Chapter 6 Volume of $\boldsymbol{S U}\left(\mathbf{2}^{K}\right)$

Let's make a more refined calculation of the number of operators in $\operatorname{SU}(N)$ by dividing its volume by the volume of an epsilon ball of the same dimensionality (the dimension of $S U(N)$ is $\left.N^{2}-1\right)$. The volume of $S U(N)$ is https://arxiv.org/abs/ math-ph/0210033

$$
\begin{equation*}
V[S U(N)]=\frac{2 \pi^{\frac{(N+2)(N-1)}{2}}}{1!2!3!\ldots(N-1)!} \tag{6.1}
\end{equation*}
$$

The volume of an epsilon-ball of dimension $N^{2}-1$ is

$$
\frac{\pi^{\frac{N^{2}-1}{2}}}{\left(\frac{N^{2}-1}{2}\right)!}
$$

Using Stirling's formula, and identifying the number of unitary operators with the number of epsilon-balls in $S U(N)$

$$
\begin{align*}
\# \text { unitaries } & \approx\left(\frac{N}{\epsilon^{2}}\right)^{\frac{N^{2}}{2}} \\
& =\left(\frac{2^{K}}{\epsilon^{2}}\right)^{4^{K} / 2} \tag{6.2}
\end{align*}
$$

Taking the logarithm,

$$
\begin{equation*}
\log (\# \text { unitaries }) \approx \frac{4^{K}}{2} K \log 2+4^{K} \log \frac{1}{\epsilon} \tag{6.3}
\end{equation*}
$$

which is comparable to (5.3). Again, we see the strong exponential dependence on K and the weak logarithmic dependence on ϵ. The $\log \frac{1}{\epsilon}$ term is multiplied by the dimension of the space.

