between the offline phase

and the online phase.

We can address both of these challenges at once by partially derandomizing
the client. In the revised scheme, in the offline phase, the client chooses a single
set S ⊆ [n] of size

√
n. The client also sends to the server

√
n random “shifts”

Δ = {δ1, δ2, . . . , δ√
n} ∈ [n]. The client and server then use S and Δ to construct

a collection of
√

n sets (S1, . . . , S√
n) by setting, for every j ∈ {1, . . . ,√n}, Sj ←

{i + δj | i ∈ S}. The client and the server then run the rest of the toy protocol
using this collection of sets. This modification increases the failure probability,
since there is now some chance that the client’s desired index i will not be in any
of the sets (S1, . . . , S√

n). Even so, the client and servers can repeat the protocol
O(log n) times in parallel to drive down the failure probability.

This modifications reduces both the communication complexity of the offline
phase and the amount of client storage and time to ˜O(

√
n). With some work, we

can also argue that this modification preserves security.

Improvements to the toy scheme. While the above patched two-server
scheme achieves all of our efficiency goals, it leaves a few things to be desired:
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– Reducing online communication with puncturable pseudorandom sets. In the
protocol sketched above, the communication in the online phase is Θ(

√
n).

Under the assumptions that one-way functions exist, we can reduce the online-
phase communication to poly(λ, log n), for security parameter λ.
To do so, we introduce a new tool, which we call a puncturable pseudorandom
set (Sect. 2). Essentially, a puncturable pseudorandom set allows the client in
the toy scheme above to send the server a compressed representation of the
random set S, in the form of a short key k. Furthermore, the set key is “punc-
turable,” in that for any i∗ ∈ S, the client can produce a punctured set key
ki∗ that is a compressed representation of S�{i∗}. Crucially, the punctured
key ki∗ also hides the identity of the removed element i∗.
We construct a puncturable pseudorandom set from puncturable
PRFs [BW13,KPTZ13,BGI14,SW14] (Theorem 3), which have simple con-
structions from pseudorandom generators. The keys in our construction have
size O(λ log n) for sets of size O(

√
n) over a universe of size n and security

parameter λ. Plugging this puncturable pseudorandom set construction into
the toy scheme above reduces the communication complexity of the online
phase to the length of a single punctured set key, plus the single bit answer,
for O(λ log n) bits total.

– Refreshing the client’s state. The client in the toy scheme can only use the
results of the (computationally expensive) offline phase to read a single bit
from the database. The following modification to the toy scheme allows the
client to “refresh” the bits it downloads in the offline phase, so that it can
reuse these bits for many online queries (Sect. 4).
After the client makes a query for index i ∈ [n] using set Sj , the client
discards that set from its state. Now the client must somehow “refresh” its
local state. Our observation is that the set Sj is a random size-

√
n subset of

[n], conditioned on i ∈ Sj . The client refreshes its state by asking the first
server for the parity of a random size-(

√
n − 1) subset S′ of [n]. Since the

client already knows the value of xi, it can compute and store the parity of
the database bits in the set S′ ∪ {i}. (Ensuring that this refreshing process
maintains security requires handling some technicalities.)
Although this construction requires the client to use independent random sets
(S1, . . . , S√

n), using puncturable pseudorandom sets the client can send to the
offline server all of them using only ˜O(

√
n) bits of communication.

– From two servers to one. Converting the two-server offline/online PIR scheme
to a single-server one is conceptually simple. Say that in the offline phase of
the two-server scheme, the client sends a query q to the first server and receives
an answer a. To convert it into a single-server scheme, we have the client send
an encryption E(q) of its offline query to the server, and we have the server
homomorphically compute and send back the encrypted answer E(a). Since
the server learns nothing about the offline query q, the online phase can pro-
ceed exactly as in the two-server scheme.
With fully homomorphic encryption [Gen09], this transformation is straight-
forward and maintains the communication complexity of the original two-
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server scheme. We show in Theorem 20 that it is possible to execute these
steps using the much lighter-weight tools of linearly homomorphic encryp-
tion and single-server PIR, with slightly worse communication efficiency and
online time: ˜O(n2/3) · poly(λ), for security parameter λ.

– Proving optimality. Finally, we prove a lower bound on the offline communica-
tion and online time using a classic lower bound of Yao [Yao90]. In particular,
we show (the full version of this work) that any offline/online PIR scheme
with small offline communication and online time, and in which the servers
store the database in unmodified form, implies a good solution to “Yao’s Box
Problem.” We then apply a preexisting time/space lower bound against algo-
rithms for Yao’s Box Problem to complete the lower bound (Theorem23).

1.6 Notation

We use N to denote the set of positive integers. For an integer n ∈ N, [n] denotes
the set {1, 2, . . . , n} and 1n denotes the all-ones binary string of length n. For
n ∈ N and s ∈ [n], an s-subset of [n] is a subset of size exactly s, and

(

[n]
s

)

denotes the set of all s-subsets of [n]. Logarithms are taken to the base 2. We
ignore integrality concerns and treat expressions like

√
n, log n, and m/n as

integers.
The expression poly(·) refers to a fixed (unspecified) polynomial in its param-

eter. The notation ˜O(·) hides arbitrary polylogarithmic factors, i.e., f(n) =
˜O(g(n)) if f(n) = O(g(n)) · poly(log n). The notation Oλ(·) hides arbitrary
polynomial factors in (the security parameter) λ, i.e., f(n, λ) = Oλ(g(n)) if
f(n, λ) = O(g(n)) · poly(λ).

For a finite set S, the notation x ←R S refers to choosing x independently
and uniformly at random from the set S. For a distribution D over a set S,
the notation x ←R D refers to choosing x ∈ S according to distribution D. For
p ∈ [0, 1], the notation b ←R Bernoulli(p) refers to choosing the bit b to be ‘1’ with
probability p and ‘0’ with probability 1 − p.

We use the RAM model of computation with the size of the word logarithmic
in the input length and linear in the security parameter. To avoid dependence
on the specifics of the computational model, we usually specify running times
up to polylogarithmic factors. Throughout this text, an efficient algorithm is a
probabilistic polynomial time algorithm. Furthermore, we allow all adversaries
to be non-uniform. (Though this is not fundamental, and, with appropriate mod-
ifications in the security games, the results hold also in the uniform setting.)

We say that a pseudorandom generator (PRG) or pseudorandom permutation
(PRP) is ε-secure if no efficient adversary can distinguish the PRG or PRP from
random with advantage better than ε(λ), on security parameter λ.

2 Puncturable Pseudorandom Sets

In this section, we introduce a new cryptographic primitive called puncturable
pseudorandom sets and give few natural constructions. Puncturable pseudoran-
dom sets are a key component of our PIR schemes.
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A puncturable pseudorandom set is very closely related to a puncturable
pseudorandom function (“puncturable PRF”) [BW13,KPTZ13,BGI14,SW14,
HKW15]. To explain the difference by analogy: a PRF key is a compressed
representation of a function f : [n] → [n], and a PRF key punctured at point
x∗ ∈ [n] allows its holder to evaluate f at every point in [n] except at the punc-
tured point x∗. The punctured key should reveal nothing about the value of
f(x∗) to its holder. (The formal standard definition appears in the full version
of this work.)

Analogously, the key for a puncturable pseudorandom set is a compressed
representation of a pseudorandom set S ⊆ [n]. The set key punctured at element
x∗ ∈ S allows its holder to recover all elements of S except the punctured element
x∗. The punctured set key reveals nothing about x∗ to its holder, apart from
that fact that x∗ is not one of the remaining elements in S.

2.1 Definitions

Let s : N → N be a function such that s(n) ≤ n. A puncturable pseudorandom
set with set size s consists of a key space K, a punctured-key space Kp, and a
triple of algorithms:

– Gen(1λ, n) → sk, a randomized algorithm that takes as input the security
parameter λ ∈ N, expressed in unary, and a universe size n ∈ N, expressed in
binary, and outputs a set key sk ∈ K,

– Punc(sk, i) → skp, a deterministic algorithm that takes in a key sk ∈ K and
an element i ∈ [n], and outputs a punctured set key skp ∈ Kp, and

– Eval(sk) → S, a deterministic algorithm that takes in a key sk ∈ K ∪ Kp and
outputs a description of a set S ⊆ [n], written as |S| strings of log n bits in
length each.

A puncturable pseudorandom set must satisfy the following notions of efficiency,
correctness and security.

Efficiency. For every security parameter λ ∈ N and universe size n ∈ N, the
routines Gen, Punc, and Eval run in time s(n) · poly(λ, log n), where s(n) is the
set size.

Correctness. For every λ, n ∈ N, if one samples sk ← Gen(1λ, n) and computes
S ← Eval(sk), it holds, with probability 1 over the randomness of Gen, that

1. S ∈ (

[n]
s(n)

)

, where
(

[n]
s(n)

)

denotes the set of all size-s(n) subsets of [n], and
2. for all i ∈ S, Eval(Punc(sk, i)) = S�{i}.

Security. Let Ψ be a puncturable pseudorandom set with set size s : N → N.
Let Wλ,n be the event that adversary A wins in Game 1 with respect to Ψ , with
security parameter λ and universe size n. Then we define A’s guessing advantage
as:

PSAdv[A, Ψ ](λ, n) := Pr[Wλ,n] − 1
n − s(n) + 1

. (1)
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A puncturable pseudorandom set Ψ is computationally secure if for every λ ∈
N, every polynomially bounded n = n(λ), and every non-uniform polynomial-
time adversary A, we have that PSAdv[A, Ψ ](λ, n) ≤ negl(λ). The puncturable
pseudorandom set is ε-secure if that advantage is smaller than ε(λ, n). We say
that Ψ is perfectly secure if for every λ, n ∈ N and for every (computationally
unbounded) adversary A, we have that PSAdv[A, Ψ ](λ, n) = 0.

Game 1 (Puncturable pseudorandom set security). For λ, n ∈ N, and a
puncturable pseudorandom set Ψ = (Gen,Punc,Eval), we define the following game,
played between a challenger and an adversary:

– The challenger executes the following steps:
• sk ← Gen(1λ, n)
• S ← Eval(sk)
• x∗ ←R S
• skp ← Punc(sk, x∗)

and sends 1λ and skp to the adversary.
– The adversary outputs an integer x′ ∈ [n].

We say that the adversary “wins” if x∗ = x′.

In the full version of this work, we show that this security property implies
that the output of Eval on a random key is a pseudorandom set in

(

[n]
s(n)

)

.
Throughout this work, we often refer to puncturable pseudorandom sets as

puncturable pseudorandom sets for brevity.

2.2 Constructions

Fact 2 (Perfectly secure puncturable pseudorandom set with linear-
sized keys). For any function s : N → N with s(n) ≤ n, there is a perfectly
secure puncturable pseudorandom set with set size s. Moreover, for universe size
n, the set keys and punctured keys are both of length (s(n) + O(1)) log n bits.

Proof. The set key is the description of a set S ←R
(

[n]
s

)

—written as s numbers, each
of log n bits in length, along with a description of the universe size n. A punctured
key is just this set of elements with the punctured element removed. �

Theorem 3 (puncturable pseudorandom set with short keys from
puncturable PRFs). Suppose there exists an εF -secure puncturable PRF (we
give the formal definition in the full version of this work) that, on security param-
eter λ and input-space size n, has keys of length κ(λ, n) bits and punctured keys
of length κp(λ, n) bits. Then, there exists an ε-secure puncturable pseudorandom
set with set size Θ(

√
n) that, on security parameter λ and universe size n, has
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– set keys of length κ(λ, n) + O(log n) bits and
– punctured keys of length κp(λ, n) + O(log n) bits, and
– ε(λ, n) = poly(λ, n) · (εF + 2−λ).

A puncturable pseudorandom set that proves the theorem appears in Con-
struction 4. We prove security and correctness of the construction in the full
version of this work.

Remark 4. The Gen routine in Construction 4 fails with negligible probability,
and therefore, as presented, the construction has imperfect correctness. We can
achieve perfect correctness by having the Eval and Punc routines treat sk = ⊥
as some fixed set (e.g., the set [s]). Our security analysis accounts for this.

Construction 4 (Puncturable pseudorandom set from puncturable PRF).
Given a puncturable PRF F = (PRFGen,PRFPunc,PRFEval), we construct a puncturable
pseudorandom set ΨF = (Gen,Punc,Eval) with set size s(n) :=

√
n/2.

ΨF .Gen(1λ, n) → sk

– Repeat at most λ times:
• Sample k ← PRFGen(1λ, n).
• Compute S ← {PRFEval(k, 1), PRFEval(k, 2), . . . , PRFEval(k, s(n))}.
• If |S| = s(n), halt and output sk ← (n, k). output ⊥.

– After running λ iterations of the loop unsuccessfully, output ⊥.

ΨF .Punc(sk, i) → skp

– Parse the secret key as a pair (n, k).
– Find the least integer � such that PRFEval(k, �) = i.

If no such � exists, output ⊥.
– Compute kp ← PRFPunc(k, �) and output skp ← (n, kp).

ΨF .Eval(sk) → S

– Parse the secret key as a pair (n, k).
– Output the set S ← {PRFEval(k, 1), PRFEval(k, 2), . . . , PRFEval(k, s(n))}.
– (If k is punctured at some value, skip this value when computing S.)

Instantiating Theorem 3 with the puncturable PRF [BW13,KPTZ13,BGI14]
based on the tree-based PRF of Goldreich, Goldwasser, and Micali [GGM86]
leads to a very efficient puncturable pseudorandom set construction from pseu-
dorandom generators. In the full version of this work, we prove the following:

Corollary 6. Assuming that pseudorandom generators (PRGs) exist, there
exists a secure puncturable pseudorandom set with set size Θ(

√
n).
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In particular, for every εG-secure length-doubling PRG G, there exists an ε-
secure puncturable pseudorandom set ΨG with set size

√

n/2, that has, for every
security parameter λ ∈ N and universe size n,

– set keys of λ + O(log n) bits in length,
– punctured keys of O(λ log n) bits in length, and
– ε(λ, n) ≤ poly(λ, n) · (εG(λ) + 2−λ).

A puncturable pseudorandom set with fast membership testing from
PRPs. We say that a puncturable pseudorandom set Ψ on universe size n has
a fast membership test if there exists an algorithm InSet that takes as input
a set key sk and an element i ∈ [n], runs in time poly(λ, log n), and outputs
“1” if i ∈ Ψ.Eval(sk) and “0” otherwise. Crucially, the running time of the fast
membership test must grow only with log n, rather than linearly with the set
size s(n). The following is a construction of such a puncturable pseudorandom
set. The proof appears in the full version of this work.

Theorem 7. Suppose there exists an εP -secure pseudorandom permutation that,
on security parameter λ and input-space size n, has keys of length κ(λ, n) bits.
Then, there exists an ε-secure puncturable pseudorandom set for any set size
s : N → N that, on security parameter λ and universe size n, has

– set keys of length κ(λ, n) bits,
– punctured keys of length s · O(log n) bits,
– ε ≤ poly(λ, n) · εP , and
– a fast membership test.

2.3 Shifting Puncturable Pseudorandom Sets

When using puncturable pseudorandom sets in this paper, we will want to equip
them with two additional functionalities.

1. GenWith(1λ, n, i) → sk is an algorithm that takes in n ∈ N and i ∈ [n],
and outputs a uniformly random puncturable pseudorandom set key sk for a
s(n)-subset of [n], subject to the constraint that i ∈ Eval(sk).

2. Shift(sk, δ) → sk′ is an algorithm that takes in a set key sk ∈ K and an integer
δ ∈ [n], and outputs a set key sk′ such that Eval(sk′) = {i+ δ | i ∈ Eval(sk)}.
(The addition i + δ is done modulo n, and we identify 0 ∈ Zn with n ∈ [n].)

In the full version of this work, we show how to extend any puncturable
pseudorandom set to efficiently support both these functionalities by including
a shift Δ ∈ [n] with every key and interpreting every element i in the base set
as (i + Δ) mod n in the encompassing set. This transformation only increases
the size of the puncturable set keys by an additive O(log n) term. Therefore, we
subsequently assume without a loss of generality that every puncturable set is
equipped with GenWith and Shift.
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3 Two-Server PIR with Sublinear Online Time

We now formally define two-server offline/online PIR and construct such schemes
that achieve sublinear online time and provide either statistical or computational
security.

3.1 Definition

Informally, a two-server offline/online PIR scheme is a protocol between a client,
an offline server, and an online server. Both servers have access to a database
x ∈ {0, 1}n. The PIR protocol proceeds in five steps:

1. First, the client uses the Setup algorithm to generate its own client key ck,
along with a hint request qh. The client sends the hint request qh to the offline
server. Crucially, the client can run the Setup algorithm before it has decided
which bit of the database it wants to read.

2. The offline server feeds the hint request qh and the database x ∈ {0, 1}n into
the Hint algorithm, which generates a hint h that the offline server returns to
the client.

3. Once the client has decided on the index i ∈ [n] of the bit it wants to read
from the database, it feeds its key ck and index i into the Query algorithm,
which produces a query q. The client sends this query to the online server.

4. The online server feeds the client’s query q into the Answer algorithm that is
further given access to the database. (The focus is on schemes in which the
Answer algorithm probes o(n) bits of the database and run in time o(n).) The
online server then returns the answer a to the client.

5. The client feeds the hint h and the answer a into algorithm Reconstruct, which
outputs the i-th bit of the database.

A secure offline/online PIR scheme should guarantee that neither server inde-
pendently learns anything (in either a statistical or computational sense) about
the client’s private index i.

Definition 8 (Offline/online PIR). An offline/online PIR scheme is a tuple
Π = (Setup,Hint,Query,Answer,Reconstruct) of five efficient algorithms:

– Setup(1λ, n) → (ck, qh), a randomized algorithm that takes in security param-
eter λ and database length n and outputs a client key ck and a hint request qh.

– Hint(x, qh) → h, a deterministic algorithm that takes in a database x ∈ {0, 1}n

and a hint request qh and outputs a hint h,
– Query(ck, i) → q, a randomized algorithm that takes in the client’s key ck and

an index i ∈ [n], and outputs a query q,
– Answerx(q) → a, a deterministic algorithm that takes as input a query q and

gets access to an oracle that:
• takes as input an index j ∈ [n], and
• returns the j-th bit of the database xj ∈ {0, 1},
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outputs an answer string a, and
– Reconstruct(h, a) → xi, a deterministic algorithm that takes as a hint h and

an answer a, and outputs a bit xi.

Furthermore, the scheme Π must satisfy the following properties:

Correctness. For every λ, n ∈ N, x ∈ {0, 1}n, and i ∈ [n], we require that

Pr

⎡
⎢⎢⎣Reconstruct(h, a) = xi :

(ck, qh) ← Setup(1λ, n)
h ← Hint(x, qh)
q ← Query(ck, i)
a ← Answerx(q)

⎤
⎥⎥⎦ = 1, (2)

where the probability is taken over any randomness used by the algorithms.

Security. For λ, n ∈ N, and i, j ∈ [n], define the distribution

Dλ,n,i :=

{
q :

(ck, qh) ← Setup(1λ, n)
q ← Query(ck, i)

}
, (3)

and for an adversary A, define the adversary’s advantage as

PIRadv[A,Π](λ, n) := max
i,j∈[n]

{

Pr
[A(1λ,Dλ,n,i) = 1

] − Pr
[A(1λ,Dλ,n,j) = 1

]}

.

Scheme Π is computationally secure if for every polynomially bounded function
n(λ) and every efficient adversary A, the quantity PIRadv[A,Π](λ, n(λ)) is a
negligible function of λ. In particular, we say it is ε-secure if this advantage is
at most ε(λ, n). The scheme is statistically secure if the same holds true even for
computationally unbounded adversaries.

Remark 9 (Online running time). In Definition 8, the online server’s answer
algorithm Answer gets oracle access to the bits of the database x. We do so to
emphasize that, for all of the PIR schemes described in this paper, the online
server runs in time sublinear in the database size n, and can thus reply to the
client’s query after probing only o(n) bits of the database. In practice, the online
server could implement each oracle call using a lookup to the database in ˜O(1)
time, in a reasonable model of computation (e.g., the RAM model).

Remark 10 (Information-theoretic PIR as offline/online PIR). It turns out that
any two-server PIR scheme with perfect information-theoretic security can be
cast as an offline/online PIR scheme. To see why: in a two-server perfectly secure
PIR, the distribution over query strings that the client sends to each server is
independent of the database bit that the client wants to read. (If not, the scheme
cannot possibly be perfectly secure.) Thus, the client can query one of the two
servers server before it knows which database bit it wants to read.
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However, in all existing two-server perfectly secure PIR schemes, both servers
run in time Ω(n) on databases of size n. Therefore, viewing any standard two-
server PIR scheme as an offline/online scheme yields a two-server offline/online
PIR scheme in which the online running time is Ω(n). In contrast, we construct
offline/online PIR schemes in which the online server runs in time o(n).

3.2 New Constructions

The following theorem, which we prove at the end of this subsection, captures
our main result on two-server offline/online PIR. It shows that it is possible to
simultaneously achieve sublinear total communication and sublinear online time:

Theorem 11 (Two-server statistically secure offline/online PIR). There
exists a statistically secure two-server offline/online PIR scheme, such that on
every n-bit database and every security parameter λ ∈ N:

– the offline phase uses O(λ
√

n log2 n) bits of communication,
– the offline server runs in time ˜Oλ(n),
– the online phase uses O(λ

√
n log n) bits of communication,

– the online server runs in time ˜Oλ(
√

n), and
– the client uses time and memory ˜Oλ(

√
n).

Moreover, the security advantage of any adversary is at most poly(λ, n) · 2−λ.

Remark 12 (Concrete efficiency). For simplicity, we give the running times of
the routines in our schemes up to poly(λ, log n)-factors. It is possible to make
these hidden factors as small as O(λ log n).

Remark 13 (Trading communication for online time). By adjusting the param-
eters of the construction, it is possible to generalize Theorem 11 to give a two-
server offline/online PIR scheme in which, for any function C : N → N with
C(n) ≤ n/2, the offline phases uses C(n) bits of communication, and the online
server runs in time ˜O(n/C(n)). This adjustment requires the client and prepro-
cessing server to have access to a sequence of common random bits, or, in the
computational setting, assuming the existence of pseudorandom generators.

In the full version of this work we discuss additional issues such as support
of databases with longer rows, further reducing the client’s online time via a
connection to the 3-SUM problem, and implications of Theorem 11 for random
self-reductions.

The following theorem, which we prove at the end of this subsection, shows
that, if we settle for only computational—rather than statistical—security, we
can decrease the online communication cost of the PIR scheme of Theorem 11
from Oλ(

√
n log n) to Oλ(log n) without degrading any other efficiency metrics.

It also allows us to slightly decrease the offline communication cost.
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Theorem 14 (Two-server computational offline/online PIR). Assum-
ing the existence of pseudorandom generators, there exists a two-server
offline/online PIR scheme Ψ that satisfies the efficiency criteria of Theorem 11,
except that

– the communication cost of the offline phase decreases to O(λ
√

n log n),
– the communication cost of the online phase decreases to O(λ2 log n), and
– if the underlying PRG is εG-secure, the PIR scheme is ε-secure for ε(λ, n) =

poly(λ, n) · (εG(λ, n) + 2−λ).

The main building block we use to construct two-server PIR schemes with
low communication complexity and low online server time is puncturable pseu-
dorandom sets with small keys. We give the construction in the next subsection,
and prove the following lemma about the construction in the full version of this
work.

Lemma 15. Let s : N → N be any function such that s(n) ≤ n/2. Let Ψ be an
εΨ -secure puncturable pseudorandom set with set size s, key size κ, and punctured
key size κp. Then there exists a two-server ε-secure offline/online PIR scheme
ΠΨ , such that on security parameter λ and every n-bit database, in the offline
phase:

– the client sends λκ + (λn/s(n)) log2 n bits to the server,
– the offline server runs in time n · poly(λ, log n),
– the offline server’s answer is O((λn/s(n)) log n) bits in length.

In the online phase:

– the client sends λκp bits to the server,
– the online server runs in time s(n) · poly(λ, log n), and
– the online server’s answer consists of λ bits.

Furthermore,

– the client runs in time (s(n) + n/s(n)) · poly(λ, log n) and stores O(λκ +
(λn/s(n)) log2 n) bits between the offline and online phases, and

– the advantage ε(λ, n) ≤ poly(λ, n) · (εΨ (λ, n) + 2−λ
)

.

Theorem 11 follows by instantiating Lemma 15 with the information-
theoretic puncturable pseudorandom set construction of Fact 2, which has keys
and puncturable keys of length at most (s+O(1)) log n, and by setting s =

√
n.

Theorem 14 follows by instantiating Lemma 15 with the puncturable pseu-
dorandom set of Corollary 6, which has keys of length O(λ) and punctured keys
of length O(λ log n), and setting s =

√
n. Additionally we reduce the offline com-

munication from O(λ
√

n log2 n) to O(λ
√

n log n) by replacing the random shifts
used in Construction 16 with pseudorandom ones, generated from one seed of
length λ.
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Construction 16 (Two-server PIR with sublinear online time). The con-
struction is parametrized by set size s : N → N and uses a puncturable pseudo-
random set Ψ = (Gen,Punc,Eval) with key space K, punctured-key space Kp, and
set size s, extended by routines (Shift,GenWith). The final scheme is obtained by
running λ instances of this scheme in parallel. Throughout, let m := (n/s(n)) logn.

Offline phase
Setup(1λ, n) → ck, qh

sk ← Gen(1λ, n)
sample δ1, . . . , δm ←R [n]
ck ← (sk, δ1, . . . , δm)
output ck and qh ← sk

Hint(qh, x ∈ {0, 1}n) → h ∈ {0, 1}m

parse qh as sk ∈ K and δ ∈ [n]m

for j = 1, . . . , m do:
Sj ← Eval(Shift(sk, δj))
hj ← ∑

i∈Sj
xi mod 2

output h ← (h1, . . . , hm)

Online phase

Query(ck, i ∈ [n]) → q ∈ Kp

parse ck as sk ∈ K and δ ∈ [n]m

sample a bit b ←R Bernoulli( s−1
n

)
find a j ∈ [m] s.t. i − δj ∈ Eval(sk)
if such a j ∈ [m] exists:

skq ← Shift(sk, δj)
otherwise:

j ← ⊥
i′ ←R Eval(sk)
skq ← Shift(sk, i − i′)

if b = 0: ipunc ← i
else: ipunc ←R Eval(skq)�{i}
output q ← Punc(skq, ipunc)

Answerx(q ∈ Kp) → a ∈ {0, 1}
S ← Eval(q)
return a ← ∑

i∈S xi mod 2

Reconstruct(h ∈ {0, 1}m, a ∈ {0, 1}) → xi

let j and b be as in Query†

if j = ⊥ or b = 0 then output ⊥
output xi ← hj − a mod 2

† For simplicity, we avoid passing j and b explicitly from Query to Reconstruct.

3.3 Construction of PIR from Puncturable Pseudorandom Sets

We first present an overview of the construction. The formal specification appears
in the full version of this work, and the full analysis appears there as well.

The PIR scheme makes use of a puncturable pseudorandom set Ψ =
(Gen,Punc,Eval) with set size s(n) extended by routines (Shift,GenWith). We
denote s := s(n) and assume without loss of generality that s ≥ log n, as other-
wise, a scheme in which the offline server sends the entire database to the client
trivially satisfies the lemma. We also define m := (n/s) log n. The PIR scheme
operates in two phases, in each of which the client interacts with one of the two
servers:

Offline phase

1. The client samples a random set key sk ← Gen(1λ, n) for universe size n and
set of size s. It also samples m random shifts δ1, . . . , δm ∈ [n]. The client
sends the set key and the shifts to the offline server.
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2. Upon receiving the set key sk and the random shifts δ1, . . . , δm from the client,
the offline server expands the set key to get the set S ← Eval(sk) ⊆ [n]. Each
shift δj ∈ [n] defines a “shifted” set Sj ← {x + δj mod n | x ∈ S} (when
adding elements in [n], we identify it with Zn).
For each shift δj , the offline server computes the parity of the bits pointed by
the shifted set Sj , i.e., sets hj :=

∑

i∈Sj
xi mod 2. These bits constitute the

hint h = (h1, . . . , hm) ∈ {0, 1}m, which the server sends to the client.

Online phase. The client takes as input an index ipir ∈ [n] of the database it
wants to query. The client has its set key sk and the shifts vector δ from the
offline phase and the hint h ∈ {0, 1}m from the offline server.

1. The client expands the set key sk into the set S ← Eval(sk). It then searches
for a value j ∈ [m] such that ipir + δj ∈ S. (The client can execute this search
in O(m + n) time using a hash table.)

– If such a shift δj exists, the client computes the corresponding shifted set
key skq ← Shift(sk, δj), so that ipir falls into the set Eval(skq).

– If such an index does not exist, the client samples an element i ←R S and
computes the shifted set skq ← Shift(sk, ipir − i′).

Either way, we refer to the chosen set key as skq and it holds ipir ∈ Eval(skq).
2. The client samples a bit b ←R Bernoulli((s−1)/n) and then chooses an element

ipunc at which to puncture its set key skq.
– If b = 0, the client punctures the key skq at the point: ipunc ← ipir.
– If b = 1, the client punctures the key skq at a random point: ipunc ←R

Eval(skq)�{ipir}.
The client sends the punctured key q ←R Punc(skq, ipunc) to the online server.
(In the proof, we show that this punctured key computationally hides the
index ipir of the bit that the client wants to fetch from the database.)

3. The online server computes the punctured set S∗ ← Eval(q) ⊆ [n] and views
this set as s−1 pointers to bits in the database x ∈ {0, 1}n. The online server
computes the parity of these s − 1 bits: a ← ∑

i∈S∗ xi mod 2. The online
server then returns this parity to the client. Notice that the online server only
needs to probe s−1 bits of the database and can run in time s ·poly(λ, log n).

4. If, in Step 2, the client’s random bit b = 0, the client can recover the bit at
position ipir in the database from the hint h and the answer a by computing
(h − a) mod 2 =

∑

i∈S xi − ∑

S∗ xi =
∑

i∈S xi − ∑

S�ipir
xi = xipir .

Note that the scheme fails if either ipunc �= ipir or ipir /∈ ∪j∈[m]Sj . The proba-
bility of the former is (s−1)/n and, by setting m ≈ n log n/s, we can drive down
the probability of the latter to be approximately 1/n. By running O(λ) instances
of the scheme in parallel, using independent randomness for each instance, we
can drive the overall failure probability to be negligible in λ.

It is now possible to transform the PIR scheme into one with perfect correct-
ness, at the expense of a negligible security loss. To do so, if the client detects
an error (which happens with only a negligible probability), it simply reads its
desired bit from the database using a non-private lookup. (Achieving perfect
correctness and security is also possible, at the cost of having an offline phase
that runs in expected polynomial time.)
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4 Two-Server PIR with Sublinear Amortized Time

One shortcoming of the PIR scheme of the previous section is that every exe-
cution of its offline phase supports only one subsequent query. To perform each
additional query, the client and the server must rerun the offline phase. There-
fore, although the online query-processing time is sublinear, the overall cost of
each query, including that of the offline phase, remains linear.

We now extend the scheme of the previous section such that a single execu-
tion of the offline phase enables the client to subsequently query the database
polynomially many times, without ever having to rerun the offline phase. The
extended scheme is nearly as efficient as the basic, single-query scheme. The
only loss in efficiency is the online communication, which increases to ˜O(n1/2).
We stress that the client can choose the retrieved indices adaptively, and so our
scheme does not rely on jointly processing a batch of queries.

Our security definition, given in the full version of this work, accounts for
an active (fully malicious) adversary that controls either of the two servers, and
can adaptively choose the database indices that the client queries. Here, we give
our main result:

Theorem 17 (Two-server multi-query offline/online PIR). Assuming
the existence of pseudorandom permutations, there exists a two-server multi-
query offline/online PIR scheme, such that on every n-bit database and every
security parameter λ ∈ N, in the offline phase:
– the offline server runs in time ˜Oλ(n),
– the total communication is O(λ

√
n log n) bits,

and in the online phase:
– the online server runs in time ˜Oλ(

√
n),

– the total communication is O(λ
√

n log n) bits, and
– if the underlying PRP is εP -secure, the PIR scheme is ε-secure for ε(λ, n) ≤

poly(λ, n) · (εP (λ, n) + 2−λ).

Furthermore, the client uses offline time, storage, and online time ˜Oλ(n1/2).

In the full version of this work, we give the construction that fully specifies
the scheme that proves Theorem 17. The full analysis appears in the full version
of this work, where we also prove the following corollary:

Corollary 18 (Reducing communication). Assuming the existence of pseu-
dorandom generators, there exists a scheme as in Theorem 17, albeit
– the client offline time increases to ˜Oλ(n),
– the client storage and online time increases to ˜Oλ(n5/6), and
– the total online communication decreases to O(λ2 log n).

Remark 19. As in Sect. 3, it is possible to achieve statistical security, by replac-
ing the computationally secure puncturable pseudorandom set in the proof of
Theorem 17, with a perfectly secure one and applying a standard “balancing”
technique [CGKS95, Section 4.3] to get a scheme with online work and commu-
nication ˜Oλ(n2/3).
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4.1 Sketch of the Construction

We sketch the construction here, but refer to In the full version of this work for
the details.

Our starting point is the single-query scheme of Sect. 3. There, the hint con-
sists of a list of m =

√
n log n random sets S1, . . . , Sm ⊆ [n], each of size roughly√

n, represented by m puncturable pseudorandom set keys, along with the parity
of the database bits in each set. In the online phase, to read the ith database
bit, the client finds a set Sj ∈ {S1, . . . , Sm} such that i ∈ Sj and with good
probability sends to the right server the set S′ = Sj �{i}. Once the client has
used the set Sj to make a query, the client cannot use Sj again. If the client used
Sj to query for another index i′, the right server would, with good probability,
see Sj �{i} and Sj �{i′}. Taking the difference of these sets would reveal the
secret indices {i, i′} to the right server, breaking security.

The key to supporting multiple queries with only one execution of the offline
phase is to have the client “refresh” its hint every time it queries the database.
We refer to the two servers as “left” and “right”. The left server provides the hint
to the client in the offline phase, and later helps the client to refresh that hint
after each subsequent read operation. The right server answers the queries that
allow the client to reconstruct the database bits it is attempting to read (as in
our constructions of Sect. 3).

The online-phase interaction with the right server proceeds exactly as in
the single-query scheme: the client sends a punctured set to the right server and
recovers the bit xi. However, the client in the multi-query scheme must somehow
replace the set Sj (and the corresponding parity bit) with a fresh random set
Snew. To make this work, we must answer two questions: (i) How does the client
sample the set Snew? and (ii) How does the client fetch the corresponding parity
bit

∑

i∈Snew
xi mod 2?

First, for correctness and privacy to hold for future queries, the client must
sample the replacement set Snew in a way that preserves the joint distribution of
the sets S1, . . . , Sm. Notice that sampling a fresh random set Snew of the proper
size will not work, since it distorts the joint distribution of the sets. In particular,
replacing a set Sj that contains i with a fresh random set causes the expected
number of sets in S1, . . . , Sm containing i to decrease. What does work is to
have the client sample a fresh random set Snew subject to the constraint that it
contains the index i that the client just read. This is possible since, as described
in Sect. 2.3, punctured sets support biased sampling.

Second, the client needs to construct the correct parity bit hnew =
∑

i∈Snew
xi mod 2 for the new set Snew. The client obtains the new parity bit

by (1) puncturing the set Snew at element i and (2) querying the left server on
the punctured set. The left server then replies with the parity of the bits in the
punctured set Snew�{i}. At this point the client can recover the parity of the
new set Snew by adding the reply from the left server and the value xi, which it
reconstructs, as in the single-query case, using the reply from the right server.

The final complication is that, as in Sect. 5, in order for the punctured set to
look random, the client occasionally needs to send to the servers a set punctured
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at the retrieved index i. In this case, the read operation fails. When this happens,
the client sends a punctured version of the new set Snew to both servers, the client
leaves its hint state unchanged, and the read operations fails.

As in Sect. 5, by running λ instances of the scheme in parallel we can drive
the overall failure probability to be negligible in λ. We can then trade the failure
probability for a negligible security loss and get a perfectly correct scheme.

5 Single-Server PIR with Sublinear Online Time

In this section, we introduce single-server offline/online PIR. The syntax and cor-
rectness properties of a single-server offline/online PIR scheme, formally defined
in the full version of this work, are exactly as in Definition 8. The key difference
is that, in the single-server setting, the client interacts with the same server in
both the offline phase and the online phase. Still the server should learn nothing
about the database index the client wants to retrieve.

Unlike in the two-server setting, where we can achieve statistical security, in
the single-server setting, we must rely on computational assumptions [CGKS95].
Since non-trivial single-server PIR implies oblivious transfer [DMO00], our
assumptions must imply public-key cryptography.

Our single-server schemes shift all of the expensive work of responding to the
client’s PIR query—the linear-time scan over the database and the public-key
operations—into the offline phase. The server can then respond to the client’s
query in the online phase much more quickly, with

– no public-key cryptographic operations and
– server time sublinear in the size of the database.

Our main construction (Theorem 20) achieves ˜Oλ(n2/3) communication and
online time and ˜Oλ(n) server computational time in the offline phase, using lin-
early homomorphic encryption and standard single-server PIR. We also sketch
an asymptotically superior construction (Theorem 22) that achieves ˜Oλ(n1/2)
communication and online time, at the cost of using fully homomorphic encryp-
tion [Gen09]. Our lower bound of Sect. 6 proves the optimality of this latter
scheme, up to log factors, with respect to the trade-off between offline commu-
nication and online time, given the restriction that the server must store the
database in unencoded from and use no extra storage.

A drawback of our single-server PIR schemes is that they have polynomial
communication Ω(n1/2), which is higher than the polylog(n) communication of
state-of-the-art standard single-server PIR schemes [CMS99]. That said, in some
applications, the benefits of sublinear online time and no public-key cryptography
in the online phase may outweigh the costs.

The main result of this section is:

Theorem 20 (Single-server offline/online PIR). Suppose there exist:

– a linearly homomorphic encryption scheme (as defined in the full version of
this work) with ciphertext space G and



Private Information Retrieval with Sublinear Online Time 69

– single-server PIR with communication cost poly(λ, log n) and server compu-
tation time ˜Oλ(n) (for every database size n and security parameter λ ∈ N).

Then, there exists a single-server offline/online PIR scheme, that makes black-
box use of the group G, such that for every security parameter λ ∈ N and n-bit
database, it uses

– in the offline phase: ˜Oλ(n2/3) bits of communication and ˜Oλ(n) operations
in G, and

– in the online phase: ˜Oλ(n1/3) bits of communication, ˜Oλ(n2/3) time, and no
operations in G.

Moreover, the client uses time and memory ˜Oλ(n2/3).

We prove Theorem 20 in the full version of this work.

Remark 21 (A much simpler scheme). In the full version of this work, we give a
very simple—and likely easy-to-implement—single-server offline/online scheme
that requires only linearly homomorphic encryption and has O(

√
n) total com-

munication, online time, and client storage. The scheme uses no public-key
cryptographic operations in the online phase, and its simplicity makes it poten-
tially attractive for practical applications. The downside is that its online phase
requires a linear number of bit operations (but no public-key operations).

Patel, Persiano, and Yeo [PPY18] give an offline/online scheme with linear
communication and linear online server time (but a sublinear number of online
public-key operations) while this simple scheme has sublinear communication
and no public-key operations in the online phase. In contrast, the client in their
scheme can use a single offline phase for many online operations, while our single-
server scheme requires an offline phase before each online query.

Improving efficiency with higher-order homomorphisms

If we use a homomorphic encryption scheme that supports degree-two [BGN05]
or higher-degree homomorphic computation, we can build offline/online PIR
schemes that provide even better communication efficiency. For example, given
a fully homomorphic encryption scheme [Gen09] (FHE), we can use the idea of
Theorem 20 with the two-server PIR scheme of Construction 16 to obtain:

Theorem 22 (Informal). Assume fully homomorphic encryption exists. Then,
for all security parameters λ ∈ N, there is a single-server offline/online PIR
scheme on n-bit databases that uses ˜Oλ(

√
n) bits of communication and ˜Oλ(

√
n)

server-side time in the online phase.

The observation is that, in the two-server setting (Construction 16), the client
only sends the server a PRG seed. By using FHE, the client in the single-server
setting could send the server an encryption of that seed, and the server could
homomorphically evaluate the offline server’s algorithm on the encrypted seed.
The online phase remains the same. In the full version of this work, we dis-
cuss possible routes towards obtaining a similarly efficient scheme under weaker
assumptions.
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6 Lower Bound for PIR with Sublinear Online Time

In this section, we prove that the offline/online PIR schemes we construct in
Sect. 3 achieve the optimal trade-off, up to log factors, between

– the number of bits C that the client downloads in the offline phase and
– the running time T of the server in the online phase.

Specifically, we show that any offline/online PIR scheme, in which the servers
store the database in its unmodified form and use no additional storage, and
that succeeds with constant probability on a database of size n, must have (C +
1)(T + 1) = ˜Ω(n).

The fact that we are able to obtain a polynomial lower bound on the commu-
nication complexity of offline/online PIR schemes may be somewhat surprising,
as it has been notoriously difficult to obtain communication lower bounds for
standard two-server PIR, in which the servers’ running time is unbounded. In
particular, in the information-theoretic setting, the best communication lower
bound for two-server PIR stands at C ≥ (5 − o(1)) · log2 n bits. In contrast, for
two-server PIR schemes in which one of the servers is restricted to run in time
T ≤ √

n, we obtain a polynomial communication lower bound of C ≥ ˜Ω(
√

n).
Our lower bound holds even against offline/online PIR schemes that provide

only computational security, as well as against single-server offline/online PIR
schemes. Our PIR schemes of Section 3 achieve this bound, up to logarithmic
factors, as does the single-server scheme of Theorem 22.

Theorem 23. Consider a computationally secure offline/online PIR scheme
such that, on security parameter λ ∈ N and database size n ∈ N,

– the client downloads C bits in the offline phase,
– the online server stores the database in its original form and probes T bits of

the database in the course of processing the client’s query, and
– the client recovers its desired bit with probability at least ε, over the choice of

its randomness.

Then, for polynomially bounded n = n(λ), it holds that

ε ≤ 1/2 + ˜O
(

T/n +
√

C(T + 1)/n
)

+ negl(λ),

and in particular for ε ≥ 1/2 + Ω(1) and large enough λ it holds that

(C + 1) · (T + 1) ≥ ˜Ω(n).

We prove Theorem 23 by showing that an offline/online PIR scheme implies a
solution for a computational task called “Yao’s Box Problem.” Using a preexisting
lower bound for the Box Problem immediately gives a communication-time lower
bound on offline/online PIR schemes. The details appear in the full version of
this work.
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Remark 24. The lower bound of Theorem 23 does not preclude schemes that
achieve better communication and lower bound by virtue of having the servers
store some form of encoding of the database. We discuss schemes of this
form [DIO01,BIM04] in Sect. 1.4. In particular, constructing PIR schemes with
preprocessing [BIM04] that beat the above lower bound (in terms of their com-
munication and online time) seems like an interesting open problem.

7 Open Questions

This work leaves open a number of questions:

– Is it possible to construct offline/online PIR schemes in which the client runs
in total time o(n), stores o(n) bits, and has online running time polylog(n)?

– Does Theorem 22 follow from an assumption weaker than FHE?
– Can we construct a multi-query scheme (Sect. 4) with only one server?
– In the full version of this work, we show how to view our PIR construction

via a new abstraction that we call sparse distributed point functions (“sparse
DPFs”), inspired by the standard notion of DPFs [GI14]. Are there even sim-
pler constructions of sparse DPFs than the ones implied by our PIR schemes?
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