f‘)

Check for
updates

Generating Large EMF Models Efficiently
A Rule-Based, Configurable Approach*

1(=)

Nebras Nassar , Jens Kosiol'®, Timo Kehrer?®, and Gabriele Taentzer!

! Philipps-Universitit Marburg, Marburg, Germany
{nassarn,kosiolje,taentzer}@informatik.uni-marburg.de
2 Humboldt-Universitit zu Berlin, Berlin, Germany
timo.kehrer@informatik.hu-berlin.de

Abstract. There is a growing need for the automated generation of in-
stance models to evaluate model-driven engineering techniques. Depend-
ing on a chosen application scenario, a model generator has to fulfill
different requirements: As a modeling language is usually defined by a
meta-model, all generated models are expected to conform to their meta-
models. For performance tests of model-driven engineering techniques,
the efficient generation of large models should be supported. When gen-
erating several models, the resulting set of models should show some
diversity. Interactive model generation may help in producing relevant
models. In this paper, we present a rule-based, configurable approach
to automate model generation which addresses the stated requirements.
Our model generator produces valid instance models of meta-models with
multiplicities conforming to the Eclipse Modeling Framework (EMF). An
evaluation of the model generator shows that large EMF models (with up
to half a million elements) can be produced. Since the model generation
is rule-based, it can be configured beforehand or during the generation
process to produce sets of models that are diverse to a certain extent.

Keywords: Model generation - Model transformation - Eclipse Model-
ing Framework (EMF)

1 Introduction

The need for the automated generation of instance models grows with the steady
increase of domains and topics to which model-driven engineering (MDE) is
applied. In particular, there is a growing need for large instances of a given
meta-model [14,26]. As most of the available MDE tools are based on the Eclipse
Modeling Framework (EMF) [34], instances should be conformant to EMF.
Depending on the chosen application scenario, a model generator has to ful-
fill different requirements: As a modeling language is usually defined by a meta-
model, all generated models are expected to conform to their meta-models. For

* This work was partially funded by the German Research Foundation (DFG), projects
Generating Development Environments for Modeling Languages (TA294/13-2) and
Triple Graph Grammars (TGG) 2.0 (TA294/17-1).

© The Author(s) 2020

H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 224-244, 2020.
https://doi.org/10.1007/978-3-030-45234-6_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_11&domain=pdf
http://orcid.org/0000-0002-0838-6513
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0002-2582-5557
http://orcid.org/0000-0002-3975-5238
https://doi.org/10.1007/978-3-030-45234-6_11

Generating Large EMF Models 225

performance tests of model-driven engineering techniques, the efficient genera-
tion of large models should be supported. When several models are generated,
they should show some diversity. Interactive model generation may help in pro-
ducing relevant models. While there are several tools and approaches to instance
model generation in the literature, e.g. [15,16,30,32,36], we are not aware of any
tool satisfying all the requirements stated above. Two extreme approaches are
the following: The approach in [16] is very fast but does not address any mod-
eling framework and provides very few guarantees concerning the properties of
the generated output models. As EMF has developed to the de-facto standard
for modeling in MDE, respecting the EMF constraints is crucial to guarantee
the usability of the resulting models in practice for processing them by other
tools, e.g., for opening them in standard editors. On the contrary, solver-based
approaches such as [15,32,36] provide high guarantees by generating instance
models that even conform to additional well-formedness constraints (expressed
in, e.g., OCL [20]), but they suffer from severe scalability issues.

We suggest finding a good trade-off between having a scalable generation
process for models and generating well-formed models. In this paper, we pro-
pose a rule-based approach to the generation of models which has the following
distinguishing features: (i) To guarantee interchangeability, generated models
conform to the standards of EMF. In particular, this means that the contain-
ment structure of a generated model forms a tree. (ii) Generated models exhibit
a basic consistency in the sense that they conform to the structure and the mul-
tiplicities specified by the meta-model. (iii) The generation of models can be
configured to obtain models that are diverse to a certain extent. (iv) The im-
plementation is efficient in the sense that instance models with several hundred
thousand elements can be generated. (v) The approach is meta-model agnostic
and customizable to a given domain-specific modeling language (DSML) in a
fully automated way. (vi) It is possible to generate models in a batch mode or
interactively to somewhat guide the generation process towards relevant mod-
els. User interaction includes the setting of seed models as well as interactively
choosing between alternative generation strategies.

Our rule-based approach to model generation consists of two main tasks:
(1) The meta-model of a given modeling language is translated into a rule-
based model transformation system (MTS) containing rules for model genera-
tion. (2) These rules are consecutively applied to generate instance models. This
generation process may be further configured by the user. Especially, a poten-
tially inconsistent model may be used as a seed for generating valid models.

Our approach is implemented in two Eclipse plug-ins: A meta-tool, called
Meta2GR, automatically derives the MTS from a given meta-model. A second
plug-in, called EMF Model Generator, is automatically configured with the re-
sulting MTS. A modeler uses the configured model generator, which takes ad-
ditional user specifications and an optional seed EMF model as inputs and gen-
erates a valid EMF model. We argue for the soundness of our approach and
evaluate its scalability by generating large, valid EMF models (up to half a mil-



226 N. Nassar et al.

lion elements). Furthermore, we show how to generate a set of models that are
diverse to some extent.

2 Related Work

In our discussion of related work, we focus on generic approaches and discern
between solver-based, tableauz-based and rule-based generic approaches. We omit
language- and application-specific approaches (like, e.g. [7,10]).

2.1 Solver-Based Approaches

Solver-based approaches generate models by (i) translating a meta-model into
a logical formula, (ii) using an off-the-shelf solver to find possible solutions,
and (iii) translating back the found solutions into instances of the meta-model.
In most cases, solver-based approaches are capable of generating models that
respect well-formedness constraints such as OCL constraints since these can be
translated into the logical formula as well. The approaches presented in [15,32,36]
use Alloy [12] for this purpose. Although we do not see any general limitation for
them to be applied to arbitrary meta-models, the translations to Alloy presented
in [15,36] target dedicated domain-specific languages. The language-independent
translation presented by Sen et al. [32] is not fully automated. Performed evalua-
tions show that the scalability of using an off-the-shelf solver is limited to pretty
small models.

2.2 A Tableaux-Based Approach

Schneider et al. [27] present an automated approach for the generation of sym-
bolic attributed typed graphs fulfilling a given set of first-order constraints. The
approach is based on a tableaux calculus for graph constraints. It produces min-
imal symbolic models encoding (infinitely) many instances that fulfill the set of
constraints. While this is highly desirable to get an overview of possible instance
structures, retrieving large graphs from symbolic instances is not directly sup-
ported. Moreover, the work does not aim at EMF; it is also not possible to add
the EMF constraints as not all of them are first-order. The authors extend their
work in [28] to be able to also repair given instances. This model repair can be
used to support the generation of instances from a given seed model. The applied
repair strategy does not incorporate any deletions of model elements.

2.3 Rule-Based Approaches

Ehrig et al. [9] present an approach for converting type graphs with restricted
multiplicity constraints into instance-generating graph grammars. Taentzer gen-
eralizes that approach in [37] to arbitrary multiplicity constraints. Both ap-
proaches are presented for typed graphs, which means that containment edge



Generating Large EMF Models 227

types and other EMF constraints are not considered. Moreover, there is no im-
plementation of these approaches.

Radke et al. [24] present a translation of OCL constraints to graph constraints
which can be integrated as application conditions into a given set of transforma-
tion rules [17]. The resulting rules guarantee validity w.r.t. these constraints but
might be rendered inapplicable. The work is motivated by instance generation;
however, no dedicated algorithm is presented.

Another grammar-based approach is presented by Mougenot et al. [16]. By
reducing models to their containment structure, a tree grammar is derived from
that meta-model projection. For a given size (representing the number of nodes),
the method is capable of uniformly generating all tree structures of that size.
Similarly, the tool EMF random instantiator [11] considers containment edges
only. While both approaches are highly efficient, reducing models to their con-
tainment structure is a severe oversimplification in practice.

The frameworks RandomEMF presented by Scheidgen [26] and EMG pre-
sented by Popoola et al. [23] aid users to manually specify a generator that
automatically generates models. These frameworks do not offer any help, how-
ever, to ensure that the generated models conform to the meta-model and that
the generated models satisfy the required constraints.

The SiDiff model generator (SMG) has been proposed by Pietsch et al. [22].
It takes an existing model as input and manipulates it by applying model editing
operations, configured by a stochastic controller. On the meta-level, the SMG was
integrated into the approach and tool presented by Kehrer et al. [13,25], which
generates a complete set of consistency-preserving edit operations for a given
meta-model. It supports meta-models with somewhat restricted multiplicities,
however. Generated edit operations can be applied to valid models only. Its
stochastic controller has been designed to generate sequences of models that
mimic realistic model histories [38]. The generated models are, on purpose, very
similar to each other, i.e. they lack diversity.

2.4 A Hybrid Approach

A hybrid approach is implemented within the VIATRA Solver [29,30]: Rules
are used to generate an instance model from scratch or a seed model. A solver
is used to guarantee validity concerning additional well-formedness constraints.
During the generation process, a partial model is extended using rules. This
partial model is continuously evaluated w.r.t. the validity of these constraints
using a 3-valued logic [31]. By under-approximation, the search space is pruned
as soon as the partial model cannot be refined into a valid model. The evaluation
of constraints is performed with a specifically developed solver or an off-the-shelf
one. All resulting instance models fulfill the additional constraints and conform
to EMF. Moreover, the VIATRA Solver has been investigated successfully for
generating diverse and realistic models. While experimental results indicate that
the approach is 1-2 orders of magnitude better than existing approaches using
Alloy, the authors also mention that the scalability of their approach is not yet
sufficient [30,29].



228 N. Nassar et al.

Table 1. Summary of selected generic approaches to model generation w.r.t. important
characteristics we aim at in this paper.

Input Output Algorithm

Category Approach impl. ex. seed EMF wf config. interact. scal.
Solver Sen et al. [32] + - o 4+4+4+ - — —
Tableaux Schneider et al. [27,28] + o - 44+ - — ?
Rule-based Taentzer [37] - — — ++ o + ?

Mougenot et al. [16] o — o + o - +

Pietsch et al. [22] + o + + + + o
Hybrid Semeréth et al. [30] + o + +4+4+  + — o
Rule-based Our approach + + + +4+ + + +

2.5 Need for Further Research

We summarize the related work through selected approaches from all categories
in Table 1 w.r.t. important characteristics. First, we indicate whether the ap-
proach is implemented in a tool (column 1). Second, we are interested in ma-
nipulating an existing seed model (column 2), e.g., for the sake of generating
model evolution scenarios. Here, o indicates that only special kinds of seeds are
possible. Third, concerning the consistency level of generated output models, we
are interested in the conformance with EMF (column 3) and additional well-
formedness constraints, including multiplicities (column 4). Here, + indicates
partly and ++ full support of multiplicity constraints, whereas + 4+ + means
support of more general well-formedness constraints. Fourth, we are interested
in the properties of the generation algorithm itself, which should be configurable
(column 5), offer interaction possibilities (column 6), and be scalable (column 7)
in order to support the generation of diverse and large instances, respectively.
None of the generic approaches to model generation fully meets all criteria.
Given a meta-model with multiplicities as the only well-formedness constraints,
we are heading towards a model generator that supports all quality attributes.

3 Running Example and Preliminaries

This section presents our running example and preliminaries. After introducing
the running example, we recall the Eclipse Modeling Framework (EMF), rule-
based model transformation and a rule-based approach to model repair that we
utilize for our approach to instance generation.

3.1 Running Example

As running example we use an excerpt of the GraphML meta-model [3] as shown
in Fig. 1. GraphML [6] is a file format for different kinds of graphs; it separates



Generating Large EMF Models 229

‘ i Element 0.#] datas Data ‘ “ ElemType | | # AttrType | | © EdgeType
7 id : EString = key : EString - edge - double - directed
= value : EStrin - node - string - undirected
[0.%] contents - graph | - boolean
1.1
aKey | ‘ EGraph (1.1 subgraph| = Node [ | cEqge || HyperEdgel
7 for : ElemType = edge _ edgeDefault : EdgeType = [1..1] target ‘
< attrName : EString " directed (-
7 type : AttrType = double [1.l]node
= defValue : EString & EndPoint .
[0.*] endpoints
[0.*] keys
[0.#] graphs [1.1] port [1.1] port
‘7 [1..1] port & Port ‘

[0.*]ports | = name : EString

Fig. 1. Excerpt of the GraphML meta-model

the graph structure from additional data. We use this example to illustrate how
our rule-based approach generates instances from a given meta-model.

3.2 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [34] has evolved into a de-facto stan-
dard technology for defining models and modeling languages. In EMF, meta-
models are defined using Ecore, an implementation of the OMG’s EMOF stan-
dard [21]. Meta-models in Ecore prescribe the structures that instance models of
the modeled domain should exhibit. Concepts known from UML class diagrams
are used, namely the classification of objects and their attributes, references to
objects, and constraints on object structures. References may be opposite to each
other and constrained by multiplicities. A specific kind of references are contain-
ments. The conformance of an instance model to a meta-model can formally be
expressed using typed attributed graphs with inheritance [4]. EMF models have
to fulfill the following constraints:

— At-most-one-container: Each object must not have more than one container.

— No-containment-cycles: Cycles of containments must not occur.

— No-parallel-edges: There are no two references of the same type from the same
source to the same target object.

— All-opposite-edges: If reference types t1 and ¢2 are opposite to each other: For
each reference of type t1, there has to be a reference of type ¢2 linking the
same objects in the opposite direction.

— Rootedness (optional): There is an object, called root object, that contains all
other objects of a model directly or transitively.

In the sequel, we use the terms EMF model and instance model interchangeably.
Each model conforming to its meta-model and fulfilling the EMF constraints
listed above is called EMF model. If the meta-model’s multiplicities are fulfilled



230 N. Nassar et al.

in addition, the model is called valid. Since we use a graph-based approach to
model transformation in the following, objects are often also called nodes and
object references are called edges.

3.3 Transformation Rules and Transformation Units

Our model generation approach is based on the application of transformation
rules to EMF models as implemented in the Eclipse plug-in Henshin [1,35]. This
approach is formally underpinned by typed attributed graph transformation as
presented in [4].

A (non-deleting) transformation rule consists of two model patterns, namely
a left-hand side L and a right-hand side R where L is a sub-pattern of R; we
denote such a rule by L = R. All elements in R\ L shall be created. A rule can
be equipped with negative application conditions (NACs) [8]. Each NAC N is an
additional pattern that includes L. All elements in N \ L are forbidden to exist.
An application of a transformation rule to a model M amounts to finding the
pattern L in M and, if such a match is found, creating a copy of R\ L there. A
rule is applicable at a match only if this match cannot be extended to a match
for any of the NACs.

In Henshin, rules are specified in an integrated form where elements are an-
notated and colored according to their roles. While a created element is depicted
in green, a forbidden element is shown in blue. Besides, it may be equipped with
the name of the NAC it belongs to for distinguishing several NACs. For example,
the rule insert_additionalEdge_targetport in Fig. 7 matches nodes of types Edge
and Port and inserts an edge of type targetport between them but only if such
an edge does not already exist and the selected Edge does not already refer to
another Port.

To construct more complex transformations in Henshin, rules may be com-
posed in (transformation) units. Units may have parameters that can be passed
to contained units or rules. A ‘?’ indicates that the parameter may be randomly
chosen. We sketch the semantics of those units which we use in the following.
Note that each rule is already considered as a unit.

— An independent unit comprises an arbitrary number of sub-units that are
checked for applicability in a non-deterministic order. One applicable unit is
executed.

— A loop unit comprises one sub-unit and executes it as often as possible.

— A conditional unit comprises either two or three sub-units specifying the if-unit,
the then-unit, and optionally, the else-unit. If the if-unit is executed successfully,
the then-unit is executed. Otherwise, if defined, the else-unit is executed.

— A sequential unit comprises an arbitrary number of sub-units that are executed
in the given order. If a sub-unit is not applicable, it is skipped and the
execution continues with the next sub-unit.

— A priority unit comprises an arbitrary number of sub-units that are checked
for applicability in the defined order. If a sub-unit is executed successfully,
the check and execution of the following sub-units are skipped.



Generating Large EMF Models 231
3.4 EMF Repair

Our generation process of instance models uses the repair process for EMF in-
stance models presented in [19]. The basic approach is to derive repair rules from
a given meta-model. The derived rules allow to first ¢rim the model such that
no upper bound is violated any longer. Subsequently, it completes the model by
adding nodes and edges until no lower bound is violated. The rules are designed
such that, during the completion phase, no upper bound violation is introduced
and that both phases terminate only if no violation of multiplicities occurs any
longer. We formally proved these properties in [18]. While this process does not
necessarily terminate, its termination has been proven for instance models of
fully finitely instantiable meta-models. A meta-model is called fully finitely in-
stantiable (f.£.1.) if, for every given finite EMF-model M that instantiates it and
respects upper bounds but may violate lower bounds, there exists a finite and
valid EMF-model M’ such that M is a submodel of M’.

4 Rule-Based Instance Generation

We start this section with an overview of our approach to the generation of
valid EMF models. Thereafter, we present the kinds of generation rules that
are derived from a given meta-model, introduce four parametrization strategies
for generation processes, and show possibilities of user-interaction. Finally, we
discuss the limitations of our generation approach and the formal guarantees
that have been shown.

4.1 Overall Approach

Our overall approach to instance generation is depicted in Fig. 2. The funda-
mental idea behind our approach is to base model generation as far as possible
on rule-based model repair using the tool EMF Repair [19]. All rules needed
to perform model generation steps are automatically derived from the given
meta-model by the meta-tool Meta2GR. If a non-empty seed model is given,
the model generation process starts with checking it for upper bound violations
and potentially trimming it using EMF Repair (model trimming). Thereafter,
the EMF model is extended with object nodes and references without violating
upper bounds using the rules derived by Meta2GR. (model increase). The result-
ing model shall meet user specifications w.r.t. its size which will be discussed in
more detail in Sect. 4.3 below. In the next step, the EMF model is completed to
a valid EMF model, again using EMF Repair (model completion). As this repair
process adds elements only, the user specifications are still met by the resulting
model. Moreover, the result is guaranteed to be a valid EMF model [18]. EMF
Repair is also used to set attribute values, either randomly or using user input
which is provided in a JSON-file.



232 N. Nassar et al.

Meta-model = | Meta2GR |
MTS for MTS for MTS for
Model Trimming Model Increase Model Completion
4 i 4
usesi usesi uses|
Seed Vodel Trimm i |
EMF Model = odel Irimming i |
i |
(optional) l J}
User = EMF Model = | Model Increase |
Specifications | (obeying upper bounds) 1 | » Valid

EMF Model = | Model Completion || EMF Model

(obeying upper bounds
+ user specifications)
EMF Model Generator

Fig. 2. Rule-based EMF Model Generator

4.2 Generated Rules for Model Generation

Given a meta-model, different kinds of rules are derived for generating EMF
models. They are listed in Table 2. The derived rules are needed to perform the
following tasks: (i) creation of nodes, (ii) insertion of non-containment edges,
and (iii) checking for the existence of source or target nodes for an edge of a
certain type. All rules that create model elements (i.e., the rules of kinds (i) and
(ii)) are generated with NACs to not introduce upper bound violations during
generation. Moreover, they all are consistent transformation rules in the sense
of [4]. This means that they preserve consistency w.r.t. the EMF constraints
including rootedness (compare [4, Theorems 1 and 2]). For example, our rules
cannot introduce containment cycles or parallel edges by design.

Table 2. Overview of rule kinds used for model generation

Role Kind Semantics

Create Additional-node-creation Create a node of a certain type and insert it into

node rules one of its direct containers
Transitive-node-creation Create a node of a certain type and insert it into
rules one of its transitive containers

Create Additional-edge-creation Create an edge of non-containment type be-
edge rules tween two nodes

Check  Additional-edge-checking Check if possible source and target nodes exist
edge rules for an edge of a certain type




Generating Large EMF Models 233

Meta Pattern Rule NAC
Y | 1A |
. —> :conAB
oot
;; B
°°"RAm"n addNode_B_in_A
A
I; ’ 2:Root ‘ ’ 2:Root ‘
conAB —> :conRA iconRAY/ - (CONRA
t
e e I e
:conAB NACn
B

addNode_B_with_A_in_Root

Fig. 3. Rule schema for transitive-node-creation rules (of length 2)

Node creation (i) is performed by two sets of rules, additional-node-creation
rules and transitive-node-creation rules. The latter ones are described as follows:
For every concrete node type in the meta-model, every possible incoming path
over containment edges is computed such that each containment type occurs
maximally once. For each such path, a rule is derived that matches the node
where this path starts and creates the rest of this path. Each rule is equipped
with a NAC ensuring that no upper bound violation can be introduced. An ex-
ample schema of length 2 for this kind of rule is depicted in Fig. 3. The lower part
of Fig. 6 depicts all transitive-node-creation rules that are derived for the type
port. Only one rule is equipped with a NAC as the edge type subgraph is the only
one with an upper bound (of 1). In EMF, if a containment edge has an opposite
edge, the upper bound of the opposite edge must be 1. If a containment edge is
created, the opposite edge is created automatically. Therefore, we do not repre-
sent it here. Additional-node-creation rules are transitive-node-creation rules of
length 1. We derive both kinds of rules for different parametrizations of our gen-
eration algorithm which are introduced in Sect. 4.3. The rule add_in_Node_a_Port
in Fig. 6 is an example derived for the containment edge type ports. It does not
have a NAC since the upper bound of ports is unlimited.

To create non-containment edges (ii), additional-edge-creation rules are gen-
erated. The general schema for these kinds of rules is depicted in Fig. 4. For each
non-containment edge type, a rule is derived that matches the source and the
target nodes suitable to this edge type and creates an edge of the corresponding
type. Again, a NAC prevents that an upper bound is violated (NACn). A second
NAC prevents that parallel edges are introduced (NACp). If the given edge type
has an opposite edge type, the opposite edge is created as well and its upper



234 N. Nassar et al.

Meta Pattern Rule NAC
LA L | [ | [sa ] [xa ][ a [ &
opr | k.l opr opr opr opr
ref | m.n ref ref ref ref
‘ B ‘ ‘ 2:B ‘ ‘ 2:B ‘ ‘ 2:B H B H B “ 2:B ‘
InsertingAdditionalEdge NACp NACn NACI

| NAC = NACp and NACn and NACI |

Fig. 4. Rule schema for additional-edge-creation rules

bound is considered accordingly (NACI). A concrete example for the edge type
targetport is the rule insert_additionalEdge_targetport as depicted in Fig. 7.

As non-containment edges may be added optionally according to user spec-
ifications ( in Sect. 4.3), it is necessary to check if nodes of certain types exist
and can serve as source or target nodes of an additional edge without violat-
ing the upper bounds of the respective edge type (iii). This check is performed
with additional-edge-checking rules which are derived for non-containment edge
types. The general schema is depicted in Fig. 5. Such a rule is applicable if and
only if there exists a source node where the upper bound of the edge type is not
yet reached. The same kind of rule is derived for the target node type as well.
The rule check_proper_sourceNode_for_targetport in Fig. 7 is a concrete example
for the edge type targetport.

Meta Pattern Rule NAC

a1 = 14 | ot

opr

ref Check_AdditionalEdge_ref NACH
[ e I 28 =] 28 || & ][ & ]

Check_AdditionalEdge_opr

NACI

Fig. 5. Rule schema for additional-edge-checking rules

4.3 Generation Strategies: Parameterization

Since we use a rule-based approach, the model generator can be parameterized
w.r.t. a given user specification. In the following, we present four strategies for
generating models w.r.t. user specifications; they serve to specify the model
increase phase of the generation process. The models resulting from this phase
conform to EMF and meet the user specification but may violate lower bounds.



Generating Large EMF Models 235

% IndenendentUnit add TreeNode Port = Rule add in Node a Granh with Node with Port(container)
. «preserve» subgraph [«Create» contents«create»| ports |«create»|
add_in_Node_a_Port(?) —— grap Graph ‘Nod P! Port
I container:Node| " . 0, :Graph | ..o [Node [ ... "|:Po
0 [ ?) .
add_in_Graph_a_Node_with_Port(?) } subgrapk «forbid#upperBoundNotReached»
add_in_Node_a_Graph_with_Node_with_Port(?) «forbid#upperBoundNotReached»|
1:Graph
add_in_Root_a_Graph_with_Node_with_Port(?)
= Rule add in Node a_Port(container) = Rule add in Root a Granh with Node with Port(container)
«preserve» ports «create») «preserve» graphs «create»contents |«Create») ports «create»|
container:Node| . ..., [Port containerRoot’ . caie, [GraPh [ cate,:NOde [ oo, :Port
‘é Rule add in Granh a Node with Port(container)
«preserve» contents|«Create» ports [«create»
container:Graphl” .., :Node | .. :Port

Fig. 6. Independent unit for randomly creating a containment tree containing a fixed
number of nodes of type Port

They are used as input for the model repair algorithm of EMF repair to obtain
a valid EMF model. The user may (1) specify the number of elements that is to
be created minimally, (2) specify a node type and the number of nodes of this
type that is to be created minimally, (3) specify an edge type and the number
of edges of this type that is to be created minimally, or (4) combine the above-
mentioned strategies sequentially in arbitrary order. If the user has not specified
any model as a seed, the generation is initialized by creating a root node.

Adding elements of arbitrary types. In this strategy, the user specifies the
minimum of model elements (i.e., nodes and edges) to be created. The idea
behind this strategy is to randomly execute a set of rules for adding nodes
and edges of arbitrary types without violating the corresponding upper bounds
and the EMF constraints. Hence, all rules of kinds additional-node-creation and
additional-edge-insertion are collected into an independent unit which is applied
as often as the user specification requires. While the independent unit is imple-
mented in Henshin using a uniform distribution, this strategy may also be per-
formed using other distributions by, e.g., leveraging a stochastic controller [38].

Adding nodes of a specific type. In this strategy, the user specifies a node
type and the minimum number of nodes of this type that shall be created. This
strategy is implemented as an independent unit containing all transitive-node-
creation rules for the specified node type being applied as often as the user has
specified. An example unit for the node type Port is given in Fig. 6.

Adding edges of a specific type. In this strategy, the user specifies a (non-
containment) edge type and the minimum number of edges that shall be created
of this type. This strategy is similar to the previous one, thus its basis is a unit
that contains the additional-edge creation rule for the specified type. If this rule
is not applicable, however, a source or a target node (or both) for an additional
edge of that type is missing. The additional-edge-checking rules for this edge type
are used to detect such situations. Then, corresponding transitive-node-creation
rules for the type of the missing node are used to create the missing source



236 N. Nassar et al.

"% PrioritvUnit add edae taraetport = Rule insert additionalEdae taraetport(source. taraet)
,'L <<p|‘esel‘vcei>> targetport «create» «preserve»
source:E .
{insert_additionalEdge_targetport(?, ?) J 9e targetport  «forbid» target:Port
h targetport «forbid»
{add_proper_source_target :'I’Vode_then_insert_targetport J forbid» -Port
O :
5% ConditionalUnit check add prover sourceNode for ...
2 SequentialUnit add proper source target Node_then insert targetpor if
() ."{ check_proper_sourceNode_for_targetport(?) }
1l then
[check_add_proper_sourceNode_for_targetport } EaE
add_TreeNode_Edge O,
{check_add_proper_targetNode_for_targetport = Rule check proper sourceNode for taraetport(sourc...
v N 2
- — «preserve» | oo [«forbid#UBNotFulfilled»
?? getpol
{msert_addmonalEdge_targetport(., ?) J source:Edge Port

«forbid#UBNotFulfilled»

Fig. 7. Units for inserting a fixed number of edges of type targetport

and/or target node(s). This strategy is implemented as a priority unit where the
first contained unit is the additional-edge-insertion rule. Its second contained
unit is a sequential one with two conditional units checking for missing source
or target nodes, respectively, and creating corresponding nodes if needed.

Figure 7 presents a priority unit using this strategy at the example of
the targetport-edge. The first level contains the rule insert_additionalEdge. . ..
The second level is the sequential unit add_proper_source_target_Node. . .:
The conditional unit check_add_proper_sourceNode... uses the rule
check_proper_sourceNode. .. in the if-statement. The then-statement is set to true
whereas the else-statement is configured with a priority unit add_treeNode_FEdge
which adds an Edge-node respecting upper bounds and the EMF constraints.
The conditional unit adding a missing target node is defined analogously.

Sequential combination of strategies. As our approach allows for an arbi-
trary seed model as input, the result of applying one strategy can be used as
input for applying the second one. This allows for arbitrary sequential combina-
tions of strategies.

4.4 User Interaction

Since our approach is rule-based, it is also possible to allow for user interaction.
Instead of random rule applications at random matches, the available rules and
matches can be presented to the user for selecting at which match a rule has
to be applied and how many times. That is promising for generating different
tree structures of various weights. While it may not desirable to completely
generate large models in such a way, a hybrid strategy can be applied to utilize
the selection process, e.g., by employing heuristic data. EMF Repair already
supports this kind of user interaction.



Generating Large EMF Models 237

4.5 Limitations and Formal Guarantees

Limitations. A user may only specify the minimum number of desired elements;
the specification of a maximum number is not yet supported within our ap-
proach. Although the generation process applies the respective rules exactly as
often as specified during the model increase phase, some of the rules create more
than one element and additional model elements may be created to repair viola-
tions of lower bounds during the consecutive model repair. Moreover, we cannot
guarantee that the user specification is fully met since necessary rules may not
be applicable as often as specified and backtracking is not used. Even if the
specification could be met in principle, it may happen that the specific selection,
order, and matches of rules do not succeed as they are randomly chosen in the
current version of the approach. By counting created elements, it can always
be decided whether a user specification has been met, and thus, the user can
be informed. In our experiments (in Sect. 6), every generated output meets the
selected specifications. Thus, while more research is needed to precisely evaluate
the severity of our limitations, the performed experiments are positive evidence
that these limitations are rather small even for reasonably complex meta-models.

Formal guarantees. In case of termination, our approach guarantees a valid EMF
model as output: All generation rules conform to a design that is proven to
preserve EMF constraints in [4]. Moreover, applications of these rules cannot
introduce violations of upper bounds as they are equipped with corresponding
NACGs. So each strategy mentioned above is guaranteed to result in an instance
model that conforms to EMF and does not violate any upper bounds. Moreover,
it is ensured by the finite number of rule calls specified in each strategy that the
increase phase terminates. Thus, suitable input for the model completion process
of EMF Repair [19] is ensured after finitely many steps. For model completion,
termination was proven in the case of f.f.i. meta-models while correctness was
proven in all cases in [18]. If the user specification is met after a model has been
increased, it is met after model completion as well since no deletion takes place
during model completion. Even an increased model that does not meet the user
specification is an EMF model and hence a suitable input for EMF Repair. Thus,
it can be completed and returned to the user as a valid EMF model. The given
user specification, however, is only partly satisfied in this case.

5 Tooling

We have developed two Eclipse plug-ins that are available for download.® The
first plug-in is a meta-tool, called Meta2GR. It takes a domain meta-model as
input and derives an MTS in Henshin. This is achieved by applying the meta-
patterns that are depicted in Figs. 3 to 5 to the given domain meta-model. These
meta-patterns are specified as rules typed over the Ecore meta-metamodel. Based
on their matches, domain-specific model generation rules of different kinds are

3 https://github.com/RuleBased Approach/EMFModelGenerator /wiki



238 N. Nassar et al.

created. For a given meta-model, the MTS has to be generated only once. The
second Eclipse plug-in, called EMF Model Generator, is a modeling tool that
uses the derived MTS to generate instance models. Given a user specification
and, optionally, one or more seed EMF models, this model generator creates
valid EMF models in batch mode or incrementally.

6 Evaluation

Next to the formal guarantees which are provided by construction, we empirically
evaluate our approach w.r.t. the following research questions:

RQ 1: How fast can instance models of varying sizes be generated?

RQ 2: Does the use of parametrization help to increase the diversity?
All experiments were performed on a desktop PC, Intel Core i7, 16 GB RAM,
Windows 7 x64 using Eclipse Oxygen. Our Eclipse-based tool was configured
to use the default settings, e.g., the heap size was limited to 1 GB. All the
evaluation artifacts are available for download.3

6.1 Scalability Experiments

To answer RQ 1, we conducted two scalability experiments. We used 8 meta-
models taken from the literature and projects, namely the Statechart meta-model
of Magicdraw [13], Web model [5], Car Rental and Class model [2], Bugzilla,
Latex, Warehouse, and GraphML (GML) [3]. The average size of the meta-
models is 44 elements (16 nodes, 17 edges, 11 attributes) and the number of
multiplicity bounds is 24 on average. The overhead for generating the needed
transformation rules and units was, on average, less than 5 seconds, and we will
thus focus on the run-time of the model generation in the sequel.

Ezperiment 1. In the first experiment, we randomly generated valid EMF models
of varying sizes up to 10000 elements (counting nodes and edges) for each meta-
model using Strategy (1) (in Sect. 4.3). For each size category, we generated
10 valid EMF models and calculated the average run-time. Table 3 presents the
results of this experiment. Considering all the meta-models and generated models
of varying sizes, our tool always generates a valid EMF model with at least
10000 elements. Generation times were fastest for the Bugzilla meta-model and
slowest for the GraphML one. To assess how robust the times are, we measured
the time for generating a seed and for the subsequent repair separately. For each
one, we also computed the corrected standard deviation (which is presented
for model size 10000 only). Generating the seed is generally faster than the
subsequent repair, except for the StateChart and Warehouse meta-models. If
the standard deviation is rather high, this tends to be the case for both, the
seed generation and the repair (as for GraphML, Web Model, and Class Model).
A closer inspection of the meta-models shows that higher run-times, as well as
higher deviations of run-times, are caused by larger meta-model sizes (and hence
larger sizes of derived MTSs) and higher numbers of interrelated multiplicity
constraints.



Generating Large EMF Models 239

Table 3. Average run-time (in seconds) for generating valid EMF models of varying
sizes for 8 meta-models (MM) using Strategy (1); for size 10000, run-time is split into
the generation of seed and subsequent repair where the corrected standard deviation
is added in brackets, respectively.

MM\Model Size 1000 3000 5000 8000 10000

Bugzilla 005 01 0.1 0.1  0.08 (0.006) + 0.04 (0.01)
Car Rental 0.27 5 17.9 72.3 65.5 (7.2) + 78.1 (4)
Class Model 016 1.7 94 615  13.2 (14.2) + 85 (113.8)
CoreWarehouse 0.81 4.5 18.9 67.9 0.4 (0.02) 4+ 131 (10.9)
GraphML 04 26 167 792  39.3 (56) + 168.1 (119.6)
Latex 127 13 13 15 0.7 (0.01) + 0.8 (0.03)
StateChart 0.55 1.7 5.5 18.7 35.8 (3.9) + 1 (0.3)
Web Model 016 14 51 146  18.7 (18.8) + 6.2 (2.6)

Table 4. Average run-time and standard deviation (in minutes) for generating valid
EMF models of varying huge sizes for the GraphML meta-model using Strategy (3).
The standard deviations are presented in brackets.

Model Size 200000 300000 400000 half a million
Average Time (Min.) 6 (1.4) 11.4 (2.6) 23.3 (5.7) 32.5 (6.5)

Ezxperiment 2. The second experiment is dedicated to generating huge models for
a complex meta-model which would lead to complex model repair processes. The
meta-model GraphML is right for this purpose as its number of lower bounds
being non-zero is above the average. Fulfilling these bounds renders model repair
into a complex process. We expect the generation of models to become faster
when using Strategy (3), i.e., when specifying a minimal number of edge occur-
rences of a certain type. In this case, nodes are introduced together with incident
edges; this generation behavior should reduce the number of repairs needed to
take place for fixing lower bound violations. Models of an average size of between
200000 and 500 000 elements are generated in 6 to 32.5 minutes on average. Each
generation process was repeated five times. The standard deviation was between
1.4 to 6.5 minutes, i.e., the run-times for the generation of these huge models
are pretty stable. Table 4 presents the experiment results. Moreover, to give an
impression of the tool performance for simple meta-models, we applied it to the
Bugzilla meta-model. It is considered as simple since it consists of unrestricted
containment edges only. The tool needed 1.2 minutes only to generate a valid
EMF model with a minimum of 500 000 elements.

6.2 Diversity Experiment

To test if the parametrization of our algorithm has some effect on the diver-
sity of generated models, we conducted the following experiment. We took the
GraphML meta-model and chose Strategy (1) to randomly create 10 instance



240 N. Nassar et al.

Table 5. Diversity of randomly generated instance models parametrized by node types
of the GraphML meta-model (EL = Element, K = Key, etc.; compare Fig. 1)

Str. 1) ‘ Str. 2)
Specified Type All ‘ EL. K. G. E. H.E. N. P. E.P. D.
Shannon Index 3 ‘ 212 0.82 0.76 0.94 0.92 099 1.57 148 2.06

models containing about 2000 elements. For each node type as parameter, we
created 10 instance models containing about 2 000 elements according to Strat-
egy (2) which specifies that this node type has to occur at least 500 times. For
each of the resulting sets of model instances we calculated the Shannon index [33],
Z?zl % -lg &, an established diversity measure. Here, N is the total number
of nodes in the given set, i ranges over the 9 non-abstract node types in the
GraphML meta-model, and n; is the number of nodes of that type in the given
set. The resulting indices are presented in Table 5. Considering Strategy (1), the
types of occurring elements show nearly uniform distribution as the maximal
possible Shannon index is 1g9 ~ 3.17. The indices for Strategy (2) show that
the distribution of elements significantly differs, depending on the selected node
type.

To assess that even the sets with similar Shannon indexes differ from one
another, we checked for the types actually occurring in each set and compared
them. The results are depicted in Fig. 8. For example, 66 % of the nodes are of
type HyperEdge if HyperEdge (H.E.) is chosen as type parameter, and 68 % of the
nodes are of type Edge if Edge (E.) is chosen as parameter, even though both sets
of models exhibit almost the same Shannon index.

Data - - Parameters
EndPoint-  [dazal ] = .

Port - - =S
Hypercace - RSN i

oce- I ne
Element - .

0% 100% 200% 300%

Fig. 8. Relative number of occurrences (x-axis) of node types (y-axis) in all the instance
models generated using Strategy (2); results obtained for different parameter settings
are encoded in colors and each color indicates one instance model. For example, 79.26%
nodes of type Graph and 20.74% nodes of type Node are created in an instance model
for parameter Graph (G.).



Generating Large EMF Models 241

To answer RQ 2, choosing different node types as parameter leads to signif-
icantly different distributions of the node types of occurring elements. Hence,
Strategy (2) can be used to introduce a certain diversity.

6.3 Threats to Validity

In our evaluation, we selected 8 meta-models. Evaluation results might differ
when choosing others. We are confident, however, that our results are represen-
tative as we selected meta-models from diverse backgrounds, with reasonable
sizes, and with varying numbers and forms of multiplicities. The used metric
to measure diversity completely abstracts from details of the underlying graph
structures of generated instance models. On the one hand, abstracting from such
details typically underrates diversity rather than overrating it. On the other
hand, we have to acknowledge that the form of diversity we show in our experi-
ments is limited to the distribution of types.

7 Conclusion and Future Work

We developed a rule-based approach for generating valid models w.r.t. arbitrary
multiplicities and EMF constraints. Since we use a rule-based approach, our
generator is configurable to support user specifications and to allow user inter-
action. Several parameterization strategies are presented to generate different
sets of valid EMF models. Two Eclipse plug-ins have been developed: Meta2GR
automatically translates the meta-model of a given DSML to an MTS and the
EMF Model Generator uses the derived MTS to generate valid EMF models.
We evaluated the scalability of our approach by generating large instances of
several meta-models of different domains and showed that models with 10000
elements can be generated in about a minute on average. Furthermore, our tool
can generate valid EMF models of 500000 elements in less than 2 minutes for
a meta-model with largely unrelated multiplicity constraints and in about 30
minutes for a meta-model with closely interrelated ones. Moreover, we showed
that a certain form of diversity between the generated models can be achieved
by configuration. As future work, we intend to support meta-models with OCL
constraints, at least partly: Integrating the constraints as application conditions
into rules [17,24] is a promising basis to extend our approach in this direction.
Besides, we want to support further configuration facilities which allow us to
generate realistic models by leveraging a stochastic controller [38].

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Proc. MODELS.
pp. 121-135. Springer (2010)

2. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on
the eclipse modeling framework. Automated Software Engineering 20(2), 141-184
(2013)



242

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

N. Nassar et al.

Atlantic Zoo. http://web.imt-atlantique.fr /x-info/atlanmod /index.php?title=Zoos
(2019)

. Biermann, E., Ermel, C.; Taentzer, G.: Formal Foundation of Consistent EMF

Model Transformations by Algebraic Graph Transformation. SoSyM 11(2), 227—
250 (2012)

. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in

Practice. Morgan & Claypool Publishers (2012)

Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
Progress Report: Structural Layer Proposal. In: Graph Drawing. pp. 501-512.
Springer (2002)

Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: Symp. on
Software Reliability Engineering. pp. 85-94 (2006)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

. Ehrig, K., Kiister, J.M., Taentzer, G.: Generating instance models from meta mod-

els. SoSyM 8(4), 479-500 (2009)

Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing
model transformations. In: Proc. Intl. Workshop on Model, Design and Validation.
pp. 29-40. IEEE (2004)

Gémez, A., AtlanMod Team: EMF random instantiator (2015), https:
//github.com/atlanmod /mondo-atlzoo-benchmark/tree/master/fr.inria.
atlanmod.instantiator, (visited on 2020-02-18)

Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256-290 (2002)

Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically Deriving the Spec-
ification of Model Editing Operations from Meta-Models. In: Proc. ICMT. pp.
173-188 (2016)

Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Réth, 1., Varrdé, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Workshop on Scalability in
Model Driven Engineering. ACM (2013)

McGill, M.J., Stirewalt, R.K., Dillon, L.K.: Automated test input generation for
software that consumes ORM models. In: OTM Confederated Intl. Conferences.
pp. 704-713. Springer (2009)

Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: European Conf. on Model Driven Architecture-
Foundations and Applications. pp. 130-145. Springer (2009)

Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: OCL2AC. Automatic Translation
of OCL Constraints to Graph Constraints and Application Conditions for Trans-
formation Rules. In: Proc. ICGT 2018. pp. 171-177. Springer (2018)

Nassar, N., Kosiol, J., Radke, H.: Rule-based Repair of EMF Models: Formal-
ization and Correctness Proof. In: Electronic Pre-Proc. Intl. Workshop on Graph
Computation Models (2017)

Nassar, N.,; Radke, H., Arendt, T.: Rule-based repair of EMF models: An auto-
mated interactive approach. In: Proc. ICMT. pp. 171-181 (2017)

OMG: Object Constraint Language. (2014), http://www.omg.org/spec/OCL/
OMG: OMG Meta Object Facility (MOF). Version 2.5.1 (11 2016), http://www.
omg.org/spec/MOF/

Pietsch, Pit and Yazdi, Hamed Shariat and Kelter, Udo: Generating realistic test
models for model processing tools. In: Proc. ASE. pp. 620-623. IEEE CS (2011)


https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Generating Large EMF Models 243

Popoola, S., Kolovos, D.S., Rodriguez, H.H.: EMG: A domain-specific transfor-
mation language for synthetic model generation. In: Proc. ICMT. vol. 9765, pp.
36-51. Springer (2016)

Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essential
OCL Invariants to Nested Graph Constraints for Generating Instances of Meta-
models. Science of Computer Programming 152, 38-62 (2018)

Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of consistency-preserving
edit operations for mde tools. Demos @ MoDELS 14 (2014)

Scheidgen, M.: Generation of large random models for benchmarking. In: Big-
MDE®@ STAF. pp. 1-10 (2015)

Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for attributed graph
properties. Intl. Journal on Software Tools for Technology Transfer 20(6), 705-737
(2018)

Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental approach to
graph repair. In: Fundamental Approaches to Software Engineering. pp. 151-167.
Springer (2019)

Semerdth, O., Babikian, A.A., Pilarski, S., Varrd, D.: Viatra solver: a framework
for the automated generation of consistent domain-specific models. In: Proc. ICSE.
pp. 43-46. IEEE/ACM (2019)

Semerdth, O., Nagy, A.S., Varré, D.: A Graph Solver for the Automated Generation
of Consistent Domain-specific Models. In: Proc. ICSE. pp. 969-980. ACM (2018)
Semerath, O., Varrd, D.: Graph constraint evaluation over partial models by con-
straint rewriting. In: Proc. ICMT. pp. 138-154 (2017)

Sen, S., Baudry, B., Mottu, J.M.: Automatic model generation strategies for model
transformation testing. In: Proc. ICMT. pp. 148-164 (2009)

Shannon, C.E.: A Mathematical Theory of Communication. SIGMOBILE Mob.
Comput. Commun. Rev. 5(1), 3-55 (2001), reprint

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison Wesley, Upper Saddle River, NJ, 2 edn. (2008)

Striiber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy, M.:
Henshin: A Usability-Focused Framework for EMF Model Transformation Devel-
opment. In: Proc. ICGT. pp. 196-208 (2017)

Svendsen, A., Haugen, ., Mgller-Pedersen, B.: Synthesizing software models:
generating train station models automatically. In: Intl. SDL Forum. pp. 38-53.
Springer (2011)

Taentzer, G.: Instance generation from type graphs with arbitrary multiplicities.
ECEASST 47 (2012)

Yazdi, H.S., Angelis, L., Kehrer, T., Kelter, U.: A framework for capturing, statisti-
cally modeling and analyzing the evolution of software models. Journal of Systems
and Software 118, 176-207 (2016)



244 N. Nassar et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Generating Large EMF Models Efficiently A Rule-Based, Configurable Approach*
	1 Introduction
	2 Related Work
	2.1 Solver-Based Approaches
	2.2 A Tableaux-Based Approach
	2.3 Rule-Based Approaches
	2.4 A Hybrid Approach
	2.5 Need for Further Research

	3 Running Example and Preliminaries
	3.1 Running Example
	3.2 The Eclipse Modeling Framework
	3.3 Transformation Rules and Transformation Units
	3.4 EMF Repair

	4 Rule-Based Instance Generation
	4.1 Overall Approach
	4.2 Generated Rules for Model Generation
	4.3 Generation Strategies: Parameterization
	4.4 User Interaction
	4.5 Limitations and Formal Guarantees

	5 Tooling
	6 Evaluation
	6.1 Scalability Experiments
	6.2 Diversity Experiment
	6.3 Threats to Validity

	7 Conclusion and Future Work
	References


