
Liberate Abstract Garbage Collection from
the Stack by Decomposing the Heap

Kimball Germane1(�) and Michael D. Adams2

1 Brigham Young University, Provo UT, USA kimball@cs.byu.edu
2 University of Michigan, Ann Arbor MI, USA adamsmda@umich.edu

Abstract. Abstract garbage collection and the use of pushdown systems
each enhance the precision of control-flow analysis (CFA). However, their
respective needs conflict: abstract garbage collection requires the stack
but pushdown systems obscure it. Though several existing techniques
address this conflict, none take full advantage of the underlying interplay.
In this paper, we dissolve this conflict with a technique which exploits
the precision of pushdown systems to decompose the heap across the
continuation. This technique liberates abstract garbage collection from
the stack, increasing its effectiveness and the compositionality of its host
analysis. We generalize our approach to apply compositional treatment to
abstract timestamps which induces the context abstraction of m-CFA, an
abstraction more precise than k-CFA’s for many common programming
patterns.

Keywords: Control-Flow Analysis ·Abstract Garbage Collection · Push-
down Systems

1 Introduction

Among the many enhancements available to improve the precision of control-flow
analysis (CFA), abstract garbage collection and pushdown models of control flow
stand out as particularly effective ones. But their combination is non-trivial.

Abstract garbage collection (GC) [10] is the result of applying standard GC—
which calculates the heap data reachable from a root set derived from a given
environment and continuation—to an abstract semantics. Though it operates in
the same way as concrete GC, abstract GC has a different effect on the semantics
to which it’s applied. Concrete GC is semantically irrelevant in that it has no
effect on a program’s observable behavior.3 Abstract GC, on the other hand,
is semantically relevant in that, by eliminating some merging in the abstract
heap, it prevents a utilizing CFA from conflating some distinct heap data. In the
setting of a higher-order language, where data can represent control, this superior
approximation of data translates to a superior approximation of control as well,
manifest by the CFA exploring fewer infeasible execution paths.

Pushdown models of control flow [16, 3] encode the call–return relation of a
program’s flow of execution as precisely as an unbounded control stack would

3 It is irrelevant only if space consumption is unobservable, as is typical.

c© The Author(s) 2020
P. Müller (Ed.): ESOP 2020, LNCS 12075, pp. 197–223, 2020.
https://doi.org/10.1007/978-3-030-44914-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44914-8_8&domain=pdf

allow. Consequently, and in contrast to the finite-state models which preceded
them, pushdown models enable a utilizing CFA—a stack-precise CFA—to avoid
relating a given return to any but its originating call. Thus, pushdown models
also induce CFAs which explore fewer infeasible execution paths.

Not only do abstract GC and pushdown systems each enhance the control
precision of CFA, they also appear to do so in complementary ways. Is it possible
for a CFA to use both and gain the benefits of each? This question’s answer is
not immediate, as these techniques have competing requirements: abstract GC
must examine the stack to extract the root set of reachability but the use of
pushdown models obscures the control stack to the abstract semantics.

This question has been addressed by two techniques: The first introspec-
tive technique [4] introduces a primitive operation into the analyzing machine
which introspects the stack and delivers the set of frames which may be live;
this technique has a variety of alternative formulations, some of which alter its
complexity–precision profile [8, 7]. The second technique [1], which modifies the
first to work with definitional interpreters, dictates that the analyzer implement
a set-passing style abstract semantics where each passed set contains the heap
addresses present in the continuation at that point. Each of these techniques
reconciles the competing requirements of abstract GC and pushdown models
of control flow and allows the utilizing CFA to enjoy the precision-enhancing
benefits of both at once.

However, each of these techniques—hereafter referred to collectively as push-
down GC—yields a setting in which abstract GC and pushdown models of con-
trol flow merely coexist. In contrast, this paper prescribes a technique which
exploits the pushdown model of control flow to enable a new mode of garbage
collection—compositional garbage collection—which does not require the ability
to inspect the continuation.

The key observation is that, in a stack-precise CFA, the heap present at the
point of a call is in scope at the point of its return. Thus, the analysis can offload
some of the contents of the callee’s heap to the caller’s—in particular, the data
irrelevant to the callee’s execution. When this offloading is performed, the final
heap of the callee (just as it returns) is incomplete with respect to subsequent
execution. But, since the caller’s heap is in scope at this point, the analysis can
reconstitute the subsequent heap by combining the caller’s heap with the callee’s
final heap.

The data relevant to the callee’s execution is the data reachable from its
local environment and excludes the data reachable from its continuation alone.
Offloading heap data, then, consists of GC-ing each callee’s heap with respect
to its local environment only. When one applies this practice consistently to all
calls, one associates with each active call not a heap but a heap fragment, effec-
tively decomposing the heap across the continuation. As we will show, careful
separation and combination of these heap fragments can perfectly simulate the
presence of the full heap.

This liberation of GC from the continuation has several consequences for the
host CFA.

198 K. Germane and M. D. Adams

1. It simplifies both the formalization and implementation of the host CFA,
since it can omit the relatively complex machinery to ensure the continuation-
resident addresses are at hand.

2. It reduces the host CFA’s workload by not requiring it to traverse full heaps.
Earl et al. [4] observe that traversal of large heaps observably increases anal-
ysis time.

3. It recovers context irrelevance in the host CFA’s semantics, a property we
discuss more in Section 3.4 and Section 6.1.

4. It enables purely-local execution summaries which makes memoization much
more effective.

In sum, relative to pushdown GC, compositional GC offers quantitative benefits
to the host CFA, being strictly more powerful, as well as qualitative.

1.1 Examples

Let’s look at an example where compositional GC makes memoization more
effective. Consider the following Scheme program

(let* ([id (lambda (x) x)]

[y (id 42)]

[z (id y)])

(+ y z))

which calls id twice, each time on 42.
We would hope that a CFA would be able to memoize its analysis of the

first call and, upon recognizing that the second call is semantically-identical, re-
use its results. However, contemporary CFAs will not because each call is made
with a different heap—the second call’s heap includes a binding for y that the
first’s doesn’t. Moreover, this distinction persists even with pushdown GC since
y’s binding is needed to continue execution after the call. Since CFAs have no
means but reachability to determine what is relevant to a given execution point,
and since what is relevant constitutes a memoization key, pushdown GC is too
weak to identify these two calls.

In contrast, a CFA with compositional GC produces a heap fragment for
each call which is closed over only data reachable from the local environment—
for a call, the procedure and argument values themselves. Accordingly, from its
perspective, these two calls are identical and specify a single memoization key.

Now let’s look at an example where compositional GC keeps co-live bindings
of the same variable distinct. Consider the following Scheme program

(letrec ([f (lambda (x)

(if (prime? x)

(let ([y (f (+ x 1))])

(+ x y))

x))])

(f 2))

Liberate Abstract Garbage Collection 199

which defines and calls a recursive procedure f.
Concrete evaluation of this program proceeds first calls f with 2, and then 3,

and then 4, returning 4, and then 3 + 4 = 7 and then 2 + 7 = 9. The procedure
f is properly recursive—so these calls are nested—and, after f is called with
4 but before it returns, three distinct bindings of x are live. Moreover, since
each binding of x is needed until its binding call returns, each is continuation-
reachable and therefore not claimed by GC. These facts and limitations translate
to the analysis setting: a CFA will discover multiple co-live bindings of x which
persist in the face of pushdown GC. Consequently, even with pushdown GC, a
CFA will in general join these bindings to some degree, concluding that x can
be 2 whenever it can be 3 and can be 3 whenever it can be 4.

In constrast, just before a CFA with compositional GC performs each call
to f, it GCs with respect to the operator and argument values which, in each
case, consist of the closure of f (which reaches only itself in the heap) and a
number (which doesn’t reach anything). Thus, each binding to x is the first in its
respective heap fragment and doesn’t interfere with the live bindings of x in other
heap fragments. Using a numeric abstraction in which arithmetic operations
propagate but do not introduce approximation [1], a CFA with compositional
GC will produce an exact answer (whereas one with pushdown GC will not).

1.2 Generalizing the Approach

The conventional treatment of the heap by CFA is to thread it through execution,
allowing it to evolve as it goes. In contrast, compositional GC advocates that the
CFA treat the heap with the same discipline that it treats the environment: saved
at the evaluation of a subexpression and restored when its evaluation completes
and its value is delivered. That is, compositional GC is achieved by, in effect,
treating the heap compositionally.

What happens if we impose the same compositional discipline on other
threaded components, such as the timestamp? In that case, we move from the
last-k-call-sites4 context abstraction of k-CFA [14] to the top-m-stack-frames5

context abstraction of m-CFA [11] This appearance of m-CFA’s abstraction in
a stack-precise CFA is the first such, to our knowledge.

With compositional treatment of both the heap and timestamp, we arrive
at a stack-precise CFA which treats each of its components compositionally.
This treatment also leads to a CFA closer to being compositional in the sense
that the analysis of a compound expression is a function of the analyses of
its constituent parts. Accordingly, we refer to such a stack-precise CFA as a
compositional control-flow analysis.

The remainder of the paper is as follows. We first introduce the syntax of the
language we will use throughout the paper in Section 2. We then discuss the en-
hancements of perfect stack precision, garbage collection, and their combination
in Section 3. We then proceed through a series of semantics which transition

4 as in, most-recent k call sites
5 as in, youngest m stack frames

200 K. Germane and M. D. Adams

from a threaded heap to a compositional, garbage-collected heap in Section 4.
We then abstract the compositional semantics to obtain our CFA in Section 5.
We discuss the ramifications of the compositional treatment of each of the heap
and abstract time in Section 6. We finally discuss related work in Section 7 and
conclusions and future work in Section 8.

Note In the remainder of the paper, we use the standard term store to refer
to the analysis component which models the heap. Thus, we will describe our
technique as, e.g., treating stores compositionally.

2 A-Normal Form λ-Calculus

For presentation, we keep the language small: we use a unary λ-calculus in A-
normal form [5], the grammar of which is given below.

Exp � e ::= ce | letx = ce in e

CExp � ce ::= ae | (ae0 ae1) | set!x ae
AExp � ae ::= x |λx.e

Var � x [an infinite set of variables]

A proper expression e is a call expression ce or a let-expression, which binds
a variable to the result of a call expression. (Restricting the bound expression
to a call expression prevents let-expressions from nesting there, a hallmark of
A-normal form.) A call expression ce is an atomic expression ae, an application,
or a set!-expression. An atomic expression ae is a variable reference or a λ
abstraction.

Atomic expressions are trivial [13]. We include set!-expressions to produce
mutative effects that must be threaded through evaluation. (The approach we
present in this paper can also handle more-general forms of mutation, such as
boxes.) For our purposes, we consider a set!-expression “serious” [13] since it has
an effect on the store.

A program is a closed expression; we assume (without loss of generality) that
programs are alphatised—that is, that each bound variable has a distinct name.

Expressions of the form (ae0 ae1) for some ae0 and ae1 constitute the set
App; similarly, expressions of the form λx.e for some x and e constitute the set
Lam.

3 Background

In this section, we review abstract garbage collection and the k-CFA context
abstraction. We begin by introducing a small-step concrete semantics which
defines the ground truth of evaluation.

Liberate Abstract Garbage Collection 201

3.1 Semantic Domains

First, we introduce some semantic components that we will use heavily through-
out the rest of the paper.

v ∈ Val = Lam × Env ρ ∈ Env = Var ⇀ Time

t ∈ Time = App∗ a ∈ Address = Var × Time

σ ∈ Store = Address ⇀ Val κ ∈ Cont ::= mt | lt(x, ρ, e, κ)

A value v is closure, a pair of a λ abstraction and an environment which closes
it. An environment ρ is a finite map from each variable x to a time t; a time t
is a finite sequence of call sites. Let ρ|e denote the restriction of the domain of
the environment ρ to the free variables of e. An address a is a pair of a variable
and time and a store σ is a map from addresses to values. A continuation κ is
either the empty continuation or the continuation of a let binding.

3.2 Concrete Semantics

We define our concrete semantics as a small-step relation over abstract machine
states. The state space of our machine is given formally as follows.

ς ∈ State =Eval + Apply

ςev ∈ Eval =Exp × Env × Store × Cont × Time

ςap ∈ Apply =Val × Store × Cont × Time

Machine states come in two variants. An Eval machine state represents a point
in execution in which an expression will be evaluated; it contains registers for
an expression e, its closing environment ρ, the store σ (modelling the heap), the
continuation κ (modelling the stack), and the time t. An Apply machine state
represents a point in execution at which a value is in hand and must be delivered
to the continuation; it contains registers for the value v to deliver, the store σ,
the continuation κ, and the time t.

Figure 1 contains the definitions of two relations over machine states, the
union of which constitutes the small-step relation. The →ev relation transitions
an Eval state to its successor. The Let rule pushes a continuation frame to save
the bound variable, environment, and body expression. The resultant Eval state
is poised to evaluate the bound expression ce. The Call rule first uses aeval
defined

aeval(σ, ρ, x) = σ(x, ρ(x)) aeval(σ, ρ, λx.e) = (λx.e, ρ|λx.e)

to obtain values for each of the operator and argument. It then increments
the time, extends the store and environment with the incremented time, and
arranges evaluation of the operator body at the incremented time. The Set! rule
remaps a location in the store designated by a given variable (which is resolved in
the environment) to a value obtained by aeval. It returns the identity function.

202 K. Germane and M. D. Adams

Let

ev(letx = ce in e, ρ, σ, κ, t) →ev ev(ce, ρ, σ, lt(x, ρ, e, κ), t)

Call
(λx.e, ρ′) = aeval(σ, ρ, ae0) v = aeval(σ, ρ, ae1) t′ = (ae0 ae1) :: t

σ′ = σ[(x, t′) �→ v] ρ′′ = ρ′[x �→ t′]

ev((ae0 ae1), ρ, σ, κ, t) →ev ev(e, ρ
′′, σ′, κ, t′)

Set!
v = aeval(σ, ρ, ae) a = (x, ρ(x)) σ′ = σ[a �→ v]

ev(set!x ae, ρ, σ, κ, t) →ev ap((λx.x,⊥), σ′, κ, t)

Atomic
v = aeval(σ, ρ, ae)

ev(ae, ρ, σ, κ, t) →ev ap(v, σ, κ, t)

Apply
ρ′ = ρ[x �→ t] σ′ = σ[(x, t) �→ v]

ap(v, σ, lt(x, ρ, e, κ), t) →ap ev(e, ρ
′, σ′, κ, t)

Fig. 1. Small-step abstract machine semantics

The Atomic rule evaluates an atomic expression. The Apply rule applies a
continuation to a value, extending the environment and store and arranging for
the evaluation of the let body.

We inject a program pr into the initial evaluation state ev(pr ,⊥,⊥,mt, 〈〉)
which arranges evaluation in the empty environment, empty store, halt contin-
uation, and empty time.

Adding Garbage Collection At this point, we have a small-step relation
defining execution by abstract machine and are perfectly positioned to apply,
e.g., the Abstracting Abstract Machines (AAM) [15] recipe to abstract the se-
mantics and thereby obtain a sound, computable CFA. Before doing so, however,
we will extend our semantics to garbage-collect the store on each transition. This
extension has no semantic effect in the concrete semantics but, as we will discuss,
greatly increases the precision of the abstracted (or, simply, abstract) semantics.

We extend the semantics by defining two garbage collection transitions, one
which collects an Eval state and one which collects an Apply state. Because our
abstract machine explicitly models local environments, heaps (via stores), and
stacks (via continuations), we can apply a copying collector to perform garbage
collection.

First, we define a family root of metafunctions to extract the reachability
root set from values, environments, and continuations.

rootv(λx.e, ρ) = rootρ(ρ) rootκ(mt) = ∅
rootρ(ρ) = ρ rootκ(lt(x, ρ, e, κ)) = rootρ(ρ|e) ∪ rootκ(κ)

The rootv metafunction extracts the root addresses from a closure by using rootρ
to extract the root addresses from its environment. By the rootρ metafunction,

Liberate Abstract Garbage Collection 203

the root addresses of an environment are simply the variable–time pairs that
define it—that is, the definition of rootρ views its argument ρ extensionally as
a set of addresses. The rootκ metafunction extracts the root addresses from a
continuation. The empty continuation has no root addresses whereas the root
addresses of a non-empty continuation are those of its stored environment (re-
stricted to the free variables of the expression it closes) combined with those of
the continuation it extends.

Next, we define a reachability relation →σ parameterized by a store σ and
over addresses by

a0 →σ a1 ⇔ a1 ∈ rootv(σ(a0))

We then define the reachability of a root set with respect to a store

R(σ,A) = {a′ : a ∈ A, a →∗
σ a′}

where →∗
σ is the reflexive, transitive closure of →σ. From here, we obtain the

transitions
GC-Eval
A = rootρ(ρ|e) ∪ rootκ(κ) σ′ = σ|R(σ,A)

ev(e, ρ, σ, κ, t) →GC ev(e, ρ, σ′, κ, t)

GC-Apply
A = rootv(v) ∪ rootκ(κ) σ′ = σ|R(σ,A)

ap(v, σ, κ, t) →GC ap(v, σ′, κ, t)

where σ|R(σ,A) is σ restricted to the reachable addresses R(σ,A). We compose
this garbage-collecting transition with each of →ev and →ap. Altogether, the
garbage-collecting semantics are given by →GC ◦[→ev ∪ →ap].

3.3 Abstracting Abstract Machines with Garbage Collection

Now that we have a small-step abstract machine semantics with GC, we are
ready to apply the AAM recipe to obtain a sound, computable CFA with GC.

We apply the AAM recipe in two steps.
First, we refactor the state space so that all inductively-defined components

are redirected through the store. Practically, this refactoring has the effect of
allocating continuations in the store. For our semantics, this refactoring yields
the state space StateSA defined

StateSA =EvalSA + ApplySA

EvalSA =Exp × Env × StoreSA × ContAddr × Time

ApplySA =StoreSA × ContAddr × Val × Time

in which a continuation address α ∈ ContAddr replaces the continuation drawn
from Cont . The space of continuations becomes defined by

κSA ∈ ContSA ::= mt | lt(x, ρ, e, α)

204 K. Germane and M. D. Adams

and of stores by

StoreSA = Address + ContAddr ⇀ Val + ContSA

Not reflected in this structure is the typical constraint that an address a will
only ever locate a value and a continuation address α will only ever locate a
continuation.

Second, we finitely partition the unbounded address space of the store and
treat the constituent sets as abstract addresses (via some finite representative).
Practically, this partitioning is achieved by limiting the time t to at most k call
sites where k becomes a parameter of the CFA (leading to the designation k-
CFA). Any addresses which agree on the k-length prefix of their time component
are identified and the finite representative for this set of addresses uses simply

that prefix. Accordingly, we define an abstract time domain T̂ime = Time≤k

and let it reverberate through the state space definitions, obtaining

Ŝtate =Êval + Âpply

Êval =Exp × Ênv × Ŝtore × ̂ContAddr × T̂ime

Âpply =Ŝtore × ̂ContAddr × V̂al × T̂ime

(in which we allow the definition of ContAddr to depend, directly or not, on that
of Time).

Finitization of the address space is key to producing a computable CFA.
Practically, however, it means that some values located previously by distinct
addresses will after be located by the same abstract address. When this conflation
occurs, the CFA must behave as if either access was intended; this behavior is
manifested by non-deterministically choosing the value located by a particular
address. Because our language is higher-order, this non-determinism also affects
the control flows the CFA considers. This effect is evident in the Call rule
defined

Call

(λx.e, ρ̂′) ∈ âeval(σ̂, ρ̂, ae0) v̂ = âeval(σ̂, ρ̂, ae1) t̂′ = �(ae0 ae1) :: t̂k
σ̂′ = σ̂[(x, t̂′) �→ v̂] ρ̂′′ = ρ̂′[x �→ t̂′]

ev((ae0 ae1), ρ̂, σ̂, α̂, t̂) →ev ev(e, ρ̂
′′, σ̂′, α̂, t̂′)

which is structurally identical to that of the concrete semantics except in two
respects:

1. The abstract evaluation of the operator ae0 may yield multiple closures and
the CFA considers the application of each. Due to the approximation finitiza-
tion introduces, not every abstractly-applied closure will necessarily appear
in a compatible call under the concrete semantics. Such closures, initiating
spurious control paths, waste analysis effort and this waste compounds as
the exploration of spurious paths leads to the discovery of yet more.

2. The abstract time component is limited to length at most k (obtained by
�·k).

Liberate Abstract Garbage Collection 205

In short, a finite address space introduces a value approximation and, in a higher-
order language such as ours, a control approximation as well.

While the strategy to store-allocate continuations facilitates the systematic
abstraction process of AAM, it also imposes a similar approximation on the
continuation space as it does the value space. In consequence, a CFA obtained
by AAM approximates not only the value and control flow of the program,
but the return flow as well. Return-flow approximation is manifest as a single
abstract call returning to caller contexts that did not make that call.6

On the other hand, because the AAM abstraction process preserves the over-
all structure of the state space—in particular, the explicit models of the local
environment, heap, and stack—applying GC to an abstract state is straightfor-
ward. In addition, GC in the abstract semantics improves precision and reduces
the workload of the analyzer [10].

To see how GC improves precision, consider a 0CFA (that is, [k = 1]CFA)
without GC of the Scheme program

(let* ([id (lambda (x) x)]

[y (id 42)]

[z (id 35)])

z)

at the call (id 42). As the abstract call is made, the abstract value 42 is stored
an address a derived from x. Once the call returns, the abstract value 42 still
resides in the heap at a which is now unreachable. However, as the abstract call
(id 35) is made, the address a is derived again (a consequence of the finite
address space), and the abstract value 35 is merged with the abstract value 42
which persists at a. Since the value at a is returned and becomes the result of
the program, the CFA reports that the program results in either 42 or 35.

Now consider a 0CFA with GC of the same program. Once the call (id
42) returns and α becomes unreachable, its heap entry is reaped by GC. The
abstract call (id 35) then allocates the abstract value 35 at a which is, from
the allocator’s perspective, a fresh heap cell. Consequently, the CFA precisely
reports that the program results in 35.

The above example also illustrates how GC reduces the workload of the an-
alyzer. Though we didn’t call it out, when using a naive continuation allocator
without GC, the abstract call (id 35) not only correctly returns to the contin-
uation binding z but also spuriously returns to the continuation binding y. In
this example, this spurious control (return) flow does no more damage to the
precision of 0CFA’s approximation of the final program result, but does cause
it to explore infeasible control flows which damage the precision of the 0CFA’s
approximation of intermediate values. GC prevents the spurious flows in this
example from arising at all; however, in general, it does not prevent all spurious
return flows.
6 P4F [6] uses a particular continuation allocator which is able to avoid return-flow
approximation. However, the P4F technique applies only when the store is globally-
widened and, in such a setting, no data ever becomes unreachable which renders GC
completely ineffective.

206 K. Germane and M. D. Adams

3.4 Stack-Precise CFA with Garbage Collection

In contrast to an AAM-derived analysis, a stack-precise CFA does not approx-
imate the return flow of the program. A stack-precise CFA achieves this feat
by modelling control flow with a pushdown system which allows it to precisely
match returns with their corresponding calls. However, to do so, it requires full
control of the continuation which we abide by factoring it out of the state space,
obtaining

StatePD =EvalPD + ApplyPD

EvalPD =Exp × Env × Store × Time

ApplyPD =Val × Store × Time

before we abstract it to produce a CFA. (Some CFAs factor the store out of
machine states to be managed globally, part of widening the store. In a sense,
factoring out the continuation is part of widening the continuation.) Without
a continuation component, an EvalPD state is an evaluation configuration and
an ApplyPD state is an evaluation result. Except for the presence of the time
component, StatePD exhibits precisely the configuration and result shapes one
finds in many stack-precise CFAs [17, 8, 1, 18].

However, factoring the continuation out and ceding control of it to the anal-
ysis presents an obstacle to abstract GC, which needs to extract the root set of
reachable addresses from it. Earl et al. [4] developed a technique whereby the
analysis could introspect the continuation and extract the root set of reachable
addresses from the continuation. Johnson and Van Horn [8] reformulated this
incomplete technique for an operational setting and offered a complete—albeit
theoretically more-expensive—technique capable of more precision. Johnson et
al. [7] unified these techniques within an expanded framework. Darais et al. [1]
then showed that the Abstracting Definitional Interpreters-approach—currently
the state of the art—is compatible with the complete technique by including the
set of stack root addresses as a component in the evaluation configuration.

Context Irrelevance These techniques indeed reconcile the conflicting needs
of GC and stack-precise control yielding an analysis which enjoys the precision-
enhancing benefits of each. However, the addition of garbage collection causes
the resultant analysis to violate context irrelevance [8], the property that the
evaluation of a configuration is independent of its continuation. In terms of
the concrete semantics of Section 3.2, context irrelevance is the property that
ev(e, ρ, σ, κ, t) →+ ap(σ′, κ, v) if and only if ev(e, ρ, σ, κ′, t) →+ ap(σ′, κ′, v) for
any κ and κ′.

The incomplete and complete techniques to achieve stack-precise abstract GC
each violate context irrelevance. Under the incomplete technique, abstract GC
prevents spurious paths from being explored and changes the store yielded by
those that are explored. Thus, the abstract evaluation of a configuration becomes
dependent on (the root set of reachable addresses embedded in) its continuation.
The complete technique, achieved by introducing the set of root addresses as a

Liberate Abstract Garbage Collection 207

component in the evaluation configuration, vacuously restores context irrelevance
by distinguishing otherwise-identical configurations based on the continuation.
That is, the states ev(e, ρ, σ, κ, t) and ev(e, ρ, σ, κ′, t) with identical configurations
but distinct continuations become the continuation-less evaluation configurations
ev(e, ρ, σ,A, t) and ev(e, ρ, σ,A′, t) with distinct root address sets A and A′. This
address set is a close approximation of the continuation and effectively makes
the control context relevant to evaluation.

3.5 The k-CFA Context Abstraction

In the concrete semantics, the time component t serves two purposes. The first
purpose is to provide the allocator with a source of freshness, so that when the
allocator must furnish a heap cell for a variable bound previously in execution, it
is able to furnish a distinct one. Were freshness the only constraint on t, the Time
domain could simply consist of N. In anticipation of its role in the downstream
CFA, the time component assumes a second purpose which is to capture some
notion of the context in which execution is occurring. The hope is that the notion
of context it captures is semantically meaningful so that, when an unbounded
set of times are identified by the process of abstraction, each address, which
is qualified by such an abstracted time, locates a semantically-coherent set of
values.

To get a better idea of what notion of context our treatment of time cap-
tures, let’s examine how our concrete semantics treats time, as dictated by k-
CFA. Time begins as the empty sequence 〈〉. It is passed unchanged across all
Eval transitions, save one, and the Apply transition. The exception is the Call
transition, which instead passes the (at-most-)k-length prefix of the application
prepended to the incoming time. Hence, the k-CFA context abstraction is the
k-most-recent calls made in execution history.

In Section 6.2, we consider the ramifications of threading the time component
through evaluation and compare it to an alternative treatment.

4 From Threaded to Compositional Stores

In this section, we present a series of four semantics that gradually transition
from a threaded treatment of stores without GC to a compositional treatment of
stores with GC. We define each of these semantics in terms of big-step judgments
of (or close to) the form σ, ρ, t � e ⇓ (v, σ′). This judgment expresses that
the evaluation configuration consisting of the expression e under the store σ,
environment ρ, and timestamp t evaluates to the evaluation result consisting of
the value v and the store σ′. When discussing the evaluation of e, we will refer
to σ as the incoming store and σ′ as the resultant store. We will also refer to
the time component t as the binding context since, in the big-step semantics, its
connection to the history of execution becomes more distant.

Formulating our semantics in big-step style offers two advantages to our set-
ting: First, we can readily express them by big-step definitional interpreters at

208 K. Germane and M. D. Adams

which point we can apply systematic abstraction techniques [1, 18] to obtain
corresponding CFAs exhibiting perfect stack precision. Second, they emphasize
the availability of the configuration store at the delivery point of the evalua-
tion result; this availability is crucial to our ability to shift to a compositional
treatment of the store.

4.1 Threaded-Store Semantics

To orient ourselves to the big-step setting, we present the reference semantics for
our language in big-step style in Figure 2. This reference semantics is equivalent
to the reference semantics given in small-step style in Section 3.2 except that
there is no corresponding Apply rule; its responsibility—to deliver a value to
a continuation—is handled implicitly by the big-step formulation. In terms of
big-step semantics, this reference semantics is characterized by the threading of
the store through each rule; the resultant store of evaluation is the configuration
store plus the allocation and mutation incurred during evaluation. Hence, we
refer to this semantics as the threaded-store semantics. We use natural numbers
as store subscripts in each rule to emphasize the store’s monotonic increase.

Let
σ0, ρ, t � ce ⇓ (v0, σ1)

ρ′ = ρ[x �→ t] σ2 = σ1[(x, t) �→ v0] σ2, ρ
′, t � e ⇓ (v, σ3)

σ0, ρ, t � letx = ce in e ⇓ (v, σ3)

Call
((λx.e, ρ0), σ1) = aeval(σ0, ρ, ae0)

(v1, σ2) = aeval(σ1, ρ, ae1) t′ = (ae0 ae1) :: t
ρ1 = ρ0[x �→ t′] σ3 = σ2[(x, t

′) �→ v1] σ3, ρ1, t
′ � e ⇓ (v, σ4)

σ0, ρ, t � (ae0 ae1) ⇓ (v, σ4)

Set!
(v, σ1) = aeval(σ0, ρ, ae) σ1 = σ0[(x, ρ(x)) �→ v]

σ0, ρ, t � set!x ae ⇓ ((λx.x,⊥), σ1)

Atomic

σ, ρ, t � ae ⇓ aeval(σ, ρ, ae)

Fig. 2. The threaded-store semantics

A program pr is evaluated in an initial configuration with an empty store ⊥,
an empty environment ⊥, and an empty binding context 〈〉. In such a configu-
ration, pr evaluates to a value v if ⊥,⊥, 〈〉 � pr ⇓ (v, σ).

The Let rule evaluates the bound call expression ce under the incoming
environment and store. If evaluation results in a value–store pair, this incoming
environment is extended with a binding derived from the bound variable and

Liberate Abstract Garbage Collection 209

incoming binding context.7 The resultant store is extended with mapping from
that binding to the resultant value. The body expression is evaluated under
the extended environment and store and its result becomes that of the overall
expression.

Contrasting the treatment of the environment and the store by the Let rule
is instructive. On the one hand, the environment is treated compositionally: the
incoming environment of evaluation is restored and extended after evaluation of
the bound value. On the other hand, the store is treated non-compositionally:
the store resulting from the evaluation of the bound expression is extended after
it has accumulated the effects of its evaluation.

Under this criteria, we classify the treatment of the binding context as compo-
sitional rather than threaded. This compositional treatment departs from typical
practice of CFA and is the first such treatment in a stack-precise CFA to our
knowledge. In Section 6.2, we examine the ramifications of this treatment.

The Call rule evaluates the atomic expressions ae0 and ae1 for the operator
and argument, respectively. It then derives a new binding context, extends the
environment and store with a binding using that context, and evaluates the oper-
ator body under the extended environment, store, and derived binding context.
The result of evaluation the body is that of the overall expression.

The Set! rule evaluates the atomic body expression ae and updates the
binding of the referenced variable in the store. Its result is the identity function
paired with the updated store.

The Atomic rule evaluates an atomic expression ae using the aeval atomic
evaluation metafunction. Foreshadowing the succeeding semantics, we define
aeval to return a pair of its calculated value and the given store. In this seman-
tics, the store is passed through unmodified; in forthcoming semantics, it will be
altered according to the calculated value. Atomic evaluation is unchanged from
the small-step semantics:

aeval(σ, ρ, x) = (σ(x, ρ(x)), σ) aeval(σ, ρ, λx.e) = ((λx.e, ρ|λx.e), σ)

4.2 Threaded-Store Semantics with Effect Log

The second semantics enhances the reference semantics with an effect log ξ which
explicitly records the allocation and mutation that occurs through evaluation.
The effect log is considered part of the evaluation result; accordingly the effect log
semantics are in terms of judgments of the form σ, ρ, t � e ⇓! (v, σ

′), ξ. Figure 3
presents the effect log semantics, identical to the reference semantics except for
(1) the addition of the effect log and (2) the use of the metavariable a to denote
an address (x,t). (This usage persists in all subsequent semantics as well.)

The effect log is represented by a function from store to store. The definition
of each log is given by either a literal identity function, a use of the extendlog

7 Because the program is alphatised, the binding of a let-bound variable in a particular
calling context will not interfere with the binding of any other variable.

210 K. Germane and M. D. Adams

Let
σ0, ρ, t � ce ⇓! (v0, σ1), ξ0

ρ′ = ρ[x �→ t] σ2 = σ1[(x, t) �→ v0] σ2, ρ
′, t � e ⇓! (v, σ3), ξ1

σ0, ρ, t � letx = ce in e ⇓! (v, σ3), ξ1 ◦ extendlog((x, t), v0, σ1) ◦ ξ0

Call
((λx.e, ρ0), σ1) = aeval(σ0, ρ, ae0)

(v1, σ2) = aeval(σ1, ρ, ae1) t′ = (ae0 ae1) :: t
ρ1 = ρ0[x �→ t′] σ3 = σ2[(x, t

′) �→ v1] σ3, ρ1, t
′ � e ⇓! (v, σ4), ξ

σ0, ρ, t � (ae0 ae1) ⇓! (v, σ4), ξ ◦ extendlog((x, t′), v1, σ2)

Set!
(v, σ1) = aeval(σ0, ρ, ae)

a = (x, ρ(x)) σ1 = σ0[a �→ v]

σ0, ρ, t � set!x ae ⇓! ((λx.x,⊥), σ1), extendlog(a, v, σ1)

Atomic

σ, ρ, t � ae ⇓! aeval(σ, ρ, ae), λσ.σ

Fig. 3. Threaded-store semantics with an effect log

metafunction, or the composition of effect logs. The extendlog metafunction is
defined

extendlog(a, v, σ
′) = λσ.σ[a �→ v] ∪ σ′

where the union of the extended store σ[a �→ v] and the value-associated store
σ′ treats each store extensionally as a set of pairs but the result is always a
function—i.e. any given address is paired with at most one value. The effect
log of the Atomic rule is the identity function, reflecting that no allocation or
mutation is performed when evaluating an atomic expression. The effect log of
the Set! rule is constructed by the metafunction extendlog ; the store argument
to extendlog is the store after the mutation has occurred. The use of this store is
necessary to propagate the mutative effect and ensures that its union with the
store on which this log is replayed agrees on all common bindings. The effect log
of the Call rule is composed of the effect log of evaluation of the body and an
entry for the allocation of the bound variable. Finally, the effect log of the Let
rule is composed of the effect logs of evaluation of both the body and binding
expression interposed by an entry for the allocation of the bound variable.

In this semantics (and the next), the bindings in σ′ are redundant: once
extendlog applies the the mutative or allocative binding to its argument σ, σ
already contains all the bindings of σ′. Once we introduce GC to the semantics,
however, this will no longer be the case.

The intended role of the effect log is captured by the following lemma, which
states that one may obtain the resultant store by applying the resultant log to
the initial store of evaluation.

Liberate Abstract Garbage Collection 211

Lemma 1. If σ, ρ, t � e ⇓! (v, σ
′), ξ, then σ′ = ξ(σ).

The proof proceeds straightforwardly by induction on the judgment’s derivation.

4.3 Compositional-Store Semantics

The third semantics (seen in Figure 4) shifts the previous semantics from thread-
ing the store to treating it compositionally. Under this treatment, evaluation
results still consist of a value, store, and effect log, but the store is associated
directly to the value—at least conceptually—and not treated as a global effect
repository. This alternative role is particularly apparent in the Let rule: the
store resulting from evaluation of the bound expression is not extended to be
used as the initial store of evaluation of the body. Instead, the effect log resulting
from evaluation of the bound expression is applied to the initial store (of the
overall let expression). We emphasize this compositional treatment by no longer
using numeric subscripts, which suggest “evolution” of the store, and instead
using ticks, which suggest distinct (but related) instances.

Let
σ, ρ, t � ce ⇓◦ (v′, σv′), ξ′ σ′ = ξ′(σ)

(ρ′, σ′′) = extend(ρ, σ′, x, t, v′, σv′) σ′′, ρ′, t � e ⇓◦ (v, σv), ξ

σ, ρ, t � letx = ce in e ⇓◦ (v, σv), ξ ◦ extendlog((x, t), v′, σv′) ◦ ξ′

Call
((λx.e, ρ0), σ0) = aeval(σ, ρ, ae0) (v1, σ1) = aeval(σ, ρ, ae1) t′ = (ae0 ae1) :: t

(ρ′, σ′) = extend(ρ0, σ0, x, t
′, v1, σ1) σ′, ρ′, t′ � e ⇓◦ (v, σv), ξ

σ, ρ, t � (ae0 ae1) ⇓◦ (v, σv), ξ ◦ extendlog((x, t′), v1, σ1)

Set!
(v, σv) = aeval(σ, ρ, ae)

a = (x, ρ(x)) σ′ = σv[a �→ v]

σ, ρ, t � set!x ae ⇓◦ ((λx.x,⊥), σ′), extendlog(a, v, σ
′)

Atomic

σ, ρ, t � ae ⇓◦ aeval(σ, ρ, ae), λσ.σ

Fig. 4. The compositional-store semantics

We use the extend metafunction to bind a value v (with an associated store
σv) to a variable x in a given binding context t within a given environment ρ
and store σ, defined

extend(ρ, σ, x, t, v, σv) = (ρ[x �→ t], σ[(x, t) �→ v] ∪ σv)

212 K. Germane and M. D. Adams

When we extend σ with a mapping for v, we also copy all of the mappings from
σv. This copying will yield a well-formed store since σ[(x, t) �→ v] and σv agree
on any common bindings.

Although the role of the store has changed, the same lemma holds in this
semantics as does in the previous. We repeat it in terms of this semantics.

Lemma 2. If σ, ρ, t � e ⇓◦ (v, σv), ξ, then ξ(σ) = σv.

Like the previous lemma, its proof can be obtained by induction on the
judgment’s derivation.

4.4 Compositional-Store Semantics with Garbage Collection

Our final semantics (seen in Figure 5) continues the compositional treatment of
the store but GCs stores to remove irrelevant bindings. Under this compositional
treatment, the role of the store is to model the fragment of the heap which is
reachable from an associated environment: the store of a configuration closes the
associated environment and the store of a result closes the environment of the
associated value. Accordingly, the root set of reachability used by GC includes
the addresses of the closed environment only and, in particular, does not include
addresses from the continuation. We define reachability just as we did for GC in
Section 3.2, using the rootv and rootρ metafunctions to extract a root set from
a value and environment, respectively.

In this semantics, we use a modified atomic evaluation function aevalgc which
garbage-collects the store associated with a value. It is defined

aevalgc(σ, ρ, x) = (v, gc(v, σ)) where v = σ(x, ρ(x))

aevalgc(σ, ρ, λx.e) = (v, gc(v, σ)) where v = (λx.e, ρ|λx.e)

where gc(v, σ) prunes the unreachable bindings from σ with respect to v.
This semantics is careful to ensure that each evaluation is performed under

a store which contains no values unreachable from the environment via frequent
use of the restrict metafunction. For a given expression e, closing environment
ρ, and closing store σ, the restrict metafunction first determines the restriction
ρ|e of ρ to the free variables of e and then the bindings of σ reachable from ρ|e;
it then garbage-collects the store by pruning unreachable bindings. Formally,
restrict is defined

restrict(e, ρ, σ) = (ρ|e, gc(ρ|e, σ))
where gc(ρ, σ) prunes the unreachable bindings from σ with respect to ρ.

The Let rule proceeds by first obtaining the restriction of the environment
and store with respect to the bound expression ce, before evaluating ce under
that restriction. The evaluation of ce produces a value v′, an associated store σv′

which closes only that value, and an effect log ξ′. The Let rule then replays the
effect log ξ′ on the initial store σ thereby accumulating any mutation (and allo-
cation on which it depends) which occurred. After replaying the log, it extends
the resultant store σ′ and initial environment ρ with a binding for v′ and copies

Liberate Abstract Garbage Collection 213

Let
(ρce , σce) = restrict(ce, ρ, σ)

σce , ρce , t � ce ⇓gc (v′, σv′), ξ′ σ′ = ξ′(σ) (ρ′, σ′′) = extend(ρ, σ′, x, t, v′, σv′)
(ρe , σe) = restrict(e, ρ′, σ′′) σe , ρe , t � e ⇓gc (v, σv), ξ

σ, ρ, t � letx = ce in e ⇓gc (v, σv), ξ ◦ extendlog((x, t), v′, σv′) ◦ ξ′

Call
((λx.e, ρ0), σ0) = aevalgc(σ, ρ, ae0) (v1, σ1) = aevalgc(σ, ρ, ae1)

t′ = (ae0 ae1) :: t (ρ′, σ′) = extend(ρ0, σ0, x, t
′, v1, σ1)

(ρe , σe) = restrict(e, ρ′, σ′) σe , ρe , t
′ � e ⇓gc (v, σv), ξ

σ, ρ, t � (ae0 ae1) ⇓gc (v, σv), ξ ◦ extendlog((x, t′), v1, σ1)

Set!
(v, σv) = aevalgc(σ, ρ, ae)

a = (x, ρ(x)) σ′ = σv[a �→ v]

σ, ρ, t � set!x ae ⇓gc ((λx.x,⊥),⊥), extendlog(a, v, σ
′)

Atomic

σ, ρ, t � ae ⇓gc aevalgc(σ, ρ, ae), λσ.σ

Fig. 5. The compositional-store semantics with garbage collection

the bindings of its associated store σv′ . Finally, the extended environment and
store are restricted with respect to the body expression e before e’s evaluation
under them.

The Call rule proceeds by first evaluating the atomic operator and argument
expressions. After calculating the new binding context t′, the operator value
environment and store are extended with the new binding. Before evaluation of
the body e commences, the extended environment and store are restricted with
respect to it.

The Set! rule atomically evaluates the expression ae producing the assigned
value. It returns the identity function which, with an empty environment, is
closed by an empty store.

The Atomic rule evaluates an atomic expression with aevalgc .

To connect this semantics to the previous, we show that the addition of GC
has no semantic effect by the following lemma.

Lemma 3. If σ, ρ, t � e ⇓◦ (v, σv), ξ and σ′ = gc(ρ|e, σ) then σ′, ρ, t � e ⇓gc

(v, σ′
v), ξ

′ where σ′
v = gc(v, σv).

In prose, this lemma states that two evaluation configurations, identical ex-
cept that one’s store is the other’s with unreachable bindings pruned, will yield
the same evaluation result: their evaluation will produce the same value and,
modulo unreachable bindings, the same closing store.

214 K. Germane and M. D. Adams

5 Abstract Compositional-Store Semantics with Garbage
Collection

We now abstract the compositional-store semantics with GC—the final seman-
tics of the preceding section. Abstracting the semantics involves (1) defining a
finite counterpart of each component of the evaluation configuration and result
and (2) defining a counterpart of each semantic rule in terms of these finite
components. With each component of the configuration finite, configurations
themselves become finite. Then we show that each abstracted rule simulates its
counterpart—that it admits the full range of its counterpart’s behavior. Doing
this for each rule ensures that the abstract semantics includes every behavior in-
cluded by the exact semantics. Once that’s complete, we can directly implement
our big-step semantics in an abstract definitional interpreter [1, 18] to obtain our
stack-precise CFA with GC.

We begin by abstracting each configuration component.

v̂ ∈ V̂al = P(Lam × Ênv) ρ̂ ∈ Ênv = Var ⇀ T̂ime

t̂ ∈ T̂ime = App≤m â ∈ Âddress = Var × T̂ime

σ̂ ∈ Ŝtore = Âddress → V̂al ξ̂ ∈ L̂og = Âddress → V̂al

Like its concrete counterpart, an abstract store σ̂ maps an abstract address to
an abstract value. Abstract addresses remain a pair of a variable and binding
context, only the context is abstract. An abstract value v̂, however, is a set of
abstract closures rather than a single closure. An abstract closure is a λ paired
with an abstract environment ρ̂ which itself is a finite map from variables to
binding contexts. An abstract timestamp t̂ is a sequence of at most m application
sites, where m is a parameter to the analysis.8 An abstract log ξ̂ is an extensional
account of the added and modified store mappings relative to the initial store,
and takes the same form of an abstract store itself. We define abstract join,
composition, and application operators by

σ̂0 � σ̂1 = λâ.σ̂0(â) ∪ σ̂1(â) ξ̂0◦̂ξ̂1 = ξ̂0 � ξ̂1 ξ̂(σ̂) = σ̂ � ξ̂

To help show that the abstract semantics simulates the concrete, we make
a connection between the state space of the abstract and that of the concrete.
We make this connection by means of a polymorphic abstraction function | · |9,
defined for all domains except stores by

|ρ| = λx.|ρ(x)| |t| = �tm |(λx.e, ρ)| = {(λx.e, |ρ|)} |ξ| = |ξ(⊥)|
and for stores by

|σ| = λâ.
⋃

|a|=â

|σ(a)|

8 The parameter m is used similarly to the parameter k of k-CFA.
9 The abstraction function is typically accompanied by a complementary concretiza-
tion function to complete a Galois connection. For simplicity here, we leave it in-
complete.

Liberate Abstract Garbage Collection 215

Abstracting a store groups entries by their abstracted address in a large set.
Abstracting an environment ρ abstracts its range. Abstracting a binding context
t takes its at-most-m-length prefix. Abstracting a closure produces a singleton
of that closure with an abstracted environment. Finally, abstracting a log ξ
produces the abstract store that results from apply the log to the empty store
⊥ and then abstracting.

Figure 6 defines the abstract compositional-store semantics with garbage
collection. Structurally, nearly every rule is identical to the exact counterpart
that it abstracts; most of the work of abstraction is defining the abstract domains
and metafunctions and connecting them to those of the exact semantics. The
Call rule differs structurally from its exact counterpart in two notable ways:
First, because an abstract value is a set of closures, it applies for each such
closure in the operator set. Second, it defines the new binding context t̂′ to be
the prefix of the application site prepended to the previous abstract time t̂ and

limited to a length of at most m. The abstract âeval metafunction is defined

âeval(σ̂, ρ̂, x) = (v̂, ĝc(v̂, σ̂)) where v̂ = σ̂(ρ̂(x))

âeval(σ̂, ρ̂, λx.e) = (v̂, ĝc(v̂, σ̂)) where v̂ = {(λx.e, ρ̂|λx.e)}

We omit the straightforward definitions of the abstract variants of ĝc, ̂restrict,
and êxtend.

Let

(ρ̂ce , σ̂ce) = ̂restrict(ce, ρ̂, σ̂)
σ̂ce , ρ̂ce , t̂ � ce ⇓̂ (v̂′, σ̂v′), ξ̂′ σ̂′ = ξ̂′(σ̂) (ρ̂′, σ̂′′) = êxtend(ρ̂, σ̂′, x, t̂, v̂′, σ̂′

v)

(ρ̂e , σ̂e) = ̂restrict(e, ρ̂′, σ̂′′) σ̂e , ρ̂e , t̂ � e ⇓̂ (v̂, σ̂v), ξ̂

σ̂, ρ̂, t̂ � letx = ce in e ⇓̂ (v̂, σ̂v), ξ̂◦̂ξ̂′

Call

(v̂0, σ̂0) = âeval(σ̂, ρ̂, ae0) (λx.e, ρ̂0) ∈ v̂0

(v̂1, σ̂1) = âeval(σ̂, ρ̂, ae1)

t̂′ = 	(ae0 ae1) :: t̂
m (ρ̂′, σ̂′) = êxtend(ρ̂0, σ̂0, x, t̂
′, v̂1, σ̂1)

(ρ̂e , σ̂e) = ̂restrict(e, ρ̂′, σ̂′) σ̂e , ρ̂e , t̂
′ � e ⇓̂ (v̂, σ̂v), ξ̂

σ̂, ρ̂, t̂ � (ae0 ae1) ⇓̂ (v̂, σ̂v), ξ̂

Set!

(v̂, σ̂v) = âeval(σ̂, ρ̂, ae)

(, ξ̂) = êxtend(⊥,⊥, x, ρ̂(x), v̂, σ̂v)

σ̂, ρ̂, t̂ � set!x ae ⇓̂ ({(λx.x,⊥)},⊥), ξ̂

Atomic

σ̂, ρ̂, t̂ � ae ⇓̂ âeval(σ̂, ρ̂, ae),⊥

Fig. 6. The abstract compositional-store semantics with garbage collection

216 K. Germane and M. D. Adams

As a final step before we establish the simulation relationship, we define an
ordering on stores (and logs, extending it in the natural way):

σ̂0 � σ̂1 ⇔ ∀â ∈ Âddress .σ̂0(â) ⊆ σ̂1(â) v̂0 � v̂1 ⇔ v̂0 ⊆ v̂1

We formally connect this abstract semantics with the concrete compositional-
store semantics given in Section 4.4 by the following abstraction theorem.

Theorem 1. If |σ| � σ̂ and |ρ| = ρ̂ and |t| = t̂ and σ, ρ, t � e ⇓gc (v, σv), ξ, then

σ̂, ρ̂, t̂ � e ⇓̂ (v̂, σ̂v), ξ̂ where |v| � v̂ and |σv| � σ̂v and |ξ| � ξ̂.

This theorem states that if the configuration components are related by ab-
straction, then, for any given derivation in the exact semantics, there is an deriva-
tion in the abstract semantics which yields an abstraction of its results. It can
be proved by induction on the derivation.

6 Discussion

Now we examine the ramifications of a compositional treatment of analysis com-
ponents. We do so in turn, first considering the ramifications of treating the store
compositionally and then of treating the time compositionally.

6.1 The Effects of Treating the Store Compositionally

We saw in Section 4.3 that a semantics could treat stores compositionally without
employing GC. In this case, the caller’s store and callee’s final store agreed on
common entries and combining them produced the same store as the threaded-
store semantics. However, the compositional machinery liberates evaluation from
the stack. With evaluation so-liberated, GC need not preserve any heap data
reachable solely from the stack. This relaxation

1. simplifies GC and increases its effectiveness;
2. leads to general yet precise summaries; and
3. restores context irrelevance under GC.

We discuss each of these aspects in more detail.

Simplified and More-Effective Garbage Collection Classical abstract GC
and its succeeding pushdown GC each preserve heap data reachable from both
the local environment and the stack. Once one has determined the root set of
reachable addresses from these two components, it determines the transitive
closure of reachability. When GC is performed with respect to only the local
environment, both the initial root set and its transitive closure are smaller and
it requires less work to calculate them. If the CFA employs incomplete garbage
collection [8], the garbage collector is also freed from calculating the root set
of stack addresses as a fixed point. A smaller transitive closure of reachable
addresses is not only less costly to calculate but also leads to more collected
garbage.

Liberate Abstract Garbage Collection 217

General Yet Precise Summaries A stack-precise CFA without GC will
falsely distinguish abstract evaluations of the same call which are identical mod-
ulo GC-able heap data. In such cases, the addition of pushdown GC will allow the
CFA to identify them. However, even with pushdown GC, a stack-precise CFA
will falsely distinguish abstract evaluations of the same call which are identical
modulo continuation-reachable heap data. On the other hand, compositional GC
soundly disregards such data and thereby identifies such evaluations.

Compositional GC is able to achieve this feat because its calculates the frag-
ments of the heap reachable from the local environment alone. Since this envi-
ronment is restricted to the free variables of the expression it closes, the resultant
heap fragment includes a tight overapproximation of the actually-relevant heap
data. One effect is that evaluation summaries—the association of an evaluation
configuration with its results—are general yet precise. They are general since,
with a minimum of irrelevant heap data, more contexts are consistent with them.
They are precise since, with a minimum of irrelevant heap data, they are less
likely to allocate an entry at an existing address. In fact, the precision of com-
positional GC dominates that of pushdown GC.

Restored Context Irrelevance A semantics determines which parts of a given
configuration are relevant to its evaluation [8]. When the continuation is irrel-
evant to evaluation, the semantics exhibits the property of context irrelevance.
Context irrelevance is an intuitive property: unless our semantics has control
effects or some other explicit dependence, we would be surprised if a configu-
ration’s continuation was relevant to its evaluation. Even a concrete semantics
with GC exhibits context irrelevance since data reachable from the stack alone
will not effect the result of evaluation. In an abstract semantics with GC, how-
ever, where new allocations can occur at old addresses, the presence of data
reachable from the stack alone can affect evaluation. The set of data preserved
by GC, which determines how evaluation is affected, is itself determined by the
continuation. Thus, an abstract semantics in which GC is defined with respect
to the stack violates context irrelevance.

Put this way, it is clear why compositional GC restores context irrelevance to
the semantics: it removes the dependence on the stack from GC itself and allows
all data reachable from the stack alone to be collected. This restoration makes
evaluation easier to reason about and increases the effectiveness of memoization.

6.2 The Effect of Treating the Time Compositionally

The k-CFA context abstraction consists of a sequence of k call sites—for each
point in execution, the last k call sites encountered. In Section 3.5, we discussed
how the last-k-call-sites abstraction arose as a consequence of the semantics
threading the abstract time (i.e. the context) through execution.

In contrast, the big-step, concrete semantics of Section 4 and the big-step,
abstract semantics of Section 5 didn’t thread the abstract time through execution
but treated it compositionally, installing a new time at a call but restoring the

218 K. Germane and M. D. Adams

previous time at the corresponding return. This treatment of time induces a
different notion of context than k-CFA; instead of yielding the last-k call sites,
it yields the top-m stack frames.

This top-m-stack-frames context abstraction is not novel and originates with
m-CFA [11], a family of polynomial-time CFAs. However, to our knowledge, its
appearance here is its first in a stack-precise setting: many stack-precise CFAs
encode context using other means than a time component (or don’t use context
in the first place) [16, 3, 1]; still others achieve the last-k-call-sites abstraction,
incidentally or intentionally [4, 18].

Using the top-m stack frames to qualify heap allocation has certain advan-
tages to using the last-k call sites; in particular, its power to distinguish bindings
is not diluted by static call sequences. To see how k-CFA’s and m-CFA’s context
abstractions compare, let’s consider a few examples.

First, consider a [k = 2]CFA of the program

(define (f x) x)

(define (g y) (f y))

(g 42)

(g 35)

the abstract resource 42 is allocated in the heap twice—first when the call to
g is made and second when the call to f is made. At the point of the second
allocation, the two most-recently-encountered call sites in evaluation are (f y)

and (g 42); hence, these call sites are used to qualify the binding of 42 to x in
the heap. The treatment of the abstract resource 35 is similar except its second
allocation is qualified by (f y) and (g 35). For this program, [k = 2]CFA is
able to keep the two allocations distinct.

Next, consider a [k = 2]CFA of the similar program

(define (f x) x)

(define (g y)

(displayln y)

(f y))

(g 42)

(g 35)

which includes the call (displayln y) in the body of g. As in the previous
program, the analysis of this program allocates the abstract resources 42 and 35
twice each. However, in this program, the second of each of their allocations is
qualified by (f y) and (displayln y). In fact, every call to f made via g will
occur in that same context. In a sense, the static sequence of (displayln y)

and (f y) eats up the context budget ensuring that the analysis conflates all
bindings made at the call (f y). (Incrementing k would remove the conflation
in this example, but it makes the analysis more expensive and such a strategy
can always be confounded by a longer “static” trace of calls.)

To constrast, consider an [m = 2]CFA of the same program. Because the
context consists of the top two stack frames, the allocation of 42 is qualified by

Liberate Abstract Garbage Collection 219

(f y) and (g 42) and the allocation of 35 is qualified by (f y) and (g 35).
Because the second stack frame of each allocation is distinct, [m = 2]CFA is able
to keep the bindings distinct in the analysis.

The top-m-stack-frames context abstraction is itself susceptible to deep nests
of calls which serve only to pass parameters: if the nesting depth exceeds m, then
the analysis will conflate the bindings made by the innermost calls. And, as with
k-CFA, an increased m can always be confounded by a deeper nesting. In spite
of that, the m-CFA context abstraction has been shown to work well relative to
k-CFA in practice in a stack-imprecise setting where variables are aggressively
re-bound [11]. Future work is needed to verify that its advantages carry over to
a stack-precise setting.

7 Related Work

Broadly, this work is an instance of abstract interpretation and, more specifically,
of control-flow analysis (CFA) [9, 14]. It inherits from the Abstracting Abstract
Machines methodology [15] of systematically deriving CFAs from purely opera-
tional specifications. More specifically, this work is an instance of stack-precise
CFA which is preceded by many variations [16, 3, 8, 6, 12, 1, 18].

Might and Shivers [10] first introduced GC to CFA. Reconciling GC with
stack-precise CFAs has been the focus of significant effort. Earl et al. [4] intro-
duced the first technique to do so which approximated the the set of frames
that could be on any possible stack at any given control point. Johnson and Van
Horn [8] cast this technique into a more operational framework and considered
a more-precise variant in which a control point splits for each possible stack
with its heap being collected with respect to that stack alone. Johnson et al. [7]
unified these previous two works in one formal framework. Darais et al. [1] show
that the Abstracting Definitional Interpreters approach easily accommodates
abstract GC by introducing a machine component which contains the addresses
embedded in stack frames; this realization of GC amounts essentially to the fully-
precise technique. Our work sidesteps the need for all of this previous effort by
decomposing the heap into continuation-independent fragments.

A significant concept in the work of Johnson and Van Horn [8] is context
irrelevance, the property that the evaluation of a configuration is independent
of its continuation, and they note that the approximate abstract GC technique
introduced by Earl et al. [4] violates context irrelevance. Once again, the in-
dependence of GC from the stack under our technique sidesteps these issues;
evaluation under our technique exhibits context irrelevance effortlessly.

As part of the resolution of an apparent paradox regarding the complexities of
object-oriented k-CFA and functional k-CFA, Might et al. [11] develop m-CFA,
a stack-imprecise, polynomial-time family of CFA that employs the top-m stack
frames as a context abstraction as opposed to the last-k call sites of k-CFA. They
show that this abstraction is more resilient against approximation in the face
of the aggressive rebinding that m-CFA effects. Our treatment of the abstract
time component induces this same top-m-stack-frames context abstraction but

220 K. Germane and M. D. Adams

in a stack-precise setting, the first such appearance in the literature, to our
knowledge.

Although not inspired by it, our work surprisingly shares much of the per-
spective and approach of the work of Dillig et al. [2] to verify C and C++
programs. In particular, both works employ a compositional approach to analy-
sis by producing evaluation summaries and decompose the heap to support their
approach. In addition, both works have some notion of propagation of summary
effects: theirs is a summary transfer function ; ours is an effect log. In contrast,
our work does not produce summaries in a bottom-up fashion and is targeted to-
ward explicitly higher-order languages with effects. Interesting future work could
explore whether any precision-enhancing techniques of Dillig et al. [2] could be
ported and applied, whether the bottom-up production of summaries is viable,
or whether their general approach can be used for verification in our setting.

8 Conclusion and Future Work

In this paper, we showed that treating the heap compositionally in a stack-precise
CFA removes its dependence on the stack, at once simplifying GC and increasing
its effectiveness. As a result, the analysis produces more compact and precise
evaluation summaries that are more amenable to reuse. We also showed that
treating the time component compositionally induces the top-m-stack-frames
context abstraction of m-CFA. Unlike k-CFA’s last-k-call-sites context abstrac-
tion, m-CFA’s need not devote any precision to static call sequences.

Interestingly, the notion of context shared by k-CFA and m-CFA—calling
context, roughly—seems to be at odds with summary reuse. In a stack-precise
1CFA (which exhibits the same context abstraction whether it is [k = 1]CFA or
[m = 1]CFA), the syntactic call site of the caller is encoded in the summary of
the callee, preventing the summary’s reuse at any other call site. If this tension
is fundamental, it might benefit to look to alternative notions of context—extant
and novel.

The complement to abstract GC is abstract counting [10] which keeps track
of the number of concrete resources that correspond to an abstract resource
and enables certain abstract transitions, such as a strong store update. If an
abstact counting can be applied to heap fragments such that the overlap among
fragments is accounted for correctly, it might be possible to detect opportunities
to perform strong updates to heap bindings which would further increase the
precision of our technique.

Finally, Darais et al. [1] consider a particular value abstraction in which
primitive operations propagate imprecision but do not introduce it. Their ab-
straction suggests a generalization in which each “basic block” is analyzed at full
precision and imprecision occurs only at the join points of control flow. CFA2’s
stack environments capture an aspect of this generalization and it appears our
technique does as well. However, a focused investigation would reveal whether
such a generalization can be more-fully realized.

Liberate Abstract Garbage Collection 221

References

1. Darais, D., Labich, N., Nguyen, P.C., Van Horn, D.: Abstracting definitional in-
terpreters (functional pearl). Proceedings of the ACM on Programming Languages
1(ICFP), 12:1–12:25 (Aug 2017). https://doi.org/10.1145/3110256

2. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular pro-
cedure summaries for heap manipulating programs. In: Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. pp. 567–577. PLDI ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1993498.1993565

3. Earl, C., Might, M., Van Horn, D.: Pushdown control-flow analysis of higher order
programs. Workshop on Scheme and Functional Programming (2010)

4. Earl, C., Sergey, I., Might, M., Van Horn, D.: Introspective pushdown analysis of
higher-order programs. In: Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming. pp. 177–188. ICFP ’12, ACM, New York,
NY, USA (Sep 2012). https://doi.org/10.1145/2364527.2364576

5. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation. pp. 237–247. PLDI ’93, ACM,
New York, NY, USA (1993). https://doi.org/10.1145/155090.155113

6. Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-
flow analysis for free. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 691–704. POPL ’16,
ACM, New York, NY, USA (Jan 2016). https://doi.org/10.1145/2837614.2837631

7. Johnson, J.I., Sergey, I., Earl, C., Might, M., Van Horn, D.: Pushdown flow analysis
with abstract garbage collection. Journal of Functional Programming 24, 218–283
(May 2014). https://doi.org/10.1017/s0956796814000100

8. Johnson, J.I., Van Horn, D.: Abstracting abstract control. In: Proceedings of the
10th ACM Symposium on Dynamic Languages. pp. 11–22. DLS ’14, ACM, New
York, NY, USA (Oct 2014). https://doi.org/10.1145/2661088.2661098

9. Jones, N.D.: Flow analysis of lambda expressions. In: International Colloquium on
Automata, Languages, and Programming. pp. 114–128. Springer (1981)

10. Might, M., Shivers, O.: Improving flow analyses via ΓCFA: abstract garbage collec-
tion and counting. In: Proceedings of the Eleventh ACM SIGPLAN International
Conference on Functional Programming. pp. 13–25. ICFP ’06, ACM, New York,
NY, USA (Sep 2006). https://doi.org/10.1145/1159803.1159807

11. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k -CFA
paradox: illuminating functional vs. object-oriented program analysis. In: Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 305–315. PLDI ’10, ACM, New York, NY, USA (Jun 2010).
https://doi.org/10.1145/1806596.1806631

12. Peng, F.: h-CFA: A simplified approach for pushdown control flow analysis. Mas-
ter’s thesis, The University of Wisconsin-Milwaukee (2016)

13. Reynolds, J.C.: Definitional interpreters for Higher-Order programming languages.
Higher-Order and Symbolic Computation 11(4), 363–397 (1998)

14. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1991)

15. Van Horn, D., Might, M.: Abstracting abstract machines. In: Proceedings
of the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 51–62. ICFP ’10, ACM, New York, NY, USA (Sep 2010).
https://doi.org/10.1145/1863543.1863553

222 K. Germane and M. D. Adams

16. Vardoulakis, D., Shivers, O.: CFA2: A context-free approach to control-flow anal-
ysis. In: Gordon, A.D. (ed.) Programming Languages and Systems. pp. 570–589.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

17. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-
flow analysis. Logical Methods in Computer Science 7(2) (2011).
https://doi.org/10.2168/LMCS-7(2:3)2011

18. Wei, G., Decker, J., Rompf, T.: Refunctionalization of abstract abstract machines:
bridging the gap between abstract abstract machines and abstract definitional in-
terpreters (functional pearl). Proceedings of the ACM on Programming Languages
2(ICFP), 105:1–105:28 (Jul 2018). https://doi.org/10.1145/3236800

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Liberate Abstract Garbage Collection 223

	8 Liberate Abstract Garbage Collection fromthe Stack by Decomposing the Heap
	1 Introduction
	1.1 Examples
	1.2 Generalizing the Approach

	2 A-Normal Form λ-Calculus
	3 Background
	3.1 Semantic Domains
	3.2 Concrete Semantics
	3.3 Abstracting Abstract Machines with Garbage Collection
	3.4 Stack-Precise CFA with Garbage Collection
	3.5 The k-CFA Context Abstraction

	4 From Threaded to Compositional Stores
	4.1 Threaded-Store Semantics
	4.2 Threaded-Store Semantics with Effect Log
	4.3 Compositional-Store Semantics
	4.4 Compositional-Store Semantics with Garbage Collection

	5 Abstract Compositional-Store Semantics with Garbage Collection
	6 Discussion
	6.1 The Effects of Treating the Store Compositionally
	6.2 The Effect of Treating the Time Compositionally

	7 Related Work
	8 Conclusion and Future Work
	References

