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Abstract. For more than 30 years, cryptographers have been looking
for public sources of uniform randomness in order to use them as a set-
up to run appealing cryptographic protocols without relying on trusted
third parties. Unfortunately, nowadays it is fair to assess that assuming
the existence of physical phenomena producing public uniform random-
ness is far from reality.

It is known that uniform randomness cannot be extracted from a sin-
gle weak source. A well-studied way to overcome this is to consider several
independent weak sources. However, this means we must trust the various
sampling processes of weak randomness from physical processes.

Motivated by the above state of affairs, this work considers a set-
up where players can access multiple potential sources of weak ran-
domness, several of which may be jointly corrupted by a computation-
ally unbounded adversary. We introduce SHELA (Somewhere Honest
Entropic Look Ahead) sources to model this situation.

We show that there is no hope of extracting uniform randomness from
a SHELA source. Instead, we focus on the task of Somewhere-Extraction
(i.e., outputting several candidate strings, some of which are uniformly
distributed – yet we do not know which). We give explicit constructions
of Somewhere-Extractors for SHELA sources with good parameters.

Then, we present applications of the above somewhere-extractor where
the public uniform randomness can be replaced by the output of such
extraction from corruptible sources, greatly outperforming trivial solu-
tions. The output of somewhere-extraction is also useful in other settings,
such as a suitable source of random coins for many randomized algorithms.

In another front, we comprehensively study the problem of
Somewhere-Extraction from a weak source, resulting in a series of bounds.
Our bounds highlight the fact that, in most regimes of parameters
(including those relevant for applications), SHELA sources significantly
outperform weak sources of comparable parameters both when it comes
to the process of Somewhere-Extraction, and in the task of amplification
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of success probability in randomized algorithms. Moreover, the low qual-
ity of somewhere-extraction from weak sources excludes its use in various
efficient applications.

1 Introduction

Perfect (i.e., uniform) public randomness is an extremely valuable resource in
computer science, and in cryptography in particular. For example, it can be used
to create a Common Reference String (CRS) drawn from an uniform distribu-
tion, which is a widely used set-up for cryptographic protocols. However, the
randomness that we can obtain from physical phenomena (such as solar radia-
tion, temperature readings, and electricity fluctuations) is far from perfect (in
particular when public randomness sources are taken into account). Such phe-
nomena belong to the family of weak randomness sources [20]. These are sources
that carry some min-entropy, but are still very far from uniformly distributed. As
a result, in most applications a so-called randomness extractor must be applied
to the weak sources in order to extract (close to) uniformly distributed bits. A
basic result about randomness extraction dictates that deterministic extraction
from one weak source is not possible. Nevertheless, deterministic extraction is
possible if one has access to at least two independent weak sources.

Sampling from several independent physical weak sources presents serious secu-
rity issues. For example, if different phenomena are being publicly measured (to
ensure some kind of independence), then different instrumentation and potentially
different entities must be involved in the sampling process. Not only that, but sam-
pling may also be compromised by instrument failures. Going back to our CRS
example, if we want to generate CRS from such sources, then we are assuming that
every instrument and entity that took part in sampling the weak sources is trusted.
This is not a desirable situation, and indeed it was previously noticed that gener-
ating a uniformly distributed CRS from such weak sources is complicated [15]. A
natural question follows: Which forms of common public set-up can we achieve (or,
more generally, what kind of randomness can we extract) if some of the sources are
maliciously corrupted, but some of them remain honest?

Intuitively, this scenario leads us to define a structured weak source in an
adversarial setting where a sample from the source is divided into multiple sub-
parts, that we call blocks. One may imagine that each block corresponds to a
different sampling process as per the previous paragraph. In this setting there
is an ordered sequence of samplings from the sub-sources and some of them
are controlled by the adversary. More specifically, the adversary can decide the
positions of the honest blocks since it can decide which sampling processes to
corrupt. Honest blocks correspond to (correct) samples from independent weak
sources (these sources are known to the adversary but are not controlled by the
adversary). Given a sequence of blocks the sampling proceeds by obtaining blocks
in chronological order. As a result, if the i-th block is to be corrupted, then the
adversary is allowed to fix it to any value based on the (already determined)
values from the first through (i − 1)-th blocks.
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We will call such source a “t-out-of-�” Somewhere Honest Entropic Look-
Ahead (SHELA) source, where � indicates the total number of blocks, out of
which t must be honest. We consider only the case t ≥ 2, since the case t = 1
essentially reduces to the setting with a single weak source. Moreover, we assume
without loss of generality1 that each block has length n, and the honest blocks
have min-entropy at least k for some decent parameter k. Observe that corrupted
blocks are heavily correlated with previous honest blocks, and may even have
zero min-entropy. Moreover, we allow the number of honest blocks t to be any
function of �, as long as t ≥ 2.

There is a second real-world scenario that can be naturally modelled as a
SHELA source. Some blockchains can be considered as sequences of blocks gen-
erated in chronological order, some of which contain high min-entropy strings.
For instance, such strings could be the new wallet’s identifier used to cash a
reward when a new block is added to the chain, financial data containing some
min-entropy [21], or a random nonce added for some security reasons. It is well-
known [40,59] that in a sequence of blocks of the blockchain there will be a
fraction ν of them added by honest players. Moreover, we could assume that
when a new block is added to the blockchain by an honest player, such a block
(sometimes) contains high min-entropy strings that are independent of the pre-
vious ones already in the blockchain (we notice that a similar assumption has
already been used in [66]). Therefore, if we consider � consecutive blocks and for
each of them we consider the part of the block that, in case the block is honest,
could contain an independent weak source with decent min-entropy, we obtain
a public SHELA source2.

1.1 Our Contributions

Our main goal in this paper is to study SHELA sources and what kind of appli-
cations their availability enables.

The first natural question that arises when encountering SHELA sources is
the following: Are we able to extract independent and (close to) uniformly dis-
tributed bits from it? We will prove in this work that the answer to this question
is negative. Given this, we shift our focus from standard randomness extrac-
tion, and instead we investigate the possibility of constructing a deterministic
somewhere-extractor SomeExt for SHELA sources. Intuitively, the somewhere-
extractor SomeExt takes as input a SHELA source and outputs a distribution
that is close (in statistical distance) to a convex combination of so-called “T -out-
of-L” Somewhere-Random (SR) sources. SR sources are composed of L blocks,
1 Given blocks of different sizes, one can always fill out the shorter blocks with zeros,

similarly given blocks of different min-entropy we can assume k to be the minimum
of min-entropies of honest blocks.

2 In this example we are assuming that when using a blockchain as a SHELA source,
the adversary of the sampling procedure from a SHELA source has no control over
the choices of the honest blocks posted permanently in the blockchain (i.e., the
adversary does not decide which honest block is selected and remains permanently
in the blockchain out of multiple candidates).



346 D. Aggarwal et al.

T of which (at fixed, unknown positions) are jointly independent and uniformly
distributed. We call a convex combination of SR-sources a convSR-source for
short.

It turns out that convSR sources are an extremely useful type of random-
ness. For example, armed with our somewhere-extractor, we show how to build
non-interactive (and thus accepted by any receiver) commitments from one-way
functions and non-interactive (and thus publicly verifiable) witness indistinguish-
able proofs from generic complexity assumptions3 when both players (a sender
and a receiver, or a prover and a verifier, respectively) have access to a pub-
lic SHELA source. Remarkably, convSR-sources are also important intermediate
objects used in the construction of multi-source and non-malleable extractors
for weak sources (we discuss this in more detail later).

Parameters of the somewhere-extractor for SHELA sources. The com-
putational complexity and security of our applications of convSR-sources will
heavily depend on various parameters of the convSR-source: the number of total
blocks L, the number of “good” (i.e., independent and uniformly distributed)
blocks T , and the length m of each block. In turn, these depend on the parame-
ters of the underlying SHELA source and the quality of the somewhere-extractor.

Ideally, we want our somewhere-extractor SomeExt to extract a convSR source
with low error, small number of total blocks, and large block length from a
SHELA source. More precisely, the error ε of SomeExt should satisfy ε = 2−Ω(n),
where n is the block length of the SHELA source, the total number L of blocks
of the convSR source should be at most O(�), where � denotes the total number
of blocks in the SHELA source, and the length m of each output block should
satisfy m = Ω(n). We will comment later that these parameters ensure that
the output of SomeExt can be used in our applications without compromising
security, while ensuring that the efficiency and reliability of the application in
question remain good enough.

Moreover, we do not want to assume that honest blocks in the SHELA source
must have significant amounts of min-entropy for extraction to be successful.
Instead, we aim to extract such high-quality convSR-sources from SHELA sources
whose honest blocks have arbitrary constant min-entropy rate. In other words,
we allow the min-entropy k of each honest n-bit block to satisfy k = δn for an
arbitrarily small constant δ > 0.

A very first naive approach to designing a somewhere-extractor (that we will
denote by NaiveSomeExt) is to apply a c-source extractor, for c ≥ 2, to every
subset of c blocks of a SHELA source. This immediately leads to a convSR-source.
However, the total number of output blocks satisfies L = Θ(�c) for c ≥ 2, where
� denotes the total number of blocks of the SHELA source. This leads to a much
worse efficiency blow-up for applications than what we aim to obtain, as detailed
earlier. Another problem of the naive construction is that, if we wish to minimize
the blowup of L with respect to � by setting c = 2, we run into problems of

3 We will show how to start from any public-coin 2-round WI proof system in the stan-
dard model which in turn means any non-interactive zero-knowledge proof system
in the common random string model [34].



How to Extract Useful Randomness from Unreliable Sources 347

explicitness. In fact, known explicit constructions of 2-source extractors require
sources with high min-entropy to achieve exponentially small error [12,18,46].
We also note that, besides leading to worse efficiency, using a c-source extractor
for c > 2 requires assuming that there are at least c > 2 honest blocks in the
SHELA source, which might not be reasonable in some scenarios.

In this work, we design a non-trivial somewhere-extractor SomeExt that
achieves our ideal goals put forth above. We begin by looking at the setting where
the min-entropy rate k/n of honest blocks in the SHELA source is a large enough
constant. In this case, if X ∈ {0, 1}n·� is a t-out-of-� SHELA source with honest
block min-entropy k = δn, then SomeExt(X) is ε-close to a T -out-of-L convSR-
source Y ∈ {0, 1}m·L with T = t − 1, L = � − 1, ε = 2−Ω(n), and output block
length m = Ω(n). The only thing missing is that, as previously discussed, we wish
to extract with similar parameters from SHELA sources whose honest blocks have
arbitrarily small constant min-entropy rate (i.e., k = δn for arbitrarily small con-
stant δ > 0). Notably, using a modified construction, we are able to transfer these
ideal parameters to the “arbitrary constant min-entropy rate” setting. The only
difference is that now L = O(�).

Somewhere-extraction of SHELA source vs. weak source. We have
already established that we can deterministically extract high-quality convSR-
sources from SHELA sources. However, an attentive reader might notice that
deterministic somewhere extraction is also possible from weak sources. In fact,
any strong seeded (k, ε)-extractor with seed length d yields a somewhere-
extractor with error ε, L = 2d total output blocks, and T = 1 uniform blocks for
weak sources with min-entropy at least k by considering a block for each possible
fixing of the seed. This naive construction of a convSR-source is actually crucial
in many constructions of multi-source extractors (we expand on this later in
this section). However, it has strong limitations. In particular, even if we use an
optimal strong seeded extractor, seed length lower bounds [61] imply that

L = Ω

(
1
ε2

)
. (1)

This means that if we require ε = 2−Ω(n), then L = 2Ω(n), which precludes any
efficient cryptographic application of the resulting convSR-source.

Given the above shortcoming, one might wonder whether significantly better
somewhere-extractors exist for weak sources. We dedicate part of our paper to
the study of this problem. It turns out that the answer to this question is largely
negative. In particular, a disperser-based lower bound shows that, similarly to
the naive construction above, every somewhere-extractor for weak sources with
error ε = 2−Ω(n) and output block length m = Ω(n) must have L = 2Ω(n) total
output blocks.

In our work, we derive a set of lower bounds that complement each other and
succeed in showing that somewhere-extractors for weak sources must perform
significantly worse than the analogous objects for SHELA sources over various
regimes of parameters. We are particularly interested in lower bounds on the total



348 D. Aggarwal et al.

number of blocks of the output convSR-source, as this dictates the computational
complexity blow-up suffered by a protocol when using this source. In the end,
we put forth the conjecture that the above lower bound (1) actually holds for
every somewhere-extractor (regardless of the output block length m), and we
make some progress towards proving it.

Randomized algorithms and amplification of success probability using
SHELA source vs. weak source. We remark that convSR-sources are well-
suited for simulation of randomized algorithms whose outputs can be efficiently
checked for correctness (e.g., searching for witnesses for the membership of some
string in an NP language, or approximation algorithms for NP languages). In
fact, one can simply run the algorithm using each block as its randomness. As a
result, one obtains a few candidate solutions, and can efficiently check if at least
one of them is correct. The success probability of the algorithm is thus amplified
by the number of good (i.e., uniform) blocks.

It is well-known and easy to see that, in the procedure above, we do not need
good blocks to be exactly uniformly distributed. Indeed, it is enough to rely
on the weaker guarantee that good blocks are sufficiently close to uniform in
statistical distance, say, 1/poly(n)-close, where n is some soundness parameter.
We call this weaker family of sources somewhere-amplifiable (SA) sources, and
denote the class of convex combinations of SA-sources as convSA-sources.

While weak sources can be used to efficiently produce convSA-sources, we
show that this comes at a heavy price: Roughly speaking, if one wants to gener-
ate enough, and long enough, good blocks for appropriate and efficient success
probability amplification, then the weak source needs to have very high min-
entropy. Therefore, in many reasonable regimes of parameters, one is unable to
extract suitable convSA-sources from weak sources, while one can extract high-
quality convSR-sources (a stronger notion) from SHELA sources in those regimes.
We refer to Sect. 6 for a more detailed discussion.

We conclude from the two discussions above that there is a fundamental sep-
aration between somewhere-extraction from SHELA and weak sources. Indeed,
we are able to efficiently extract convSR-sources with much higher quality from
a SHELA source than what we can obtain from a weak source.

Non-interactive witness indistinguishable proofs assuming public-coin
ZAPs and relying on public SHELA sources. In a proof system, a prover
proves to a verifier the veracity of some statement x ∈ L (where L is an NP-
language). A soundness property guarantees that it is unlikely that an honest
verifier accepts the proof of a false statement. When a proof system is non-
interactive any verifier is able to check the validity of the proof. Non-interactive
proofs are therefore publicly verifiable and they are very appealing since the
prover computes the proof once, while still it can be useful in many different
cases (i.e., with many different verifiers). Non-interactiveness is usually trivial
since a prover could just send a witness proving membership in the language. The
interesting case consists of offering some form of privacy for the secret (i.e., the
witness) of the prover. We will in particular consider witness indistinguishability
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[36] that requires that the proof hides which witness has been used by the prover
out of multiple witnesses. A special category of interactive proof systems is called
“public coin” and refers to the role of the verifier that sends random strings
only as messages. When there is only one message played by the verifier then
a 2-round witness indistinguishable proof system is referred as ZAP [34]. The
round of the verifier can be recycled among any polynomial number of proofs
givens by provers. Since public-coin ZAPs exist, a natural question is whether
the verifier can just be replaced by a sample from a high min-entropy source,
therefore obtaining a non-interactive WI proof under the same computational
assumptions of ZAPs and relying on the existence of SHELA sources. The answer
is unfortunately negative. Indeed, consider the ZAP of [34]. The message of the
prover consists of computing some non-interactive zero-knowledge (NIZK) proofs
in the common random string model. In general, NIZK proofs (e.g., [36]) are not
sound when the common random string is replaced by the output of high min-
entropy sources. In turn, when trying to make a generic public-coin ZAP relying
on a high min-entropy source non-interactive, soundness could be lost. Moreover,
the issue with soundness remains also in case of parallel repetition since for some
high min-entropy sources an accepting proof of a false statement can be produced
with probability 1.

On the positive side, equipped with our constructive results about obtaining
a convSR-source from a SHELA source, we show that assuming a public SHELA
source, non-interactive witness indistinguishable proofs exist by just using a
parallel repetition of any public-coin ZAP4.

Finally, we notice that Goyal and Goyal [41] construct a non-interactive
zero-knowledge argument of knowledge relying on any proof-of-stake (PoS)
blockchain. The construction of [41] requires the existence of non-interactive
witness-indistinguishable proof systems. If the proof-of-stake blockchain can be
used to implement a SHELA source (as discussed previously), then by plugging
our non-interactive witness-indistinguishable proof system in the construction
of [41] we obtain a non-interactive zero-knowledge argument of knowledge with
improved complexity assumptions using specific PoS blockchains.

Non-interactive commitments from one-way functions and SHELA
sources. In a commitment scheme, sender and receiver interact in a commit-
ment phase so that the (even malicious) sender can later on show only one
message consistent with such interaction, while the (even malicious) receiver has
no specific advantage in detecting the message committed by the sender. The
security property for the receiver is called “binding” while the security for the
sender is called “hiding”.

Non-interactive commitments guarantee that the sender has to work only once
to produce a commitment of a message, while this commitment can be used to
convince any receiver about the committed message. We focus on statistically

4 Notice that we are considering generic weak sources and it is unknown whether such
distributions can all be efficiently simulatable. Consequently we cannot obtain a
non-interactive zero knowledge proof.
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binding commitments where, except with negligible probability, there is a unique
message that is consistent with the transcript of the commitment phase, regardless
of the computational power of the (even malicious) sender. A commitment scheme
is “public coin” if the receiver sends only random strings.

Public-coin statistically binding commitment schemes in two rounds exist
under the minimal assumption of the existence of any one-way function [56]. A
natural question is whether, given any public-coin 2-round commitment scheme
from one-way functions, the receiver can just be replaced by a sample from a high
min-entropy source, therefore obtaining a non-interactive commitment scheme
relying on the existence of SHELA sources5. We show that the answer is in
general negative, by providing a variation of the construction of [56] where the
binding property breaks down when the first round is sampled from a specific
SHELA source. Moreover, parallel repetitions do not help to obtain binding.
The construction of [56] can become non-interactive using any SHELA source,
however in this last case there is a price to pay in communication complexity
since the size of the resulting non-interactive commitment scheme is equal to the
size of the SHELA source X.

The real good news come from using our tool: a convSR-source extracted
from a SHELA source (without adding any computational assumption). Indeed,
in this case we can get a non-interactive statistically binding commitment scheme
just by running a parallel repetition of any public-coin 2-round statistically bind-
ing commitment scheme. When applied to the scheme of [56], we can get better
communication complexity compared to the previously described approach that
consists of using a SHELA source directly. Indeed, consider a 2-round statisti-
cally binding commitment scheme where the first round of the receiver (in the
commitment phase) consists of λ bits, and let us assume that in each high min-
entropy honest block of a 2-out-of-� SHELA there are k bits of min-entropy,
where k � λ. If Y = SomeExt(X) ∈ {0, 1}m·L for L = � − 1 and we set m = λ
(by truncation), then |Y | = m · L � n · � = |X|. Therefore, with the parameters
discussed above, if we instantiate the scheme of [56] using X directly, the result-
ing non-interactive commitment scheme has significantly worse communication
complexity than the one built from the convSR-source.

Additional contributions. In the full version of this work [1], we also consider
somewhere-extraction from an online variant of SHELA sources.

1.2 Related Work

Applications of convSR-sources in pseudorandomness. We would like to
point out that the convSR-sources are also very useful in a context different than
those already presented. Indeed, convSR-sources are key intermediate objects in
several constructions of multi-source and non-malleable randomness extractors
for weak sources. A central approach in such constructions is to reduce the task of
extracting a uniform string from independent weak sources to that of extracting

5 We recall that obviously a SHELA source is also a high min-entropy source.
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such a string from one or more independent convSR-sources potentially satisfying
a few additional properties, sometimes coupled with additional independent weak
sources or small uniform seeds.

The connection between multi-source extraction and convSR-sources has been
known since they were first defined [67]. convSR-sources have also been used in
early constructions of seeded extractors [55].

Barak et al. [2] and Raz [64] showed how to convert two independent weak
sources into an convSR-source with few blocks. This reduction was then used
directly to obtain 3- and 4-source extractors with constant error. Such an app-
roach has also proved useful in the construction of dispersers [2,3].

To obtain extractors for a constant number of sources with lower error and
min-entropy requirement nΩ(1), Rao [63] transforms independent input sources
into several independent aligned convSR-sources, i.e., there is at least one posi-
tion at which all convSR-sources have a uniform block. If the number of blocks
in each convSR-source is not too large, then an iterative procedure succeeds in
extracting a uniform string from such independent aligned convSR-sources with
small error. Li [48] also used a similar approach with aligned convSR-sources to
obtain better 3-source extractors.

An important step in many recent constructions of 2- and 3-source extrac-
tors [7,18,50–53] consists in generating convSR-sources with many “good” blocks
(i.e., blocks close to uniform) which additionally satisfy a notion of w-wise inde-
pendence for an appropriate parameter w: Every set of w good blocks is also close
to jointly uniformly distributed. convSR-sources are also used in other recent con-
structions of multi-source extractors [22,23].

The usefulness of convSR-sources extends to more recent notions of random-
ness extraction. In fact, convSR-sources have been used in the construction of
seedless non-malleable extractors [17] for weak sources, which are closely con-
nected to non-malleable codes.

The ubiquity of convSR-sources (generated from weak sources) in extractor
constructions provides one more compelling reason for our study of lower bounds
for deterministic somewhere-extraction from weak sources.

Finally, we should mention that, because of the close connection between
convSR-sources and randomness extraction from general weak sources, several
works other than those already mentioned have focused directly on designing
randomness extractors for the restricted class of convSR-sources [29,31–33,73].
Such extractors are usually called mergers.

Deterministic randomness extraction from restricted classes of sources.
Our work is also related to the fundamental and well-studied problem of determin-
istic randomness extraction. Given the impossibility of deterministic extraction
from general weak sources, the following natural question arises: Under which con-
ditions is deterministic randomness extraction possible from imperfect sources of
randomness?

Several works (some even predating the definition of weak sources [20])
have studied this question from various perspectives. Some works have consid-
ered deterministic randomness extraction from streams of bits generated i.i.d.
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with unknown bias [35,57], or according to a Markov chain [11]. In a parallel line
of research, settings where some input bits may be (adversarially or not) fixed,
while the remaining ones are random, have also been considered [8,19,24,27,39,
45,54,60,62,69]. Other classes of sources considered in the context of determinis-
tic extraction include sources with efficient sampling procedures [25,68] or sam-
pled in small space [44], sources defined over subspaces [13,14,26,38,49,51,62,72],
sources determined by zero sets of polynomials [30,47], sources sampled by Turing
machines [70] or small circuits [71], and sets of independent weak sources (already
discussed in this section). Some works have constructed such extractors for sub-
classes of Santha-Vazirani sources [4,5], which are known not to admit determinis-
tic extraction in general. We note that Bentov, Gabizon, and Zuckerman [9] stud-
ied deterministic randomness extraction from the blockchain of Bitcoin, which has
some connections to our model. However, their focus is on standard deterministic
extraction, instead of somewhere-extraction. They show that standard determin-
istic extraction is impossible against an adversary with an unbounded budget, and
then study the same problem against a “budget-constrained” adversary.

Although we are not dealing with standard randomness extraction like most
of the works above, we present a result of a similar flavor: The restricted (and
practically motivated) class of SHELA sources allows for deterministic some-
where-extraction with much better parameters than the class of weak sources.

Randomness extraction from adversarial sources. Subsequently to the
announcement of our work, the problem of extracting randomness from adver-
sarial sources (of which SHELA sources are an example) has received significant
attention.

Chattopadhyay, Goodman, Goyal, and Li [16] study randomness extraction
from an adversarial source model similar to SHELA sources. However, there are
important distinctions between the two models, which we discuss next. In both
cases, a source can be divided into blocks, some of which are independently gen-
erated and contain appropriate min-entropy, while other blocks are adversarially
controlled. However, in SHELA sources the adversarial block is allowed to depend
arbitrarily on all previous blocks (but not on subsequent blocks), while in [16] is
only allowed to depend on at most d other arbitrary blocks for a small “locality
parameter” d. Deterministic randomness extraction turns out to be possible in
the adversarial model from [16], while it is impossible in the SHELA model and
we instead study deterministic somewhere-extraction and its applications. Based
on this, the results in these two models are incomparable.

Dodis, Vaikuntanathan, and Wichs [28] study seeded randomness extraction
from so-called extractor-dependent sources. This adversarial model differs signif-
icantly from SHELA sources. At a very high level, a source is sampled by an
adversary that is first allowed to query the extractor on different inputs with the
same seed, with the condition that the source contains enough min-entropy and
other sensible constraints to make the problem non-trivial. Extractor-dependent
sources aim to capture scenarios where a random seed may be re-used several
times.
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1.3 Technical Overview on Deterministic Somewhere-Extraction
from SHELA and Weak Sources

Impossibility of deterministic extraction from SHELA sources. We
show that if at most a γ-fraction of the � blocks in a SHELA source are hon-
est, where γ ∈ [0, 1) is an arbitrary constant, and � is a large enough constant
depending on γ, then deterministic randomness extraction is impossible from
this class of SHELA sources. Notably, this impossibility result holds even if we
allow the honest blocks to be uniformly distributed, instead of only requiring
them to have enough min-entropy.

This result is obtained by reducing the problem of deterministic extrac-
tion from SHELA sources to the problem of deterministic extraction from so-
called resettable sources, introduced in [9]. In the same work, the latter problem
has been shown to be closely related to deterministic extraction from Santha-
Vazirani (SV) sources [65], which is widely known to be an impossible task. For
more details we refer to [1].

Constructions of somewhere-extractors for SHELA sources. Our con-
structions of somewhere-extractors for SHELA sources are mainly based on
the following trick, which we illustrate for a SHELA source with three blocks
B1, B2, B3, two of which are honest. If we applied the naive somewhere-extractor
previously discussed with a 2-source extractor, we would obtain a convSR-source
with three rows. Recall that one of our main goals is to reduce the total number
of blocks in the resulting convSR-source as much as possible due to efficiency
concerns. With this in mind, instead of applying the naive somewhere-extractor,
we can notice that there are two cases:

– B3 is honest. Then, B3 and (B1, B2) are two independent weak sources. This
means we can extract randomness from the two sources (B1, B2) and B3;

– B3 is not honest. Then, B1 and B2 are honest, and hence are independent
weak sources. In this case, we can extract randomness from the two sources
B1 and B2.

For the sake of this example, let Ext1 and Ext2 be two-source extractors, and
compute Ext1((B1, B2), B3) and Ext2(B1, B2).6 The key observation, stemming
from the two cases above, is that we are guaranteed that at least one of the two
outputs is close to uniformly distributed. As a result, we obtain a convSR-source
with two rows instead of three.

As already mentioned, we design explicit somewhere-extractors in two main
settings. Our first, simpler, somewhere-extractor can be applied whenever the
underlying SHELA source has t ≥ 2 honest n-bit blocks with min-entropy k =
(1−γ)n for a small enough constant γ > 0. The construction is a generalization of

6 In reality, we are able to use strong seeded extractors (for which we know much
better explicit constructions) in place of two-source extractors. This is due to the
disproportion in the size of the sources. In fact, the size of one of the sources given
to the extractor grows linearly with the total number of blocks.
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the reasoning we presented for three blocks above. It proceeds by iteratively using
a strong seeded extractor to extract randomness from ever-growing sequences of
blocks (using another block as a seed). A bit more precisely, if X ∈ {0, 1}n·�

is a SHELA source and X = (B1, B2, . . . , B�), then for every i = 2, 3, . . . , � we
consider

B′
i = Exti((B1, . . . , Bi−1), Bi), (2)

where (B1, . . . , Bi−1) acts as the input weak source, Bi acts as the seed, and
Exti is an appropriate strong seeded extractor. Then, we set SomeExt(X) =
(B′

2, . . . , B
′
�). The first problem we run into is that in usual applications of seeded

extractors, the seed is uniformly distributed. This is not the case here, since,
even if Bi is an honest block, it is only guaranteed to have min-entropy (1−γ)n.
However, it is not hard to show, using the strongness of the extractor, that
using a source with high min-entropy as the seed is sufficient. Another issue we
encounter is that we are reutilizing many SHELA blocks when computing output
blocks via (2). This appears to be at odds with the requirement that good output
blocks should be close (in statistical distance) to independent and uniformly
distributed. A careful conditioning argument, again exploiting the strongness
of the extractor, shows that independence and uniformity are actually attained
with small error. In fact, whenever Bi is honest and there is an honest block
in (B1, . . . , Bi−1), we succeed in generating (with small error) a new good block
of the output convSR-source. Instantiating this construction with the nearly-
optimal GUV strong seeded extractor [43] and assuming the SHELA source
X ∈ {0, 1}n·� has t honest blocks, we output a distribution Y ∈ {0, 1}m·L that is
(t · 2−Ω(n))-close to a T -out-of-L convSR-source with m = Ω(n). Moreover, from
the discussion above it follows that L = � − 1 and T = t − 1.

In the second setting, we consider deterministic somewhere-extractors for
SHELA sources with honest blocks having arbitrary constant min-entropy rate
k/n. In other words, we allow the min-entropy requirement k of honest blocks
to satisfy k = δn for arbitrarily small δ > 0. Notably, in this significantly harder
setting we are able to obtain essentially the same parameters as the somewhere-
extractor for the high min-entropy setting detailed above. In fact, all parameters
remain unchanged, except that now we cannot guarantee that L = � − 1, and
instead have the (still highly desirable) relationship L = O(�). The main barrier
towards making the previous construction work in this setting is that if hon-
est blocks do not have high min-entropy, they can no longer be used as seeds
for strong seeded extractors. This issue is surpassed by using the somewhere-
condenser for weak sources from [2,64]. Intuitively, a somewhere-condenser is to
a randomness condenser as a deterministic somewhere-extractor is to an extrac-
tor. On input a weak source with low min-entropy, the somewhere-condenser
SomeCond outputs (with small error) a constant number of (sufficiently long)
blocks with the guarantee that at least one block has very high min-entropy
rate. Because the focus is not on extraction of perfect randomness, somewhere-
condensers for weak sources are allowed to have much better parameters than
somewhere-extractors for the same class of sources. We modify the construc-
tion for honest blocks with high min-entropy above by adding a first step of
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somewhere-condensation for each block of the input SHELA source. We show
that our somewhere-extractors designed for SHELA sources can also be applied
to online SHELA sources as is to extract convSR-sources (for full definitions and
discussion please see [1]).

Lower bounds for deterministic somewhere-extraction from weak
sources. We consider the natural problem of understanding the performance of
somewhere-extractors for weak sources, and derive a set of lower bounds which
show that, particularly for parameters relevant to cryptographic applications,
every somewhere-extractor (regardless of efficiency) for weak sources must have
significantly worse parameters than the somewhere-extractors we obtain for the
class of SHELA sources. As previously discussed, these negative results for weak
sources are strong enough that they preclude the use of convSR-sources generated
from weak sources in efficient cryptographic protocols.

Suppose SomeExt : {0, 1}ñ → {0, 1}m·L is a somewhere-extractor for (ñ, k)-
sources7. We begin by noting that a simple reasoning analogous to the proof of
impossibility of deterministic extraction from weak sources immediately shows
that L = Ω(ñ − k). Our first non-trivial lower bound is obtained by relat-
ing a somewhere-extractor to a disperser (for weak sources). Roughly speak-
ing, a disperser is a fundamental pseudorandom object that transforms a weak
source and a short uniform seed into an output distribution that hits every
appropriately large subset of the output space with non-zero probability. Opti-
mal seed length lower bounds are known for dispersers [61]. We show that if
SomeExt : {0, 1}ñ → {0, 1}m·L is a somewhere-extractor for (ñ, k)-sources with
error ε, then the function G : {0, 1}ñ × [L] → {0, 1}m given by

G(x, i) = SomeExt(X)i

is a disperser with seed length log L and error ε. This immediately leads to a
lower bound on the number L of output blocks of SomeExt (excluding a minor
technicality that does not affect the quality of the lower bound),

L = Ω

(
ñ − k

max(ε, 2−m)

)
. (3)

This means, as discussed in more detail in Sect. 5, weak sources behave exponen-
tially worse than comparable SHELA sources for somewhere-extraction in the
linear output block length regime.

Note that the two lower bounds in the previous paragraph do not give any-
thing when k ≈ ñ and m is small. This naturally leads us to consider lower
bounds for L in an extreme 1-bit block setting with k = ñ − 1 and m = 1.
Although we do not obtain a lower bound for extraction of convSR-sources in
this extreme regime, we are able to prove a non-trivial lower bound that scales
with the error for the harder, but related, task of extracting an SR-source from
a weak source (not a convex combination of SR-sources as before). Note that,
7 The set of (ñ, k)-sources consists of all weak sources over {0, 1}ñ with min-entropy

at least k. We use ñ to avoid confusion with the block length of SHELA sources.
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in particular, the naive somewhere-extractor obtained by enumerating the seed
of a strong extractor satisfies this property. To be precise, we show that in this
setting we must have

L = Ω

(
log

(
1

max(ε, 2−k)

))
. (4)

The lower bound in (4) is obtained by an adaptive version of the basic argument
for the impossibility of deterministic extraction from weak sources. Given a can-
didate function F : {0, 1}ñ → {0, 1}L, our goal is to show the existence of a weak
source X� with enough min-entropy such that every bit F (X�)i is sufficiently
biased. We begin by setting X�

0 to be uniformly distributed over {0, 1}ñ, and
analyze its performance w.r.t. F . If Fi(X�

0 ) is the first bit close to uniform, we
remove an appropriate set of elements from the support of X�

0 to obtain X�
1

such that Fi(X�) biased enough. Then, we repeat the reasoning with the new
source X�

1 and so on, until every bit is biased8. Then, L must be large enough
to ensure the outcome X� of this process has too small support (and hence does
not satisfy the min-entropy requirement of F ), which yields the lower bound.

With these bounds in mind, it is natural to consider whether arguments
that yield lower bounds of this type on the seed length of extractors, more
precisely the granularity argument of Nisan and Zuckerman [58, Theorem 3] and
the techniques due to Radhakrishnan and Ta-Shma [61, Section 2.2], could be
extended to the setting of somewhere-extraction. Unfortunately, such arguments
crucially rely on the ability of picking a seed at random: There, one is only
worried about showing that the bias is large enough on average, while we must
show that the bias is large enough for every choice of the seed9.

1.4 Technical Overview on Non-Interactive Proof Systems
and Commitments from Public SHELA Sources

Non-interactive (publicly verifiable) witness indistinguishable proof
system. We will now describe how to construct a non-interactive (and there-
fore publicly verifiable) Witness Indistinguishable (WI) proof system Πpv from
a public SHELA source X and starting with the existence of a public-coin ZAP
Π. Πpv works as follows: The prover of Πpv receives X and runs the somewhere-
extractor SomeExt on X to obtain (R1, . . . , RL). Then, the prover on input
the witness w for the statement x computes a second-round πi from Π using
Ri for i = 1, . . . , L. The verifier of Πpv, having access to X, also computes
(R1, . . . , RL) = SomeExt(X), and accepts the proof only if all pairs (Ri, πi) are
accepting by the verifier of Π w.r.t. the statement x. Observe that WI of Π is
preserved under parallel composition and holds even when the first round of Π is
chosen by a malicious verifier. Therefore, Πpv also enjoys the WI property. The

8 When biasing the next coordinates, we have to be careful not to ‘spoil’ biases of
previous coordinates. This results in the log factor in the bound.

9 By seed we mean i in Fi(X
�).
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soundness of Πpv is based on the observation that T blocks of (R1, . . . , RL)
are negligibly close to a uniform distribution over {0, 1}m. Denote them by
RI1 , . . . , RIT . Then, the soundness of Π ensures that a malicious prover could
not cheat when the second round of Π is computed w.r.t. RI1 , . . . , RIT .

As a result, using known constructions of public-coin ZAPs, we are able to
construct a non-interactive WI proof system from trapdoor permutations that
requires as a set-up a SHELA source only. Notice that a SHELA source is a CRS
that can be corrupted (in a natural, structured manner) by an unbounded adver-
sary. Still, we assume that the adversarial verifier can run only in polynomial time
to distinguish the witness, even though he does not have such restriction when
affecting the sample from the public SHELA source. Previous constructions of non-
interactive WI proof systems either require a common random string as set-up, or
were based on specific number-theoretic hardness assumptions in bilinear groups
[37,42], or on indistinguishability obfuscation and one-way permutations [10].

From another point of view, one can see our result as a Non-Interactive (NI)
WI proof system where the soundness and the WI property hold even when the
set-up phase is partially generated by the adversary. We note that the work of [6]
investigates if soundness and WI of a NIWI proof system hold even when the
adversary takes complete control of the set-up phase. They achieve a positive
result relying on some specific number-theoretic assumption in bilinear groups.
Instead, our NIWI proof system can be instantiated from trapdoor permutations
and the adversary has only a partial control over the set-up.

Notice that [15] studies cryptographic protocols with simulatable security by
considering a simulatable CRS drawn from a high min-entropy distribution. In
this work we do not assume that public sources of randomness are simulatable
and we do not investigate simulatable security. Our CRS is not a generic min-
entropy string but instead corresponds to a structured min-entropy source that
is partially controlled by an unbounded adversary.

Given the above construction of a non-interactive WI proof system Πpv, one
could argue that a convSA-source suffices for constructing Πpv. Recall that a
convSA-source is a convex combination of T -out-of-L SA-sources, which consist
of L blocks, T of which are independent and 1

poly(n) -close to uniform in statis-
tical distance, where n is some relevant security parameter. This is because the
soundness of the protocol can be amplified by using the T “good” blocks, which
correspond to independent parallel repetitions of the underlying protocol Π.

In order to adequately compare the performance of the protocol under
convSA-extraction from weak sources and convSR-extraction from SHELA
sources, we compare a t-out-of-� SHELA source X ∈ {0, 1}n·� with honest blocks
having linear min-entropy k′ with an arbitrary weak (ñ = n · �, k = k′ · t)-source
X̃. We are able to show that convSR-sources extracted from X are much better
suited for applications than convSA-sources generated from X̃ in two aspects:

1. Efficiency: The efficiency of Πpv depends on L. It is not hard to see that
every convSA-source extractor for weak sources X̃ must have Ω(ñ) = Ω(n · �)
total output blocks (even if we only require constant error). On the other
hand, we can extract convSR-sources from X with only O(�) blocks.
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2. Security: Let us assume that Π requires a first round of m = Ω(k′) bits.
Then, we show that every efficient, low-error convSA-source extractor for
weak sources outputs at most T = O(k/m) = O(k′ · t/m) good blocks of
length m. As a result, if t is constant, it follows that such an extractor only
outputs T = O(1) good blocks. This is not enough to successfully amplify the
soundness of the protocol. Finally, we note that if we build our Πpv starting
from a convSR-source extracted from a t-out-of-� SHELA source with constant
t, the analysis of soundness described in this subsection holds, and therefore
Πpv is sound.

Improving the efficiency of [66]. We note that the work of [66] constructs
a publicly verifiable proof system from any blockchain under some assump-
tions on the min-entropy of honestly generated blocks. Notably, under the same
assumptions the blockchain can be used to implement also a SHELA source.
In [66], the authors construct a publicly verifiable proof system by applying the
naive somewhere-extractor NaiveSomeExt (that we discussed earlier) to extract a
convSR-source from the blockchain. Therefore our somewhere-extractor SomeExt
(instead of NaiveSomeExt) could be used in their work to immediately improve
the efficiency of their proof system. More details are provided in [1].

Non-interactive statistically binding commitments. We introduce now a
construction of non-interactive statistically binding commitments from a public
SHELA source relying on one-way functions. This is achieved by making use of
any two-round public-coin commitment scheme Πcom from one-way functions.

First of all, we remark that one can not simply replace the first round of Πcom

with a sample from a source with linear min-entropy (say, min-entropy 0.5n).
Indeed, start from Πcom and consider a scheme Π ′

com where: (a) the random
string played as first round of Πcom must be twice in length, and (b) the sender
ignores the first half of the first round and continues as in Πcom using the second
half. It is straightforward to see that Π ′

com is a 2-round public-coin statistically
binding commitment scheme from any one-way functions. If we replace the first
round of Π ′

com with the output of a high min-entropy source we might have that
the entire min-entropy is in the first half of the first round and is therefore wasted
completely. The malicious sender could therefore violate binding since it would
end up running Πcom on input a first round with zero min-entropy! Obviously,
in this case parallel repetition does not help.

We now proceed to describe how our scheme Πcompv works starting with
any 2-round public-coin statistically binding commitment scheme (including the
above Π ′

com). Moreover, Πcompv can be run with efficient parameters because of
the use of SomeExt.

Our commitment scheme Πcompv works as follows: First, the sender runs
the somewhere-extractor SomeExt on the public SHELA source X, obtaining
SomeExt(X) = (R1, . . . , RL). Then, the sender on input the message m and
Ri (used as the receiver’s first round) computes a commitment comi and the
opening information deci using the sender of Πcom, for i = 1, . . . , L. In the
opening phase, the receiver on input dec1, . . . , decL having access to X computes
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(R1, . . . , RL) = SomeExt(X), and outputs the message m only if it holds that
for all i = 1, . . . , L the message committed in comi is m. Hiding of our scheme
holds from the observation that hiding is preserved under parallel composition
and when the first round of Πcom is chosen by a malicious receiver. The binding
of Πcompv is based on the observation that at least T blocks RI1 , . . . , RIT are
negligibly close to a uniform distribution over {0, 1}m. This implies that there
are at least T commitments computed w.r.t. a good block RIj that is statistically
close to a first round sent by a receiver of Πcom. Therefore, from the statistically
binding of Πcom it follows that a malicious sender could not cheat when the
commitment is computed w.r.t. RI1 , . . . , RIT .

1.5 Open Questions

We present some interesting directions for future research:

– Prove (or disprove) Conjecture 12.
– Given any SHELA or convSR source, we can define its rate as number of

good10 blocks divided by total number of blocks. Our constructions from
Sect. 4 transform SHELA sources with rate t/� into convSR-sources with rate
t−1
�−1 ≤ t

� . We conjecture that the rate of the output convSR-source cannot be
larger than t/�.

– Find good bounds on the number of output blocks of convSA-source extractors
for weak sources.

1.6 Organization of the Paper

We introduce relevant notation and definitions in Sect. 2. SHELA sources are
defined in Sect. 3, and deterministic somewhere-extractors are presented in
Sect. 4. Lower bounds for somewhere-extraction are studied in Sect. 5, and the
limits of SA-source extraction are considered in Sect. 6. Detailed arguments,
along with standard definitions and lemmas, have been deferred to the full
version [1].

2 Preliminaries and Definitions

2.1 Notation

Sets are usually denoted by calligraphic letters such as S and I. Random variables
are usually denoted by uppercase letters such as X, Y , and Z. We may identify a
randomvariableX with its distribution.The support of a distributionX is denoted
by supp(X). We denote the uniform distribution over {0, 1}m by Um. We may write
X ∼ Y to denote that X has the same distribution as Y . All logarithms log are
taken to base 2. The Shannon entropy of a distribution X is denoted by H(X),
and we denote the binary entropy function by h. The notation poly(n) denotes an
arbitrary polynomial in n. We denote a negligible function of a parameter n by
negl(n).
10 For a SHELA source, a good blocks correspond to honest blocks, while they corre-

spond to jointly uniform blocks in convSR-sources.
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2.2 Somewhere-Random Sources and Somewhere-Extractors

In this section, we define SR- and convSR-sources, along with the notion of a
deterministic somewhere-extractor and a basic result.

Definition 1 (Somewhere-random source). A distribution X = (X1, . . . ,
XL) over {0, 1}m·L is said to be a (T,L,m)-somewhere-random source, SR-
source in short, if there exist indices i1 < i2 < · · · < iT such that the tuple
(Xi1 ,Xi2 , . . . , XiT ) is uniformly distributed over {0, 1}m·T . We denote the set of
all (T,L,m)-somewhere-random sources by SRT,L,m, and the set of all convex
combinations of sources in SRT,L,m by convSRT,L,m.

Definition 2 (Somewhere-extractor). Given a set of sources F over {0, 1}ñ,
a function SomeExt : {0, 1}ñ → {0, 1}m·L is said to be a (T,L, ε)-somewhere-
extractor for F if for every X ∈ F there exists Y ∈ convSRT,L,m such that

SomeExt(X) ≈ε Y.

A simple construction shows that strong (k, ε)-extractors imply the existence
of deterministic somewhere-extractors for the class of general (n, k)-sources with
the same error ε.

Lemma 3. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a strong (k, ε)-extractor, and
set {0, 1}d = {s1, s2, . . . , s2d}. Given x ∈ {0, 1}n, define SomeExt(x) : {0, 1}n →
{0, 1}m·2d as

SomeExt(x) = (Ext(x, s1),Ext(x, s2), . . . ,Ext(x, s2d)).

Then, SomeExt is a (1, 2d, ε)-somewhere-extractor for the class of (n, k)-sources.

The construction from Lemma 3 actually guarantees that a very large fraction
of blocks of Y = SomeExt(X) will be close to uniform over {0, 1}m, provided X is
an (n, k)-source. However, there is no guarantee that any pair of blocks (Yi1 , Yi2)
will be close to uniformly distributed over {0, 1}2m, as we cannot ensure that
such blocks are close to being independent. Therefore, we only know that Y is
ε-close to a (1, 2d,m)-somewhere-random source.

2.3 Somewhere-Condensers

In this section, we introduce somewhere-condensers and related notions.

Definition 4 (Somewhere-entropic source). A distribution X = (X1, . . . ,
XL) over {0, 1}m·L is said to be a (T,L,m, k)-somewhere-entropic source if there
exist indices i1 < i2 < · · · < iT such that the random variables Xi1 ,Xi2 , . . . , XiT

are independently distributed and satisfy H∞(Xij ) ≥ k for all j. We denote the
set of all (T,L, n, k)-somewhere-entropic sources by SET,L,n,k, and the set of all
convex combinations of sources in SET,L,n,k by convSET,L,n,k.
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Definition 5 (Somewhere-condenser). A function SomeCond : {0, 1}n →
{0, 1}m·� is said to be a (k, k′, L, ε)-somewhere condenser if for every (n, k)-
source X there exists Y ∈ convSE1,L,m,k′ such that

SomeCond(X) ≈ε Y.

There exist explicit constructions of somewhere-condensers with a constant
number of output blocks, linear output block length, and exponentially small
error for arbitrarily low linear min-entropy.

Lemma 6 ([64]). For all constants δ, δ′ > 0 there exist constants b, β, ρ > 0 such
that for large enough n there exists an explicit (k, k′, b, ε)-somewhere condenser
SomeCond : {0, 1}n → {0, 1}m·b with k = δn, m = βn, k′ = (1 − δ′)m, and
ε = 2−ρm.

Remark 1. The version of Lemma 6 presented in [64] is specialized for δ′ = δ.
However, inspection of [64, Lemmas 4.2 and 4.3] shows that the construction
works for any constant δ′ > 0, as long as we allow the constants �, β, ρ to depend
simultaneously on δ and δ′. This observation is similar to the remark in [2] after
Theorem 5.2.

3 SHELA Sources

In this section, we give a formal definition of Somewhere Honest Entropic
Look Ahead (SHELA) sources, and present explicit constructions of somewhere-
extractors with good parameters for this class of sources.

Definition 7 (SHELA source). A distribution X ∈ {0, 1}n·� is said to be an
(n, k, t, �)-SHELA source if there exist random variables 1 ≤ I1 < I2 < · · · < It ≤
� with arbitrary joint distribution, t independent (n, k)-sources Z1, Z2, . . . , Zt,
and a (possibly randomized) adversary A such that X is generated as follows:

1. Sample (i1, i2, . . . , it) ← (I1, I2, . . . , It);
2. For each j ∈ [t], set Bij ← Zj;
3. For each i ∈ [�] \ {i1, . . . , it}, A sets Bi = A(B1, . . . , Bi−1, i1, . . . , it);
4. Set X = (B1, B2, . . . , B�).

We denote the set of all such SHELA sources by SHELAn,k,t,�.

A precise definition of online SHELA sources discussed in Sect. 1, along with
associated notions and results on deterministic somewhere-extraction, can be
found in [1].

4 Deterministic Somewhere-Extractors for SHELA
Sources

In this section, we construct deterministic somewhere-extractors for regular
SHELA sources.
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4.1 Honest Blocks with High Min-Entropy

In this section, we consider the case where each honest block in a SHELA source
has min-entropy (1−γ)n for some sufficiently small constant β > 0. The following
result states that an explicit somewhere-extractor with exponentially small error
and linear output block length exists for such SHELA sources. Notably, it is also
the case that if the number of honest input blocks is t and the total number of
input blocks is �, then the number of uniform output blocks is T = t−1 and the
number of total output blocks is L = � − 1.

Theorem 8. There exists a small enough constant γ > 0 such that for n large
enough and 2 ≤ t ≤ � ≤ poly(n) there exists an explicit (t−1, �−1, ε′)-somewhere
extractor SomeExt : {0, 1}n·� → {0, 1}m·(�−1) for SHELAn,k′,t,� with k′ = (1−γ)n,
m = (1−7γ)n

3 , and ε′ = 2(t − 1) · 2−γn.

The construction we use to prove Theorem 8 makes use of the following
objects: For i ∈ {2, . . . , �}, let Exti : {0, 1}n·(i−1) × {0, 1}n → {0, 1}m be an
average-case strong seeded (k, ε)-extractor with k = 2k′/3, k′ = (1 − γ)n,
m = (1−7γ)n

3 and ε = 2−2γn for a small enough constant γ > 0. These can
be obtained by using the explicit GUV extractor [43] with appropriate param-
eters. The instantiation is detailed in [1]. We are now ready to describe our
construction of the somewhere-extractor SomeExt : {0, 1}n·� → {0, 1}m·(�−1)

for X ∈ SHELAn,k,t,�. First, write X = (B1, B2, . . . , B�). Then, the output
SomeExt(X) can be written as SomeExt(X) = (B′

2, B
′
3, . . . , B

′
�), where each B′

i

is obtained as

B′
i = Exti((B1, B2, . . . , Bi−1), Bi) ∈ {0, 1}m. (5)

4.2 Honest Blocks with Low Linear Min-Entropy

In this section, we construct somewhere-extractors for SHELA sources that have
honest blocks with min-entropy δn for some arbitrarily small constant δ > 0. We
show that there is an explicit somewhere-extractor for such SHELA sources with
exponentially small error and linear output block length. Moreover, if the number
of input honest and total blocks are t and �, respectively, then the number of
output uniform and total blocks are T = t − 1 and L = O(�), respectively.

Theorem 9. For every constant δ > 0 there exist constants a1, a2, a3 > 0 such
that for n large enough and all 2 ≤ t ≤ � ≤ poly(n) there exists an explicit
(T,L, ε′)-somewhere extractor SomeExt : {0, 1}n·� → {0, 1}m·L for SHELAn,k′,t,�
with k′ = δn, m = a1 · n, ε′ = 2(t − 1)2−a2·n, T = t − 1, and L = a3 · �.

We now turn to a precise description of our construction. Fix a con-
stant δ ∈ (0, 1) and consider the (δn, (1 − γ)n′, b, 2−ρn′

)-somewhere-condenser
SomeCond : {0, 1}n → {0, 1}b·n′

from Lemma 6, where γ > 0 is a small constant
to be determined, n′ ≥ βn, and b, β, and ρ depend only on δ and γ. For each
i = 2, . . . , �, consider also the average-case strong (k, ε)-extractor

Exti : {0, 1}b·n′(i−1) × {0, 1}n′ → {0, 1}m
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with ε = 2−2γn′
, k = 2(1−3γ)n′

3 , and m = (1−3γ)n′

3 . These extractors can be
instantiated using the strong GUV extractor [43] with appropriate parameters.

We are now ready to define SomeExt(X) for X = (B1, . . . , B�) ∈ SHELAn,k′,t,�.
We write

SomeCond(Bi) = (Bi1, . . . , Bib) ∈ {0, 1}n′·b.

Then, we have
SomeExt(X) = (B′

ij)i∈[�],j∈[b] ∈ {0, 1}m·L

for B′
ij defined as

B′
ij = Exti((Bi′j′)i′<i,j′∈[b], Bij) ∈ {0, 1}m. (6)

5 Lower Bounds for Deterministic Somewhere-Extraction
from Weak Sources

In this section, we study lower bounds for somewhere-extractors that work for the
general class of weak (ñ, k)-sources (we use ñ to avoid confusion with the block
length n of a SHELA source). Here, we are mostly interested in lower bounds
on the number of output blocks generated by such somewhere-extractors with
respect to the length ñ of a source, the length m of an output block, and the
error ε of the somewhere-extractor.

The only known construction of a somewhere-extractor for general (ñ, k)-
sources described in Lemma 3 requires 2d blocks, where d is the seed length
of the underlying strong extractor/non-malleable extractor. As stated in [1], it
holds that d ≥ log(ñ − k) + 2 log(1/ε) + O(1) for every extractor, and so the
somewhere-random source output by the somewhere-extractor from Lemma 3
has

L = Ω

(
ñ − k

ε2

)

blocks. We remark that a probabilistic argument with a random function yields
somewhere-extraction with the same number of output blocks.

The discussion in the previous paragraph leads to the following natural ques-
tions: Is it possible to do better than Lemma 3 for (ñ, k)-sources? In particular,
is it possible to obtain a number of output blocks comparable to that obtained
from SHELA sources?

We present some results that aim to answer this question in several parameter
regimes. The first result comes from the observation that the basic argument for
impossibility of deterministic extraction yields a non-trivial lower bound on the
number of output blocks whenever the min-entropy requirement k is not very
large.

Theorem 10. Suppose F : {0, 1}ñ → {0, 1}m·L is a (1, L, ε)-somewhere extrac-
tor for (ñ, k)-sources with ε ≤ 1−2−c for some 1 ≤ c ≤ m (i.e., ε is not trivial).
Then, it holds that

L ≥ ñ − k

c
.
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The lower bound from Theorem 10 is already enough to yield a separation
between somewhere-extraction of SHELA and comparable (ñ, k)-sources when-
ever the min-entropy requirement k is not extremely large. Consider a SHELA
source with constant entropy rate and � blocks, each of length n = ñ/� (so that
the total length of the source is ñ). The constructions from Theorems 8 and 9
applied to the SHELA source lead to convSR-sources with L = O(�) blocks
with small error and large output block length if honest blocks have some con-
stant entropy rate. In particular, L does not depend directly on the input block
length n. On the other hand, the lower bound from Theorem 10 forces that
L = Ω(ñ − k) = Ω(n · �) for convSR-sources extracted from (ñ, k)-sources, even
with error ε = 1/2 (assuming k/ñ is constant).

The second result is a disperser-based lower bound on the number of out-
put blocks L. This bound is considerably stronger than the one in Theorem 10
whenever the output block length m is not very small and the error ε is small.

Theorem 11. SupposeF : {0, 1}ñ → {0, 1}m·L is a (1, L, ε)-somewhere extractor
for (ñ, k)-sources with ε ≤ 1/2 and L ≤ (1−max(ε,2−m))2m

2 . Then, it holds that

L = Ω

(
ñ − k

max(ε, 2−m)

)
.

Referring again to the comparison between SHELA and weak (ñ, k)-sources
above, if we want to extract a 1-out-of-L convSR-source with block length Ω(n)
from the weak source with error 2−Ω(n), as is possible for the relevant SHELA
source, then Theorem 11 forces that L = ñ · 2Ω(n) = � · n2Ω(n). On the other
hand, the convSR-source we extract from the relevant t-out-of-� SHELA source
only has O(�) blocks.

While Theorems 10 and 11 imply strong separation between SHELA and
weak sources for any conceivable application, they do not yield useful lower
bounds for some regimes of parameters. For example, in the easiest setting for
somewhere-extraction, when the min-entropy requirement k is very large (say,
k = ñ−1) and the output block length is very small (say, m = 1), both theorems
only give a trivial Ω(1) lower bound on L, even when ε is exponentially small in
ñ. On the other hand, the number of output blocks in the somewhere-extractor
obtained from Lemma 3 instantiated with an optimal strong extractor scales as
1/ε2 even when k = ñ − 1 and m = 1. We believe it is not possible to improve
significantly on the basic construction from Lemma 3, and so we put forth the
following conjecture.

Conjecture 12. Suppose F : {0, 1}ñ → {0, 1}m·L is a (T,L, ε)-somewhere
extractor for (ñ, k)-sources. Then, there exists a constant c > 0 such that if
ε ≤ c, we have

L = Ω

(
ñ − k

ε2

)
. (7)

We do not prove Conjecture 12 and leave it as an interesting open problem.
Nevertheless, we prove a weaker lower bound on L in a similar spirit to (7)
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under a stronger property than somewhere-extraction, which is still satisfied by
the construction from Lemma 3. This result can be regarded both as a first step
towards a full proof of Conjecture 12, and a non-trivial lower bound on L (under
this stronger property) that scales with ε and holds even when k is large and m
is small. Before we state our result, we must first define the alternative notion
of somewhere-extraction. Observe that the construction of F from Lemma 3
actually ensures that for every (ñ, k)-source X it holds that F (X) is ε-close to
an element of SRT,L,m, instead of only a convex combination of such elements.
We call a function that satisfies this for all (ñ, k)-sources a strong (T,L, ε, k)-
somewhere extractor.

We may think of a strong (1, L, ε, k)-somewhere-extractor F : {0, 1}ñ →
{0, 1}L as a family of L functions F1, . . . , FL such that for every (ñ, k)-source
X, there is Fi such that Fi(X) ≈ε U1. Therefore, in order to show such a
function F is not a strong somewhere-extractor, we must show the existence
of an (ñ, k)-source X that is “bad” for all Fi’s, in the sense that Fi(X) �≈ε U1

for every i. As previously discussed, existing techniques used in proving lower
bounds for extractors cannot be applied to obtain similar lower bounds for strong
somewhere-extractors. We use a fundamentally different technique to prove the
following lower bound on L for strong somewhere-extractors.

Theorem 13. Suppose F : {0, 1}ñ → {0, 1}m·L is a strong (1, L, ε, k)-somewhere
extractor for k ≤ ñ − 1. Then, there exists an absolute constant c > 0 such that if
ε < c, we have

L = Ω

(
log

(
1

max(ε, 2−k)

))
. (8)

6 Bounds for Somewhere-Amplifiable-Source Extraction
from Weak Sources

The lower bounds obtained in Sect. 5 show that convSR-sources extracted from
SHELA sources are much better (in terms of number of blocks with respect
to desired extraction error) than convSR-sources extracted from weak sources.
This has direct consequences in the time complexity blowup incurred when using
convSR-sources in several applications, as discussed in Sect. 1. However, as dis-
cussed in that same section, it is possible in some scenarios to use a weaker
object than convSR-sources, which we call somewhere-amplifiable sources, where
the good independent blocks are not required to be exactly uniformly distributed.
A precise definition follows.

Definition 14 (Somewhere-amplifiable source). We say Y = (Y1, . . . , YL)
over {0, 1}m·L is a (T,L, ε)-somewhere-amplifiable source if there exist distinct
indices i1, . . . , iT such that Yi1 , . . . , YiT are independent and Yij ≈ε Um for all
j = 1, . . . , T . The set of all such SA sources is denoted by SAT,L,ε, and the set
of all convex combinations of sources in SAT,L,ε is denoted by convSAT,L,ε.

Since the error required from each good block in a convSA-source is not that
small (in fact, it can even be constant), one may hope to transform weak sources
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into convSA-sources whose number of blocks is much closer to that of convSR-
sources obtained from SHELA sources, and which have blocks long enough to be
used in the applications already discussed in Sect. 1 and later in Sect. 7. To this end,
we define somewhere-amplifiable source extractors (convSA-source extractors).

Definition 15 (Somewhere-amplifiable source extractor). A function
SomeExt : {0, 1}ñ → {0, 1}m·L is said to be a (T,L, k, ε1, ε2)-somewhere-amplifi-
able extractor if for every (ñ, k)-source X there exists Y ∈ convSAT,L,ε2 such that

SomeExt(X) ≈ε1 Y.

We begin by noting that Theorem 10 also applies to convSA-source extractors
for weak sources. This shows that every such extractor (even with constant
error) must have L = Ω(ñ − k). As discussed in Sect. 1, this already provides an
efficiency separation between convSA-source extraction from weak sources and
convSR-source extraction from SHELA sources.

The main result we prove in this section is a different type of separation
between convSA-source extraction from weak sources and convSR-source extrac-
tion from SHELA sources. Roughly speaking, we show that if we want to extract
a convSA-source with many good blocks (necessary to obtain good final error)
from an (ñ, k)-source, then either the resulting convSA-source has too many
blocks to allow for efficient construction of the publicly verifiable protocols, or
the length of each block is very small, and so they may not be usable in some
protocols. This is discussed for the particular case of our publicly verifiable proof
system in Sect. 1.4. A precise statement follows.

Theorem 16. Suppose F : {0, 1}ñ → {0, 1}m·L is a (T,L, k, ε1, ε2)-somewhere-
amplifiable extractor for ε1 = negl(ñ), and ε2 ≤ c2 for some arbitrary constant
c2 ≤ 1 − 2−m (so that ε1 is useful for applications and ε2 is non-trivial). Then,
either the number of blocks L is superpolynomial in ñ (and hence amplification
is inefficient), or we have m = O(k/T ).

Some comments are due about Theorem 16. First, Theorem 16 provides
a strong separation between convSA-source extraction from weak sources and
convSR-source extraction from SHELA sources, as already evidenced in Sect. 1.4.
Consider a SHELA source with � blocks of length n, � = poly(n), t = 2 of which
are honest with arbitrary linear min-entropy. Then, Theorem 9 shows we can
efficiently extract (to within error 2−Ω(poly(n))) a convSR-source with poly(n)
number of blocks each of length Ω(n) and at least one good block from the
SHELA source. Such SHELA source can be compared with an arbitrary weak
(ñ = n · �, k = O(n))-source. In this case, Theorem 16 shows that if we want
to obtain a T -out-of-L convSA-source with block length Ω(n) from the weak
source, then T must be constant. This precludes many applications of the result-
ing convSA-source as discussed in Sect. 1. Finally, note that Theorem 16 also
applies to the extraction of convSR-sources with several uniform blocks from
weak sources.
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7 Non-Interactive Protocols from Public SHELA Sources

7.1 CRS Generation Through a SHELA Sample

The definitions of proof systems and commitment schemes in the plain model
and in the CRS model are standard and can be found in [1].

Such definitions assume the existence of an efficient CRS generation proce-
dure G that, however, will instead be realized in our protocols through a sample
from a public SHELA source. Our constructions will convert 2-round public-
coin protocols into non-interactive protocols by using a SHELA source and the
somewhere-extractor to replace the first round. Therefore, following the notation
in the CRS model, when running G on input 1m to generate a sufficiently long
CRS, we assume that the CRS is generated through a sample σ ← SHELAn,k,t,�

from a SHELA source such that when running SomeExt(σ) and obtaining blocks
R1, . . . , RL we have that the size of each Ri is equal to the size of the first round
of the 2-round public-coin protocol. We recall that G is not supposed to be effi-
cient and neither simulatable. Moreover, this procedure allows an unbounded
adversary to partially control the sampling process. We obviously require that
the output of G be available to all players. In our protocols, some adversaries
are restricted to run in polynomial-time only, but still can affect the outcome of
the SHELA sample without such restriction.

Fig. 1. Non-interactive WI Proof System Πpv = (G,Ppv,Vpv).

7.2 Non-Interactive WI Proof System Πpv

Here we present our construction of NIWI proof system from SHELA sources
assuming public-coin ZAPs. In order to describe our proof system Πpv =
(G,Ppv,Vpv) for the NP-language L, we will make use of the following tools:
(1) A somewhere extractor SomeExt : {0, 1}n·� → {0, 1}m·L defined in Sect. 411.
(2) A 2-round public-coin WI proof system Π = (P,V). Our Non-Interactive WI
proof system Πpv = (G,Ppv,Vpv) with a CRS generated through a sample from
a SHELA source is described in Fig. 1.
11 With high min-entropy we set L = �−1, while with low min-entropy we set L = O(�).
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Theorem 17. Assuming the existence of public SHELA sources, if public-coin
ZAPs exist, then Πpv is a non-interactive proof system for all NP-languages.

We stress that our protocol can be instantiated using doubly enhanced trapdoor
permutations. The proof can be found in [1].

7.3 Non-Interactive Commitment Scheme Πpvcom

Here we present our construction of non-interactive statistically binding com-
mitment scheme from SHELA sources assuming 2-round public-coin statis-
tically binding commitments. In order to describe our commitment scheme
Πpvcom = (G,Ppvcom,Vpvcom) for the message space M , we will make use of
the following tools: (1) a somewhere extractor SomeExt : {0, 1}n·� → {0, 1}m·L

defined in Sect. 412; (2) a 2-round public-coin statistically binding commitment
scheme Πcom = (S,R). Our Non-Interactive Commitment Scheme Πpvcom =
(G,Ppvcom,Vpvcom) using a public SHELA source is described in in Fig. 2.

Fig. 2. Non-interactive Commitment Scheme from OWFs Πpvcom = (G,Spvcom,Rpvcom).

Theorem 18. Assuming the existence of public SHELA sources, if 2-round
public-coin statistically binding commitment schemes exist then Πpvcom is a non-
interactive commitment scheme.

We stress that our protocol can be instantiated through a black-box use of any
one-way function.
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