
Runners in action

Danel Ahman and Andrej Bauer

Faculty of Mathematics and Physics
University of Ljubljana, Slovenia

Abstract. Runners of algebraic effects, also known as comodels, pro-
vide a mathematical model of resource management. We show that they
also give rise to a programming concept that models top-level external
resources, as well as allows programmers to modularly define their own
intermediate “virtual machines”. We capture the core ideas of program-
ming with runners in an equational calculus λcoop, which we equip with
a sound and coherent denotational semantics that guarantees the lin-
ear use of resources and execution of finalisation code. We accompany
λcoop with examples of runners in action, provide a prototype language
implementation in OCaml, as well as a Haskell library based on λcoop.

Keywords: Runners, comodels, algebraic effects, resources, finalisation.

1 Introduction

Computational effects, such as exceptions, input-output, state, nondeterminism,
and randomness, are an important component of general-purpose programming
languages, whether they adopt functional, imperative, object-oriented, or other
programming paradigms. Even pure languages exhibit computational effects at
the top level, so to speak, by interacting with their external environment.

In modern languages, computational effects are often structured using mon-
ads [22,23,36], or algebraic effects and handlers [12,28,30]. These mechanisms
excel at implementation of computational effects within the language itself. For
instance, the familiar implementation of mutable state in terms of state-passing
functions requires no native state, and can be implemented either as a monad or
using handlers. One is naturally drawn to using these techniques also for deal-
ing with actual effects, such as manipulation of native memory and access to
hardware. These are represented inside the language as algebraic operations (as
in Eff [4]) or a monad (in the style of Haskell’s IO), but treated specially by
the language’s top-level runtime, which invokes corresponding operating system
functionality. While this approach works in practice, it has some unfortunate
downsides too, namely lack of modularity and linearity, and excessive generality.

Lack of modularity is caused by having the external resources hard-coded into
the top-level runtime. As a result, changing which resources are available and
how they are implemented requires modifications of the language implementa-
tion. Additional complications arise when a language supports several operating
systems and hardware platforms, each providing their own, different feature set.

c© The Author(s) 2020
P. Müller (Ed.): ESOP 2020, LNCS 12075, pp. 29–55, 2020.
https://doi.org/10.1007/978-3-030-44914-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44914-8_2&domain=pdf

One wishes that the ingenuity of the language implementors were better sup-
ported by a more flexible methodology with a sound theoretical footing.

Excessive generality is not as easily discerned, because generality of program-
ming concepts makes a language expressive and useful, such as general algebraic
effects and handlers enabling one to implement timeouts, rollbacks, stream redi-
rection [30], async & await [16], and concurrency [9]. However, the flip side of such
expressive freedom is the lack of any guarantees about how external resources
will actually be used. For instance, consider a simple piece of code, written in
Eff-like syntax, which first opens a file, then writes to it, and finally closes it:

let fh = open "hello.txt" in write (fh, "Hello, world."); close fh

What this program actually does depends on how the operations open, write,
and close are handled. For all we know, an enveloping handler may intercept the
write operation and discard its continuation, so that close never happens and
the file is not properly closed. Telling the programmer not to shoot themselves
in the foot by avoiding such handlers is not helpful, because the handler may
encounter an external reason for not being able to continue, say a full disk.

Even worse, external resources may be misused accidentally when we combine
two handlers, each of which works as intended on its own. For example, if we
combine the above code with a non-deterministic choose operation, as in

let fh = open "greeting.txt" in
let b = choose () in
if b then write (fh, "hello") else write (fh, "good bye") ; close fh

and handle it with the standard non-determinism handler

handler { return x Ñ [x], choose () k Ñ return (append (k true) (k false)) }

The resulting program attempts to close the file twice, as well as write to it twice,
because the continuation k is invoked twice when handling choose. Of course,
with enough care all such situations can be dealt with, but that is beside the
point. It is worth sacrificing some amount of the generality of algebraic effects
and monads in exchange for predictable and safe usage of external computational
effects, so long as the vast majority of common use cases are accommodated.

Contributions We address the described issues by showing how to design a
programming language based on runners of algebraic effects. We review runners
in §2 and recast them as a programming construct in §3. In §4, we present λcoop,
a calculus that captures the core ideas of programming with runners. We provide
a coherent and sound denotational semantics for λcoop in §5, where we also prove
that well-typed code is properly finalised. In §6, we show examples of runners in
action. The paper is accompanied by a prototype language Coop and a Haskell
library Haskell-Coop, based on λcoop, see §7. The relationship between λcoop

and existing work is addressed in §8, and future possibilities discussed in §9.
The paper is also accompanied by an online appendix (https://arxiv.org/

abs/1910.11629) that provides the typing and equational rules we omit in §4.

30 D. Ahman and A. Bauer

https://arxiv.org/abs/1910.11629
https://arxiv.org/abs/1910.11629

Runners are modular in that they can be used not only to model the top-
level interaction with the external environment, but programmers can also use
them to define and nest their own intermediate “virtual machines”. Our runners
are effectful : they may handle operations by calling further outer operations,
and raise exceptions and send signals, through which exceptional conditions and
runtime errors are communicated back to user programs in a safe fashion that
preserves linear usage of external resources and ensures their proper finalisation.

We achieve suitable generality for handling of external resources by showing
how runners provide implementations of algebraic operations together with a
natural notion of finalisation, and a strong guarantee that in the absence of
external kill signals the finalisation code is executed exactly once (Thm. 7). We
argue that for most purposes such discipline is well worth having, and giving up
the arbitrariness of effect handlers is an acceptable price to pay. In fact, as will
be apparent in the denotational semantics, runners are simply a restricted form
of handlers, which apply the continuation at most once in a tail call position.

Runners guarantee linear usage of resources not through a linear or unique-
ness type system (such as in the Clean programming language [15]) or a syntac-
tic discipline governing the application of continuations in handlers, but rather
by a design based on the linear state-passing technique studied by Møgelberg
and Staton [21]. In this approach, a computational resource may be implemented
without restrictions, but is then guaranteed to be used linearly by user code.

2 Algebraic effects, handlers, and runners

We begin with a short overview of the theory of algebraic effects and handlers,
as well as runners. To keep focus on how runners give rise to a programming
concept, we work naively in set theory. Nevertheless, we use category-theoretic
language as appropriate, to make it clear that there are no essential obstacles to
extending our work to other settings (we return to this point in §5.1).

2.1 Algebraic effects and handlers

There is by now no lack of material on the algebraic approach to structuring
computational effects. For an introductory treatment we refer to [5], while of
course also recommend the seminal papers by Plotkin and Power [25,28]. The
brief summary given here only recalls the essentials and introduces notation.

An (algebraic) signature is given by a set Σ of operation symbols, and for each
op P Σ its operation signature op : Aop � Bop, where Aop and Bop are called the
parameter and arity set. A Σ-structure M is given by a carrier set |M|, and
for each operation symbol op P Σ, a map opM : Aop ˆ pBop ñ |M|q Ñ |M|,
where ñ is set exponentiation. The free Σ-structure TreeΣ pXq over a set X is
the set of well-founded trees generated inductively by

– returnx P TreeΣ pXq, for every x P X, and
– oppa, κq P TreeΣ pXq, for every op P Σ, a P Aop, and κ : Bop Ñ TreeΣ pXq.

Runners in action 31

We are abusing notation in a slight but standard way, by using op both as the
name of an operation and a tree-forming constructor. The elements of TreeΣ pXq
are called computation trees : a leaf returnx represents a pure computation re-
turning a value x, while oppa, κq represents an effectful computation that calls
op with parameter a and continuation κ, which expects a result from Bop.

An algebraic theory T “ pΣT ,EqT q is given by a signature ΣT and a set of
equations EqT . The equations EqT express computational behaviour via inter-
actions between operations, and are written in a suitable formalism, e.g., [30].
We explain these by way of examples, as the precise details do not matter for
our purposes. Let 0 “ t u be the empty set and 1 “ t‹u the standard singleton.

Example 1. Given a set C of possible states, the theory of C-valued state has
two operations, whose somewhat unusual naming will become clear later on,

getenv : 1 � C, setenv : C � 1

and the equations (where we elide appearances of ‹):

getenvpλc . setenvpc, κqq “ κ, setenvpc, getenv κq “ setenvpc, κ cq,
setenvpc, setenvpc1, κqq “ setenvpc1, κq.

For example, the second equation states that reading state right after setting it
to c gives precisely c. The third equation states that setenv overwrites the state.

Example 2. Given a set of exceptions E, the algebraic theory of E-many excep-
tions is given by a single operation raise : E � 0, and no equations.

A T -model, also called a T -algebra, is a ΣT -structure which satisfies the
equations in EqT . The free T -model over a set X is constructed as the quotient

FreeT pXq “ TreeΣT pXq {„
by the ΣT -congruence „ generated by EqT . Each op P ΣT is interpreted in the
free model as the map pa, κq ÞÑ roppa, κqs, where r´s is the „-equivalence class.

FreeT p´q is the functor part of a monad on sets, whose unit at a set X is

X
return �� TreeΣT pXq r´s �� �� FreeT pXq .

The Kleisli extension for this monad is then the operation which lifts any map
f : X Ñ TreeΣT pY q to the map f : : FreeΣT pXq Ñ FreeΣT pY q, given by

f : rreturnxs def“ f x, f : roppa, κqs def“ roppa, f : ˝ κqs.
That is, f : traverses a computation tree and replaces each leaf returnx with f x.

The preceding construction of free models and the monad may be retro-
fitted to an algebraic signature Σ, if we construe Σ as an algebraic theory with
no equations. In this case „ is just equality, and so we may omit the quotient

32 D. Ahman and A. Bauer

and the pesky equivalence classes. Thus the carrier of the free Σ-model is the
set of well-founded trees TreeΣ pXq, with the evident monad structure.

A fundamental insight of Plotkin and Power [25,28] was that many com-
putational effects may be adequately described by algebraic theories, with the
elements of free models corresponding to effectful computations. For example,
the monads induced by the theories from Examples 1 and 2 are respectively
isomorphic to the usual state monad StC X

def“ pC ñ X ˆCq and the exceptions
monad ExcE X

def“ X ` E.
Plotkin and Pretnar [30] further observed that the universal property of free

models may be used to model a programming concept known as handlers. Given
a T -model M and a map f : X Ñ |M|, the universal property of the free
T -model gives us a unique T -homomorphism f ; : FreeT pXq Ñ |M| satisfying

f ; rreturnxs “ f x, f ; roppa, κqs “ opMpa, f ; ˝ κq.
A handler for a theory T in a language such as Eff amounts to a model M

whose carrier |M| is the carrier FreeT 1 pY q of the free model for some other the-
ory T 1, while the associated handling construct is the induced T -homomorphism
FreeT pXq Ñ FreeT 1 pY q. Thus handling transforms computations with effects T
to computations with effects T 1. There is however no restriction on how a han-
dler implements an operation, in particular, it may use its continuation in an
arbitrary fashion. We shall put the universal property of free models to good use
as well, while making sure that the continuations are always used affinely.

2.2 Runners

Much like monads, handlers are useful for simulating computational effects, be-
cause they allow us to transform T -computations to T 1-computations. However,
eventually there has to be a “top level” where such transformations cease and
actual computational effects happen. For these we need another concept, known
as runners [35]. Runners are equivalent to the concept of comodels [27,31], which
are “just models in the opposite category”, although one has to apply the motto
correctly by using powers and co-powers where seemingly exponentials and prod-
ucts would do. Without getting into the intricacies, let us spell out the definition.

Definition 1. A runner R for a signature Σ is given by a carrier set |R| together
with, for each op P Σ, a co-operation opR : Aop Ñ p|R| ñ Bop ˆ |R|q.

Runners are usually defined to have co-operations in the equivalent uncurried
form opR : Aop ˆ |R| Ñ Bop ˆ |R|, but that is less convenient for our purposes.

Runners may be defined more generally for theories T , rather than just sig-
natures, by requiring that the co-operations satisfy EqT . We shall have no use
for these, although we expect no obstacles in incorporating them into our work.

A runner tells us what to do when an effectful computation reaches the
top-level runtime environment. Think of |R| as the set of configurations of
the runtime environment. Given the current configuration c P |R|, the opera-
tion oppa, κq is executed as the corresponding co-operation opR a c whose result

Runners in action 33

pb, c1q P Bop ˆ |R| gives the result of the operation b and the next runtime
configuration c1. The continuation κ b then proceeds in runtime configuration c1.

It is not too difficult to turn this idea into a mathematical model. For any
X, the co-operations induce a Σ-structure M with |M| def“ St|R|X “ p|R| ñ
X ˆ |R|q and operations opM : Aop ˆ pBop ñ St|R|Xq Ñ St|R|X given by

opMpa, κq def“ λc . κ pπ1popR a cqq pπ2popR a cqq.
We may then use the universal property of the free Σ-model to obtain a Σ-
homomorphism rX : TreeΣ pXq Ñ St|R|X satisfying the equations

rXpreturnxq “ λc . px, cq, rXpoppa, κqq “ opMpa, rX ˝ κq.
The map rX precisely captures the idea that a runner runs computations by
transforming (static) computation trees into state-passing maps. Note how in
the above definition of opM, the continuation κ is used in a controlled way, as
it appears precisely once as the head of the outermost application. In terms of
programming, this corresponds to linear use in a tail-call position.

Runners are less ad-hoc than they may seem. First, notice that opM is just the
composition of the co-operation opR with the state monad’s Kleisli extension of
the continuation κ, and so is the standard way of turning generic effects into Σ-
structures [26]. Second, the map rX is the component at X of a monad morphism
r : TreeΣ p´q Ñ St|R|. Møgelberg & Staton [21], as well as Uustalu [35], showed
that the passage from a runner R to the corresponding monad morphism r forms
a one-to-one correspondence between the former and the latter.

As defined, runners are too restrictive a model of top-level computation,
because the only effect available to co-operations is state, but in practice the
runtime environment may also signal errors and perform other effects, by calling
its own runtime environment. We are led to the following generalisation.

Definition 2. For a signature Σ and monad T , a T -runner R for Σ, or just an
effectful runner, is given by, for each op P Σ, a co-operation opR : Aop Ñ TBop.

The correspondence between runners and monad morphisms still holds.

Proposition 3. For a signature Σ and a monad T , the monad morphisms
TreeΣ p´q Ñ T are in one-to-one correspondence with T -runners for Σ.

Proof. This is an easy generalisation of the correspondence for ordinary runners.
Let us fix a signature Σ, and a monad T with unit η and Kleisli extension ´:.

Let R be a T -runner for Σ. For any set X, R induces a Σ-structure M
with |M| def“ TX and opM : Aop ˆ pBop ñ TXq Ñ TX defined as opMpa, κq def“
κ:popR aq. As before, the universal property of the free model TreeΣ pXq provides
a unique Σ-homomorphism rX : TreeΣ pXq Ñ TX, satisfying the equations

rXpreturnxq “ ηXpxq, rXpoppa, κqq “ opMpa, rX ˝ κq.
The maps rX collectively give us the desired monad morphism r induced by R.

Conversely, given a monad morphism θ : TreeΣ p´q Ñ T , we may recover a T -
runner R for Σ by defining the co-operations as opR a

def“ θBoppoppa, λb . return bqq.
It is not hard to check that we have described a one-to-one correspondence. [\

34 D. Ahman and A. Bauer

3 Programming with runners

If ordinary runners are not general enough, the effectful ones are too general:
parameterised by arbitrary monads T , they do not combine easily and they lack
a clear notion of resource management. Thus, we now engineer more specific
monads whose associated runners can be turned into a programming concept.
While we give up complete generality, the monads presented below are still quite
versatile, as they are parameterised by arbitrary algebraic signatures Σ, and so
are extensible and support various combinations of effects.

3.1 The user and kernel monads

Effectful source code running inside a runtime environment is just one example
of a more general phenomenon in which effectful computations are enveloped by
a layer that provides a supervised access to external resources: a user process
is controlled by a kernel, a web page by a browser, an operating system by
hardware, or a virtual machine, etc. We shall adopt the parlance of software
systems, and refer to the two layers generically as the user and kernel code.
Since the two kinds of code need not, and will not, use the same effects, each
will be described by its own algebraic theory and compute in its own monad.

We first address the kernel theory. Specifically, we look for an algebraic theory
such that effectful runners for the induced monad satisfy the following desiderata:

1. Runners support management and controlled finalisation of resources.
2. Runners may use further external resources.
3. Runners may signal failure caused by unavoidable circumstances.

The totality of external resources available to user code appears as a stateful
external environment, even though it has no direct access to it. Thus, kernel
computations should carry state. We achieve this by incorporating into the kernel
theory the operations getenv and setenv, and equations for state from Example 1.

Apart from managing state, kernel code should have access to further effects,
which may be true external effects, or some outer layer of runners. In either case,
we should allow the kernel code to call operations from a given signature Σ.

Because kernel computations ought to be able to signal failure, we should
include an exception mechanism. In practice, many programming languages and
systems have two flavours of exceptions, variously called recoverable and fatal,
checked and unchecked, exceptions and errors, etc. One kind, which we call just
exceptions, is raised by kernel code when a situation requires special attention
by user code. The other kind, which we call signals, indicates an unrecoverable
condition that prevents normal execution of user code. These correspond pre-
cisely to the two standard ways of combining exceptions with state, namely the
coproduct and the tensor of algebraic theories [11]. The coproduct simply adjoins
exceptions raise : E � 0 from Example 2 to the theory of state, while the tensor
extends the theory of state with signals kill : S � 0, together with equations

getenvpλc . kill sq “ kill s, setenvpc, kill sq “ kill s. (1)

Runners in action 35

These equations say that a signal discards state, which makes it unrecoverable.
To summarise, the kernel theory KΣ,E,S,C contains operations from a signa-

ture Σ, as well as state operations getenv : 1 � C, setenv : C � 1, exceptions
raise : E � 0, and signals kill : S � 0, with equations for state from Example 1,
equations (1) relating state and signals, and for each operation op P Σ, equations

getenvpλc . oppa, κ cqq “ oppa, λb . getenvpλc . κ c bqq,
setenvpc, oppa, κqq “ oppa, λb . setenvpc, κ bqq,

expressing that external operations do not interact with kernel state. It is not
difficult to see that KΣ,E,S,C induces, up to isomorphism, the kernel monad

KΣ,E,S,CX
def“ C ñ TreeΣ pppX ` Eq ˆ Cq ` Sq .

How about user code? It can of course call operations from a signature Σ
(not necessarily the same as the kernel code), and because we intend it to handle
exceptions, it might as well have the ability to raise them. However, user code
knows nothing about signals and kernel state. Thus, we choose the user theory
UΣ,E to be the algebraic theory with operations Σ, exceptions raise : E � 0, and
no equations. This theory induces the user monad UΣ,EX

def“ TreeΣ pX ` Eq.

3.2 Runners as a programming construct

In this section, we turn the ideas presented so far into programming constructs.
We strive for a realistic result, but when faced with several design options, we
prefer simplicity and semantic clarity. We focus here on translating the central
concepts, and postpone various details to §4, where we present a full calculus.

We codify the idea of user and kernel computations by having syntactic
categories for each of them, as well as one for values. We use letters M , N to
indicate user computations, K, L for kernel computations, and V , W for values.

User and kernel code raise exceptions with operation raise, and catch them
with exception handlers based on Benton and Kennedy’s exceptional syntax [7],

try M with treturn x ÞÑ N, . . . , raise e ÞÑ Ne, . . .u,
and analogously for kernel code. The familiar binding construct let x “ M in N
is simply shorthand for try M with treturn x ÞÑ N, . . . , raise e ÞÑ raise e, . . .u.

As a programming concept, a runner R takes the form

tpopx ÞÑ KopqopPΣuC ,
where each Kop is a kernel computation, with the variable x bound in Kop, so
that each clause opx ÞÑ Kop determines a co-operation for the kernel monad.
The subscript C indicates the type of the state used by the kernel code Kop.

The corresponding elimination form is a handling-like construct

using R@ V run M finally F, (2)

36 D. Ahman and A. Bauer

which uses the co-operations of runner R “at” initial kernel state V to run user
code M , and finalises its return value, exceptions, and signals with F , see (3)
below. When user code M calls an operation op, the enveloping run construct
runs the corresponding co-operation Kop of R. While doing so, Kop might raise
exceptions. But not every exception makes sense for every operation, and so
we assign to each operation op a set of exceptions Eop which the co-operations
implementing it may raise, by augmenting its operation signature with Eop, as

op : Aop � Bop ! Eop.

An exception raised by the co-operation Kop propagates back to the operation
call in the user code. Therefore, an operation call should have not only a contin-
uation x .M receiving a result, but also continuations Ne, one for each e P Eop,

oppV, px .Mq, pNeqePEopq.
If Kop returns a value b P Bop, the execution proceeds as M rb{xs, and as Ne if
Kop raises an exception e P Eop. In examples, we use the generic versions of op-
erations [26], written op V , which pass on return values and re-raise exceptions.

One can pass exceptions back to operation calls also in a language with han-
dlers, such as Eff, by changing the signatures of operations to Aop � Bop `Eop,
and implementing the exception mechanism by hand, so that every operation call
is followed by a case distinction on Bop `Eop. One is reminded of how operating
system calls communicate errors back to user code as exceptional values.

A co-operation Kop may also send a signal, in which case the rest of the user
code M is skipped and the control proceeds directly to the corresponding case
of the finalisation part F of the run construct (2), whose syntactic form is

treturn x@ c ÞÑ N, . . . , raise e@ c ÞÑ Ne, . . . , kill s ÞÑ Ns, . . .u. (3)

Specifically, if M returns a value v, then N is evaluated with x bound to v and c
to the final kernel state; if M raises an exception e (either directly or indirectly
via a co-operation of R), then Ne is executed, again with c bound to the final
kernel state; and if a co-operation of R sends a signal s, then Ns is executed.

Example 4. In anticipation of setting up the complete calculus we show how one
can work with files. The language implementors can provide an operation open
which opens a file for writing and returns its file handle, an operation close which
closes a file handle, and a runner fileIO that implements writing. Let us further
suppose that fileIO may raise an exception QuotaExceeded if a write exceeds the
user disk quota, and send a signal IOError if an unrecoverable external error
occurs. The following code illustrates how to guarantee proper closing of the file:

using fileIO @ (open "hello.txt") run
write "Hello, world."

finally {
return x @ fh Ñ close fh,
raise QuotaExceeded @ fh Ñ close fh,
kill IOError Ñ return () }

Runners in action 37

Notice that the user code does not have direct access to the file handle. Instead,
the runner holds it in its state, where it is available to the co-operation that
implements write. The finalisation block gets access to the file handle upon suc-
cessful completion and raised exception, so it can close the file, but when a signal
happens the finalisation cannot close the file, nor should it attempt to do so.

We also mention that the code “cheats” by placing the call to open in a posi-
tion where a value is expected. We should have let-bound the file handle returned
by open outside the run construct, which would make it clear that opening the
file happens before this construct (and that open is not handled by the finalisa-
tion), but would also expose the file handle. Since there are clear advantages to
keeping the file handle inaccessible, a realistic language should accept the above
code and hoist computations from value positions automatically.

4 A calculus for programming with runners

Inspired by the semantic notion of runners and the ideas of the previous section,
we now present a calculus for programming with co-operations and runners,
called λcoop. It is a low-level fine-grain call-by-value calculus [19], and as such
could inspire an intermediate language that a high-level language is compiled to.

4.1 Types

The types of λcoop are shown in Fig. 1. The ground types contain base types, and
are closed under finite sums and products. These are used in operation signa-
tures and as types of kernel state. (Allowing arbitrary types in either of these
entails substantial complications that can be dealt with but are tangential to
our goals.) Ground types can also come with corresponding constant symbols f,
each associated with a fixed constant signature f : pA1, . . . , Anq Ñ B.

We assume a supply of operation symbols O, exception names E , and signal
names S. Each operation symbol op P O is equipped with an operation signature
Aop � Bop !Eop, which specifies its parameter type Aop and arity type Bop, and
the exceptions Eop that the corresponding co-operations may raise in runners.

The value types extend ground types with two function types, and a type
of runners. The user function type X Ñ Y ! pΣ,Eq classifies functions tak-
ing arguments of type X to computations classified by the user (computa-
tion) type Y ! pΣ,Eq, i.e., those that return values of type Y , and may call
operations Σ and raise exceptions E. Similarly, the kernel function type X Ñ
Y �pΣ,E, S,Cq classifies functions taking arguments of type X to computations
classified by the kernel (computation) type Y�pΣ,E, S,Cq, i.e., those that return
values of type Y , and may call operations Σ, raise exceptions E, send signals S,
and use state of type C. We note that the ingredients for user and kernel types
correspond precisely to the parameters of the user monad UΣ,E and the kernel
monad KΣ,E,S,C from §3.1. Finally, the runner type Σ ñ pΣ1, S, Cq classifies run-
ners that implement co-operations for the operations Σ as kernel computations
which use operations Σ1, send signals S, and use state of type C.

38 D. Ahman and A. Bauer

Ground type A, B, C ::“ b base type
ˇ̌
unit unit type

ˇ̌
empty empty type

ˇ̌
A ˆ B product type

ˇ̌
A ` B sum type

Constant signature: f : pA1, . . . , Anq Ñ B

Signature Σ ::“ top1, op2, . . . , opnu Ă O
Exception set E ::“ te1, e2, . . . , enu Ă E

Signal set S ::“ ts1, s2, . . . , snu Ă S
Operation signature: op : Aop � Bop ! Eop

Value type X, Y , Z ::“ A ground type
ˇ̌
X ˆ Y product type

ˇ̌
X ` Y sum type

ˇ̌
X Ñ Y ! U user function type

ˇ̌
X Ñ Y �K kernel function type

ˇ̌
Σ ñ pΣ1, S, Cq runner type

User (computation) type: X ! U where U “ pΣ,Eq
Kernel (computation) type: X�K where K “ pΣ,E, S,Cq

Fig. 1. The types of λcoop.

4.2 Values and computations

The syntax of terms is shown in Fig. 2. The usual fine-grain call-by-value strat-
ification of terms into pure values and effectful computations is present, except
that we further distinguish between user and kernel computations.

Values Among the values are variables, constants for ground types, and con-
structors for sums and products. There are two kinds of functions, for abstracting
over user and kernel computations. A runner is a value of the form

tpopx ÞÑ KopqopPΣuC .
It implements co-operations for operations op as kernel computations Kop, with
x bound in Kop. The type annotation C specifies the type of the state that Kop

uses. Note that C ranges over ground types, a restriction that allows us to define
a naive set-theoretic semantics. We sometimes omit these type annotations.

User and kernel computations The user and kernel computations both have
pure computations, function application, exception raising and handling, stan-

Runners in action 39

Values
V,W ::“ x variable

ˇ̌
fpV1, . . . , Vnq ground constant

ˇ̌ pq unit
ˇ̌ pV,W q pair
ˇ̌
inlX,Y V

ˇ̌
inrX,Y V injection

ˇ̌
fun px : Xq ÞÑ M user function

ˇ̌
funK px : Xq ÞÑ K kernel function

ˇ̌ tpopx ÞÑ KopqopPΣuC runner

User computations
M,N ::“ return V value

ˇ̌
V W application

ˇ̌
try M with treturn x ÞÑ N, praise e ÞÑ NeqePEu exception handler

ˇ̌
match V with tpx, yq ÞÑ Mu product elimination

ˇ̌
match V with tuX empty elimination

ˇ̌
match V with tinl x ÞÑ M, inr y ÞÑ Nu sum elimination

ˇ̌
opXpV, px .Mq, pNeqePEopq operation call

ˇ̌
raiseX e raise exception

ˇ̌
using V @W run M finally F running user code

ˇ̌
kernel K @W finally F switch to kernel mode

F ::“ treturn x@ c ÞÑ N, praise e@ c ÞÑ NeqePE , pkill s ÞÑ NsqsPSu

Kernel computations
K,L ::“ returnC V value

ˇ̌
V W application

ˇ̌
try K with treturn x ÞÑ L, praise e ÞÑ LeqePEu exception handler

ˇ̌
match V with tpx, yq ÞÑ Ku product elimination

ˇ̌
match V with tuX@C empty elimination

ˇ̌
match V with tinl x ÞÑ K, inr y ÞÑ Lu sum elimination

ˇ̌
opXpV, px .Kq, pLeqePEopq operation call

ˇ̌
raiseX@C e raise exception

ˇ̌
killX@C s send signal

ˇ̌
getenvCpc .Kq get kernel state

ˇ̌
setenvpV,Kq set kernel state

ˇ̌
user M with treturn x ÞÑ K, praise e ÞÑ LeqePEu switch to user mode

Fig. 2. Values, user computations, and kernel computations of λcoop.

40 D. Ahman and A. Bauer

dard elimination forms, and operation calls. Note that the typing annotations
on some of these differ according to their mode. For instance, a user operation
call is annotated with the result type X, whereas the annotation X @ C on a
kernel operation call also specifies the kernel state type C.

The binding construct letX!E x “ M in N is not part of the syntax, but is an
abbreviation for try M with treturn x ÞÑ N, praise e ÞÑ raiseX eqePEu, and there is
an analogous one for kernel computations. We often drop the annotation X!E.

Some computations are specific to one or the other mode. Only the kernel
mode may send a signal with kill, and manipulate state with getenv and setenv,
but only the user mode has the run construct from §3.2. Finally, each mode has
the ability to “context switch” to the other one. The kernel computation

user M with treturn x ÞÑ K, praise e ÞÑ LeqePEu
runs a user computation M and handles the returned value and leftover excep-
tions with kernel computations K and Le. Conversely, the user computation

kernel K @W finally tx@ c ÞÑ M, praise e@ c ÞÑ NeqePE , pkill s ÞÑ NsqsPSu
runs kernel computation K with initial state W , and handles the returned value,
and leftover exceptions and signals with user computations M , Ne, and Ns.

4.3 Type system

We equip λcoop with a type system akin to type and effect systems for algebraic
effects and handlers [3,7,12]. We are experimenting with resource control, so it
makes sense for the type system to tightly control resources. Consequently, our
effect system does not allow effects to be implicitly propagated outwards.

In §4.1, we assumed that each operation op P O is equipped with some fixed
operation signature op : Aop � Bop ! Eop. We also assumed a fixed constant
signature f : pA1, . . . , Anq Ñ B for each ground constant f. We consider this
information to be part of the type system and say no more about it.

Values, user computations, and kernel computations each have a correspond-
ing typing judgement form and a subtyping relation, given by

Γ $ V : X, Γ $ M : X ! U , Γ $ K : X�K,

X Ď Y, X ! U Ď Y ! V, X�K Ď Y �L,

where Γ is a typing context x1 : X1, . . . , xn : Xn. The effect information is an
over-approximation, i.e., M and K employ at most the effects described by U
and K. The complete rules for these judgements are given in the online appendix.
We comment here only on the rules that are peculiar to λcoop, see Fig. 3.

Subtyping of ground types Sub-Ground is trivial, as it relates only equal
types. Subtyping of runners Sub-Runner and kernel computations Sub-Kernel
requires equality of the kernel state types C and C 1 because state is used invari-
antly in the kernel monad. We leave it for future work to replace C ” C 1 with
a lens [10] from C 1 to C, i.e., maps C 1 Ñ C and C 1 ˆ C Ñ C 1 satisfying state

Runners in action 41

Sub-Ground

A Ď A

Sub-Runner
Σ1

1 Ď Σ1 Σ2 Ď Σ1
2 S Ď S1 C ” C 1

Σ1 ñ pΣ2, S, Cq Ď Σ1
1 ñ pΣ1

2, S
1, C 1q

Sub-Kernel
X Ď X 1 Σ Ď Σ1 E Ď E1 S Ď S1 C ” C 1

X�pΣ,E, S,Cq Ď X 1�pΣ1, E1, S1, C 1q
TyUser-Try
Γ $ M : X ! pΣ,Eq Γ, x :X $ N : Y ! pΣ,E1q `

Γ $ Ne : Y ! pΣ,E1q˘
ePE

Γ $ try M with treturn x ÞÑ N, praise e ÞÑ NeqePEu : Y ! pΣ,E1q
TyUser-Run
F ” treturn x@ c ÞÑ N, praise e@ c ÞÑ NeqePE , pkill s ÞÑ NsqsPSu

Γ $ V : Σ ñ pΣ1, S, Cq Γ $ W : C
Γ $ M : X ! pΣ,Eq Γ, x :X, c :C $ N : Y ! pΣ1, E1q`

Γ, c :C $ Ne : Y ! pΣ1, E1q˘
ePE

`
Γ $ Ns : Y ! pΣ1, E1q˘

sPS
Γ $ using V @W run M finally F : Y ! pΣ1, E1q

TyUser-Op
U ” pΣ,Eq op P Σ Γ $ V : Aop

Γ, x :Bop $ M : X ! U `
Γ $ Ne : X ! U˘

ePEop

Γ $ opXpV, px .Mq, pNeqePEopq : X ! U

TyKernel-Op
K ” pΣ,E, S,Cq op P Σ Γ $ V : Aop

Γ, x :Bop $ K : X�K `
Γ $ Le : X�K˘

ePEop

Γ $ opXpV, px .Kq, pLeqePEopq : X�K

TyUser-Kernel
F ” treturn x@ c ÞÑ N, praise e@ c ÞÑ NeqePE , pkill s ÞÑ NsqsPSu

Γ $ K : X�pΣ,E, S,Cq Γ $ W : C Γ, x :X, c :C $ N : Y ! pΣ,E1q`
Γ, c :C $ Ne : Y ! pΣ,E1q˘

ePE
`
Γ $ Ns : Y ! pΣ,E1q˘

sPS
Γ $ kernel K @W finally F : Y ! pΣ,E1q

TyKernel-User
K ” pΣ,E1, S, Cq Γ $ M : X ! pΣ,Eq

Γ, x :X $ K : Y �K `
Γ $ Le : Y �K˘

ePE
Γ $ user M with treturn x ÞÑ K, praise e ÞÑ LeqePEu : Y �K

Fig. 3. Selected typing and subtyping rules.

42 D. Ahman and A. Bauer

equations analogous to Example 1. It has been observed [24,31] that such a lens
in fact amounts to an ordinary runner for C-valued state.

The rules TyUser-Op and TyKernel-Op govern operation calls, where we
have a success continuation which receives a value returned by a co-operation,
and exceptional continuations which receive exceptions raised by co-operations.

The rule TyUser-Run requires that the runner V implements all the opera-
tions M can use, meaning that operations are not implicitly propagated outside
a run block (which is different from how handlers are sometimes implemented).
Of course, the co-operations of the runner may call further external operations,
as recorded by the signature Σ1. Similarly, we require the finally block F to in-
tercept all exceptions and signals that might be produced by the co-operations
of V or the user code M . Such strict control is exercised throughout. For ex-
ample, in TyUser-Run, TyUser-Kernel, and TyKernel-User we catch all
the exceptions and signals that the code might produce. One should judiciously
relax these requirements in a language that is presented to the programmer, and
allow re-raising and re-sending clauses to be automatically inserted.

4.4 Equational theory

We present λcoop as an equational calculus, i.e., the interactions between its
components are described by equations. Such a presentation makes it easy to
reason about program equivalence. There are three equality judgements

Γ $ V ” W : X, Γ $ M ” N : X ! U , Γ $ K ” L : X !K.

It is presupposed that we only compare well-typed expressions with the indicated
types. For the most part, the context and the type annotation on judgements
will play no significant role, and so we shall drop them whenever possible.

We comment on the computational equations for constructs characteristic
of λcoop, and refer the reader to the online appendix for other equations. When
read left-to-right, these equations explain the operational meaning of programs.

Of the three equations for run, the first two specify that returned values and
raised exceptions are handled by the corresponding clauses,

using V @W run preturn V 1q finally F ” N rV 1{x,W {cs,
using V @W run praiseX eq finally F ” NerW {cs,

where F
def“ treturn x@ c ÞÑ N, praise e@ c ÞÑ NeqePE , pkill s ÞÑ NsqsPSu. The third

equation below relates running an operation op with executing the corresponding
co-operation Kop, where R stands for the runner tpopx ÞÑ KopqopPΣuC :

using R@W run popXpV, px .Mq, pN 1
e1 qe1PEopqq finally F ”

kernel KoprV {xs @W finally
�
return x@ c1 ÞÑ pusing R@ c1 run M finally F q,
`
raise e1 @ c1 ÞÑ pusing R@ c1 run N 1

e1 finally F q˘
e1PEop

,

pkill s ÞÑ NsqsPS
(

Runners in action 43

Because Kop is kernel code, it is executed in kernel mode, whose finally clauses
specify what happens afterwards: if Kop returns a value, or raises an exception,
execution continues with a suitable continuation, with R wrapped around it; and
if Kop sends a signal, the corresponding finalisation code from F is evaluated.

The next bundle describes how kernel code is executed within user code:

kernel preturnC V q @W finally F ” N rV {x,W {cs,
kernel praiseX@C eq @W finally F ” NerW {cs,
kernel pkillX@C sq @W finally F ” Ns,

kernel pgetenvCpc .Kqq @W finally F ” kernel KrW {cs @W finally F,

kernel psetenvpV,Kqq @W finally F ” kernel K @ V finally F.

We also have an equation stating that an operation called in kernel mode prop-
agates out to user mode, with its continuations wrapped in kernel mode:

kernel opXpV, px .Kq, pLe1 qe1PEq @W finally F ”
opXpV, px . kernel K @W finally F q, pkernel Le1 @W finally F qe1PEq.

Similar equations govern execution of user computations in kernel mode.
The remaining equations include standard βη-equations for exception han-

dling [7], deconstruction of products and sums, algebraicity equations for oper-
ations [33], and the equations of kernel theory from §3.1, describing how getenv
and setenv work, and how they interact with signals and other operations.

5 Denotational semantics

We provide a coherent denotational semantics for λcoop, and prove it sound with
respect to the equational theory given in §4.4. Having eschewed all forms of
recursion, we may afford to work simply over the category of sets and functions,
while noting that there is no obstacle to incorporating recursion at all levels and
switching to domain theory, similarly to the treatment of effect handlers in [3].

5.1 Semantics of types

The meaning of terms is most naturally defined by structural induction on their
typing derivations, which however are not unique in λcoop due to subsumption
rules. Thus we must worry about devising a coherent semantics, i.e., one in which
all derivations of a judgement get the same meaning. We follow prior work on the
semantics of effect systems for handlers [3], and proceed by first giving a skeletal
semantics of λcoop in which derivations are manifestly unique because the effect
information is unrefined. We then use the skeletal semantics as the frame upon
which rests a refinement-style coherent semantics of the effectful types of λcoop.

The skeletal types are like λcoop’s types, but with all effect information erased.
In particular, the ground types A, and hence the kernel state types C, do not
change as they contain no effect information. The skeletal value types are

P,Q ::“ A | unit | empty | P ˆ Q | P ` Q | P Ñ Q! | P Ñ Q�C | runnerC.

44 D. Ahman and A. Bauer

The skeletal versions of the user and kernel types are P ! and P �C, respec-
tively. It is best to think of the skeletal types as ML-style types which implicitly
over-approximate effect information by “any effect is possible”, an idea which is
mathematically expressed by their semantics, as explained below.

First of all, the semantics of ground types is straightforward. One only needs
to provide sets denoting the base types b, after which the ground types receive
the standard set-theoretic meaning, as given in Fig. 4.

Recall that O, S, and E are the sets of all operations, signals, and exceptions,
and that each op P O has a signature op : Aop � Bop ! Eop. Let us additionally
assume that there is a distinguished operation O P O with signature O : 1 � 0 !0
(otherwise we adjoin it to O). It ensures that the denotations of skeletal user and
kernel types are pointed sets, while operationally O indicates a runtime error.

Next, we define the skeletal user and kernel monads as

UsX
def“ UO,EX “ TreeO pX ` Eq ,

Ks
CX

def“ KO,E,S,CX “ pC ñ TreeO ppX ` Eq ˆ C ` Sqq,
and Runners C as the set of all skeletal runners R (with state C), which are fami-
lies of co-operations topR : rrAopss Ñ KO,Eop,S,CrrBopssuopPO. Note that KO,Eop,S,C

is a coproduct [11] of monads C ñ TreeO p´ ˆ C ` Sq and ExcEop , and thus the
skeletal runners are the effectful runners for the former monad, so long as we
read the effectful signatures op : Aop � Bop ! Eop as ordinary algebraic ones
op : Aop � Bop ` Eop. While there is no semantic difference between the two
readings, there is one of intention: KO,Eop,S,CrrBopss is a kernel computation that
(apart from using state and sending signals) returns values of type Bop and raises
exceptions Eop, whereas C ñ TreeO pprrBopss ` Eopq ˆ C ` Sq returns values of
type Bop ` Eop and raises no exceptions. We prefer the former, as it reflects our
treatment of exceptions as a control mechanism rather than exceptional values.

These ingredients suffice for the denotation of skeletal types as sets, as given
in Fig. 4. The user and kernel skeletal types are interpreted using the respective
skeletal monads, and hence the two function types as Kleisli exponentials.

We proceed with the semantics of effectful types. The skeleton of a value
type X is the skeletal type Xs obtained by removing all effect information, and
similarly for user and kernel types, see Fig. 5. We interpret a value type X as a
subset rrrXsss Ď rrXsss of the denotation of its skeleton, and similarly for user and
computation types. In other words, we treat the effectful types as refinements
of their skeletons. For this, we define the operation pX0, X1q � pY0, Y1q, for any
X0 Ď X1 and Y0 Ď Y1, as the set of maps X1 Ñ Y1 restricted to X0 Ñ Y0:

pX0, X1q � pY0, Y1q def“ tf : X1 Ñ Y1 | @x P X0 . fpxq P Y0u.
Next, observe that the user and the kernel monads preserve subset inclusions, in
the sense that UΣ,EX Ď UΣ1,E1X 1 and KΣ,E,S,CX Ď KΣ1,E1,S1,CX

1 if Σ Ď Σ1,
E Ď E1, S Ď S1, and X Ď X 1. In particular, we always have UΣ,EX Ď UsX
and KΣ,E,S,CX Ď Ks

CX. Finally, let RunnerΣ,Σ1,S C Ď Runners C be the subset
of those runners R whose co-operations for Σ factor through KΣ1,Eop,S,C , i.e.,
opR : rrAopss Ñ KΣ1,Eop,S,CrrBopss Ď KO,Eop,S,CrrBopss, for each op P Σ.

Runners in action 45

Ground types

rrbss def“ ¨ ¨ ¨ rrunitss def“ 1 rremptyss def“ 0

rrA ˆ Bss def“ rrAss ˆ rrBss rrA ` Bss def“ rrAss ` rrBss
Skeletal types

rrP ˆ Qss def“ rrP ss ˆ rrQss rrP Ñ Q!ss def“ rrP ss ñ rrQ!ss
rrP ` Qss def“ rrP ss ` rrQss rrP Ñ Q�Css def“ rrP ss ñ rrQ�Css

rrrunnerCss def“ Runners rrCss rrP !ss def“ UsrrP ss rrP �Css def“ Ks
rrCssrrP ss

rrx1 : P1, . . . , xn : Pnss def“ rrP1ss ˆ ¨ ¨ ¨ ˆ rrPnss

Fig. 4. Denotations of ground and skeletal types.

Semantics of effectful types is given in Fig. 5. From a category-theoretic
viewpoint, it assigns meaning in the category SubpSetq whose objects are subset
inclusions X0 Ď X1 and morphisms from X0 Ď X1 to Y0 Ď Y1 those maps X1 Ñ
Y1 that restrict to X0 Ñ Y0. The interpretations of products, sums, and function
types are precisely the corresponding category-theoretic notions ˆ, `, and � in
SubpSetq. Even better, the pairs of submonads UΣ,E Ď Us and KΣ,E,S,C Ď Ks

C

are the “SubpSetq-variants” of the user and kernel monads. Such an abstract
point of view drives the interpretation of terms, given below, and it additionally
suggests how our semantics can be set up on top of a category other than Set. For
example, if we replace Set with the category Cpo of ω-complete partial orders,
we obtain the domain-theoretic semantics of effect handlers from [3] that models
recursion and operations whose signatures contain arbitrary types.

5.2 Semantics of values and computations

To give semantics to λcoop’s terms, we introduce skeletal typing judgements

Γ $s V : P, Γ $s M : P !, Γ $s K : P �C,

which assign skeletal types to values and computations. In these judgements, Γ
is a skeletal context which assigns skeletal types to variables.

The rules for these judgements are obtained from λcoop’s typing rules, by
excluding subsumption rules and by relaxing restrictions on effects. For example,
the skeletal versions of the rules TyValue-Runner and TyKernel-Kill are

`
Γ, x :Aop $s Kop : Bop�C

˘
opPΣ

Γ $s tpopx ÞÑ KopqopPΣuC : runnerC

s P S
Γ $s killX@C s : Xs�C

The relationship between effectful and skeletal typing is summarised as follows:

Proposition 5. (1) Skeletal typing derivations are unique. (2) If X Ď Y , then
Xs “ Y s, and analogously for subtyping of user and kernel types. (3) If Γ $ V : X,
then Γ s $s V : Xs, and analogously for user and kernel computations.

46 D. Ahman and A. Bauer

Skeletons

As def“ A pΣ ñ pΣ1, S, Cqqs def“ runnerC pX ˆ Y qs def“ Xs ˆ Y s

pX Ñ Y ! Uqs def“ Xs Ñ pY ! Uqs pX ` Y qs def“ Xs ` Y s

pX Ñ Y �Kqs def“ Xs Ñ pY �Kqs pX ! Uqs def“ Xs!

px1 : X1, . . . , xn : Xnqs def“ px1 : Xs
1, . . . , xn : Xs

nq pX�pΣ,E, S,Cqqs def“ Xs�C

Denotations

rrrAsss def“ rrAss rrrX ˆ Y sss def“ rrrXsss ˆ rrrXsss
rrrΣ ñ pΣ1, S, Cqsss def“ RunnerΣ,Σ1,S rrrCsss rrrX ` Y sss def“ rrrXsss ` rrrXsss

rrrX Ñ Y ! Usss def“ prrrXsss, rrXsssq � prrrY ! Usss, rrpY ! Uqsssq
rrrX Ñ Y �Ksss def“ prrrXsss, rrXsssq � prrrY �Ksss, rrpY �Kqsssq

rrrX ! pΣ,Eqsss def“ UΣ,ErrrXsss rrrX�pΣ,E, S,Cqsss def“ KΣ,E,S,rrCssrrrXsss
rrrx1 : X1, . . . , xn : Xnsss def“ rrrX1sss ˆ ¨ ¨ ¨ ˆ rrrXnsss

Fig. 5. Skeletons and denotations of types.

Proof. We prove (1) by induction on skeletal typing derivations, and (2) by
induction on subtyping derivations. For (1), we further use the occasional type
annotations, and the absence of skeletal subsumption rules. For proving (3),
suppose that D is a derivation of Γ $ V : X. We may translate D to its skeleton
Ds deriving Γ s $s V : Xs by replacing typing rules with matching skeletal ones,
skipping subsumption rules due to (2). Computations are treated similarly. [\

To ensure semantic coherence, we first define the skeletal semantics of skeletal
typing judgements, rrΓ $s V : P ss : rrΓ ss Ñ rrP ss, rrΓ $s M : P !ss : rrΓ ss Ñ rrP !ss,
and rrΓ $s K : P�Css : rrΓ ss Ñ rrP�Css, by induction on their (unique) derivations.

Provided maps rrA1ssˆ¨ ¨ ¨ˆrrAnss Ñ rrBss denoting ground constants f, values
are interpreted in a standard way, using the bi-cartesian closed structure of sets,
except for a runner tpopx ÞÑ KopqopPΣuC , which is interpreted at an environment
γ P rrΓ ss as the skeletal runner top : rrAopss Ñ KO,Eop,S,rrCssrrBopssuopPO, given by

op a
def“ pif op P Σ then ρprrΓ, x : Aop $s Kop : Bop�Csspγ, aqq else Oq.

Here the map ρ : Ks
rrCssrrBopss Ñ KO,Eop,S,rrCssrrBopss is the skeletal kernel theory

homomorphism characterised by the equations

ρpreturn bq “ return b, ρpop1pa1, κ, pνeqePEop1 qq “ op1pa1, ρ ˝ κ, pρpνeqqePEop1 q,
ρpgetenv κq “ getenvpρ ˝ κq, ρpraise eq “ pif e P Eop then raise e else Oq,

ρpsetenvpc, κqq “ getenvpc, ρ ˝ κq, ρpkill sq “ kill s.

The purpose of O in the definition of op is to model a runtime error when the
runner is asked to handle an unexpected operation, while ρ makes sure that op
raises at most the exceptions Eop, as prescribed by the signature of op.

Runners in action 47

User and kernel computations are interpreted as elements of the correspond-
ing skeletal user and kernel monads. Again, most constructs are interpreted in
a standard way: returns as the units of the monads; the operations raise, kill,
getenv, setenv, and ops as the corresponding algebraic operations; and match
statements as the corresponding semantic elimination forms. The interpretation
of exception handling offers no surprises, e.g., as in [30], as long as we follow the
strategy of treating unexpected situations with the runtime error O.

The most interesting part of the interpretation is the semantics of

Γ $s pusing V @W run M finally F q : Q!, (4)

where F
def“ treturn x @ c ÞÑ N, praise e @ c ÞÑ NeqePE , pkill s ÞÑ NsqsPSu. At an

environment γ P rrΓ ss, V is interpreted as a skeletal runner with state rrCss, which
induces a monad morphism r : TreeO p´q Ñ prrCss ñ TreeO p´ ˆ rrCss ` Sqq, as
in the proof of Prop. 3. Let f : Ks

rrCssrrP ss Ñ prrCss ñ UsrrQssq be the skeletal
kernel theory homomorphism characterised by the equations

fpreturn pq “ λc . rrΓ, x :P, c :C $s N : Qsspγ, p, cq,
fpoppa, κ, pνeqePEopqq “ λc . oppa, λb . fpκ bq c, pfpνeq cqePEopq,

fpraise eq “ λc . pif e P E then rrΓ, c : C $s Ne : Qsspγ, cq else Oq,
fpkill sq “ λc . pif s P S then rrΓ $s Ns : Qss γ else Oq,

(5)

fpgetenv κq “ λc . fpκ cq c, fpsetenvpc1, κqq “ λc . f κ c1.

The interpretation of (4) at γ is fprrrP ss`EprrΓ $s M : P !ss γqq prrΓ $s W : Css γq,
which reads: map the interpretation of M at γ from the skeletal user monad
to the skeletal kernel monad using r (which models the operations of M by the
cooperations of V), and from there using f to a map rrCss ñ UsrrQss, that is then
applied to the initial kernel state, namely, the interpretation of W at γ.

We interpret the context switch Γ $s kernel K @ W finally F : Q! at an
environment γ P rrΓ ss as fprrΓ $s K : P�Css γq prrΓ $s W : Css γq, where f is the
map (5). Finally, user context switch is interpreted much like exception handling.

We now define coherent semantics of λcoop’s typing derivations by passing
through the skeletal semantics. Given a derivation D of Γ $ V : X, its skeleton
Ds derives Γ s $s V : Xs. We identify the denotation of V with the skeletal one,

rrrΓ $ V : Xsss def“ rrΓ s $s V : Xsss : rrΓ sss Ñ rrXsss.
All that remains is to check that rrrΓ $ V : Xsss restricts to rrrΓ sss Ñ rrrXsss. This
is accomplished by induction on D. The only interesting step is subsumption,
which relies on a further observation that X Ď Y implies rrrXsss Ď rrrY sss. Typing
derivations for user and kernel computations are treated analogously.

5.3 Coherence, soundness, and finalisation theorems

We are now ready to prove a theorem that guarantees execution of finalisation
code. But first, let us record the fact that the semantics is coherent and sound.

48 D. Ahman and A. Bauer

Theorem 6 (Coherence and soundness). The denotational semantics of
λcoop is coherent, and it is sound for the equational theory of λcoop from §4.4.

Proof. Coherence is established by construction: any two derivations of the same
typing judgement have the same denotation because they are both (the same)
restriction of skeletal semantics. For proving soundness, one just needs to unfold
the denotations of the left- and right-hand sides of equations from §4.4, and
compare them, where some cases rely on suitable substitution lemmas. [\

To set the stage for the finalisation theorem, let us consider the computation
using V @W run M finally F , well-typed by the rule TyUser-Run from Fig. 3.
At an environment γ P rrrΓ sss, the finalisation clauses F are captured semantically
by the finalisation map φγ : prrrXsss ` Eq ˆ rrrCsss ` S Ñ rrrY ! pΣ1, E1qsss, given by

φγpι1pι1 x, cqq def“ rrrΓ, x :X, c :C $ N : Y ! pΣ1, E1qssspγ, x, cq,
φγpι1pι2 e, cqq def“ rrrΓ, c :C $ Ne : Y ! pΣ1, E1qssspγ, cq,

φγpι2psqq def“ rrrΓ $ Ns : Y ! pΣ1, E1qsss γ.
With φ in hand, we may formulate the finalisation theorem for λcoop, stating that
the semantics of using V @W run M finally F is a computation tree all of whose
branches end with finalisation clauses from F . Thus, unless some enveloping
runner sends a signal, finalisation with F is guaranteed to take place.

Theorem 7 (Finalisation). A well-typed run factors through finalisation:

rrrΓ $ pusing V @W run M finally F q : Y ! pΣ1, E1qsss γ “ φ:
γ t,

for some t P TreeΣ1 pprrrXsss ` Eq ˆ rrrCsss ` Sq.
Proof. We first prove that f u c “ φ:

γpu cq holds for all u P KΣ1,E,S,rrrCsssrrrXsss
and c P rrrCsss, where f is the map (5). The proof proceeds by computational
induction on u [29]. The finalisation statement is then just the special case with
u

def“ rrrrXsss`EprrrΓ $ M : X ! pΣ,Eqsss γq and c
def“ rrrΓ $ W : Csss γ. [\

6 Runners in action

Let us show examples that demonstrate how runners can be usefully combined
to provide flexible resource management. We implemented these and other ex-
amples in the language Coop and a library Haskell-Coop, see §7.

To make the code more understandable, we do not adhere strictly to the
syntax of λcoop, e.g., we use the generic versions of effects [26], as is customary
in programming, and effectful initialisation of kernel state as discussed in §3.2.

Example 8 (Nesting). In Example 4, we considered a runner fileIO for basic file
operations. Let us suppose that fileIO is implemented by immediate calls to the
operating system. Sometimes, we might prefer to accumulate writes and commit
them all at once, which can be accomplished by interposing between fileIO and
user code the following runner accIO, which accumulates writes in its state:

Runners in action 49

{ write s' Ñ let s = getenv () in setenv (concat s s') }string

By nesting the runners, and calling the outer write (the one of fileIO) only in the
finalisation code for accIO, the accumulated writes are commited all at once:

using fileIO @ (open "hello.txt") run
using accIO @ (return "") run

write "Hello, world."; write "Hello, again."
finally { return x @ s Ñ write s; return x }

finally { return x @ fh Ñ ... , raise QuotaExceeded @ fh Ñ ... , kill IOError Ñ ... }

Example 9 (Instrumentation). Above, accIO implements the same signature as
fileIO and thus intercepts operations without the user code being aware of it. This
kind of invisibility can be more generally used to implement instrumentation:

using { ..., op x Ñ let c = getenv () in setenv (c+1); op x, ... }int @ (return 0) run
M

finally { return x @ c Ñ report_cost c; return x, ... }

Here the interposed runner implements all operations of some enveloping runner,
by simply forwarding them, while also measuring computational cost by counting
the total number of operation calls, which is then reported during finalisation.

Example 10 (ML-style references). Continuing with the theme of nested run-
ners, they can also be used to implement abstract and safe interfaces to low-level
resources. For instance, suppose we have a low-level implementation of a mem-
ory heap that potentially allows unsafe memory access, and we would like to
implement ML-style references on top of it. A good first attempt is the runner

{ ref x Ñ let h = getenv () in
let (r,h') = malloc h x in
setenv h'; return r,

get r Ñ let h = getenv () in memread h r,
put (r, x) Ñ let h = getenv () in memset h r x }heap

which has the desired interface, but still suffers from three deficiencies that can be
addressed with further language support. First, abstract types would let us hide
the fact that references are just memory locations, so that the user code could
never devise invalid references or otherwise misuse them. Second, our simple
typing discipline forces all references to hold the same type, but in reality we
want them to have different types. This could be achieved through quantification
over types in the low-level implementation of the heap, as we have done in the
Haskell-Coop library using Haskell’s forall. Third, user code could hijack
a reference and misuse it out of the scope of the runner, which is difficult to
prevent. In practice the problem does not occur because, so to speak, the runner
for references is at the very top level, from which user code cannot escape.

Example 11 (Monotonic state). Nested runners can also implement access re-
strictions to resources, with applications in security [8]. For example, we can

50 D. Ahman and A. Bauer

restrict the references from the previous example to be used monotonically by
associating a preorder with each reference, which assignments then have to obey.
This idea is similar to how monotonic state is implemented in the F˚ language [2],
except that we make dynamic checks where F˚ statically uses dependent types.

While we could simply modify the previous example, it is better to implement
a new runner which is nested inside the previous one, so that we obtain a modular
solution that works with any runner implementing operations ref, get, and put:

{ mref x rel Ñ let r = ref x in
let m = getenv () in
setenv (add m (r,rel)); return r,

mget r Ñ get r,
mput (r, y) Ñ let x = get r in

let m = getenv () in
match (sel m r) with
| inl rel Ñ if (rel x y) then put (r, y)

else raise MonotonicityViolation
| inr () Ñ kill NoPreoderFound }mappref,intRelq

The runner’s state is a map from references to preorders on integers. The co-
operation mref x rel creates a new reference r initialised with x (by calling ref of
the outer runner), and then adds the pair pr, relq to the map stored in the runner’s
state. Reading is delegated to the outer runner, while assignment first checks that
the new state is larger than the old one, according to the associated preorder. If
the preorder is respected, the runner proceeds with assignment (again delegated
to the outer runner), otherwise it reports a monotonicity violation. We may not
assume that every reference has an associated preorder, because user code could
pass to mput a reference that was created earlier outside the scope of the runner.
If this happens, the runner simply kills the offending user code with a signal.

Example 12 (Pairing). Another form of modularity is achieved by pairing run-
ners. Given two runners tpopx ÞÑ KopqopPΣ1uC1 and tpop1 x ÞÑ Kop1 qop1PΣ2uC2 ,
e.g., for state and file operations, we can use them side-by-side by combining
them into a single runner with operations Σ1 ` Σ2 and kernel state C1 ˆ C2, as
follows (the co-operations op1 of the second runner are treated symmetrically):

{ op x Ñ let (c,c') = getenv () in
user

kernel (Kop x) @ c finally {
return y @ c'' Ñ return (inl (inl y, c'')),
(raise e @ c'' Ñ return (inl (inr e, c'')))ePEop ,
(kill s Ñ return (inr s))sPS1}

with {
return (inl (inl y, c'')) Ñ setenv (c'', c'); return y,
return (inl (inr e, c'')) Ñ setenv (c'', c'); raise e,
return (inr s) Ñ kill s},

op' x Ñ ... , ... }C1ˆC2

Notice how the inner kernel context switch passes to the co-operation Kop only
its part of the combined state, and how it returns the result of Kop in a reified

Runners in action 51

form (which requires treating exceptions and signals as values). The outer user
context switch then receives this reified result, updates the combined state, and
forwards the result (return value, exception, or signal) in unreified form.

7 Implementation

We accompany the theoretical development with two implementations of λcoop:
a prototype language Coop [6], and a Haskell library Haskell-Coop [1].

Coop, implemented in OCaml, demonstrates what a more fully-featured
language based on λcoop might look like. It implements a bi-directional variant
of λcoop’s type system, extended with type definitions and algebraic datatypes,
to provide algorithmic typechecking and type inference. The operational seman-
tics is based on the computation rules of the equational theory from §4.4, but
extended with general recursion, pairing of runners from Example 12, and an in-
terface to the OCaml runtime called containers—these are essentially top-level
runners defined directly in OCaml. They are a modular and systematic way of
offering several possible top-level runtime environments to the programmer.

The Haskell-Coop library is a shallow embedding of λcoop in Haskell. The
implementation closely follows the denotational semantics of λcoop. For instance,
user and kernel monads are implemented as corresponding Haskell monads.
Internally, the library uses the Freer monad of Kiselyov [14] to implement free
model monads for given signatures of operations. The library also provides a
means to run user code via Haskell’s top-level monads. For instance, code
that performs input-output operations may be run in Haskell’s IO monad.

Haskell’s advanced features make it possible to use Haskell-Coop to
implement several extensions to examples from §6. For instance, we implement
ML-style state that allow references holding arbitrary values (of different types),
and state that uses Haskell’s type system to track which references are alive.
The library also provides pairing of runners from Example 12, e.g., to combine
state and input-output. We also use the library to demonstrate that ambient
functions from the Koka language [18] can be implemented with runners by
treating their binding and application as co-operations. (These are functions
that are bound dynamically but evaluated in the lexical scope of their binding.)

8 Related work

Comodels and (ordinary) runners have been used as a natural model of stateful
top-level behaviour. For instance, Plotkin and Power [27] have given a treatment
of operational semantics using the tensor product of a model and a comodel.
Recently, Katsumata, Rivas, and Uustalu have generalised this interaction of
models and comodels to monads and comonads [13]. An early version of Eff [4]
implemented resources, which were a kind of stateful runners, although they
lacked satisfactory theory. Uustalu [35] has pointed out that runners are the
additional structure that one has to impose on state to run algebraic effects
statefully. Møgelberg and Staton’s [21] linear-use state-passing translation also

52 D. Ahman and A. Bauer

Runners in action 25

relies on equipping the state with a comodel structure for the effects at hand.
Our runners arise when their setup is specialised to a certain Kleisli adjunction.

Our use of kernel state is analogous to the use of parameters in parameter-
passing handlers [30]: their return clause also provides a form of finalisation, as
the final value of the parameter is available. There is however no guarantee of
finalisation happening because handlers need not use the continuation linearly.

The need to tame the excessive generality of handlers, and willingness to give
it up in exchange for efficiency and predictability, has recently been recognised
by Multicore OCaml’s implementors, who have observed that in practice
most handlers resume continuations precisely once [9]. In exchange for impres-
sive efficiency, they require continuations to be used linearly by default, whereas
discarding and copying must be done explicitly, incurring additional cost. Lei-
jen [17] has extended handlers in Koka with a finally clause, whose semantics
ensures that finalisation happens whenever a handler discards its continuation.
Leijen also added an initially clause to parameter-passing handlers, which is used
to compute the initial value of the parameter before handling, but that gets
executed again every time the handler resumes its continuation.

9 Conclusion and future work

We have shown that effectful runners form a mathematically natural and mod-
ular model of resources, modelling not only the top level external resources, but
allowing programmers to also define their own intermediate “virtual machines”.
Effectful runners give rise to a bona fide programming concept, an idea we have
captured in a small calculus, called λcoop, which we have implemented both as a
language and a library. We have given λcoop an algebraically natural denotational
semantics, and shown how to program with runners through various examples.

We leave combining runners and general effect handlers for future work. As
runners are essentially affine handlers, inspired by Multicore OCaml we also
plan to investigate efficient compilation for runners. On the theoretical side, by
developing semantics in a SubpCpoq-enriched setting [32], we plan to support
recursion at all levels, and remove the distinction between ground and arbitrary
types. Finally, by using proof-relevant subtyping [34] and synthesis of lenses [20],
we plan to upgrade subtyping from a simple inclusion to relating types by lenses.

Acknowledgements We thank Daan Leijen for useful discussions about initialisa-
tion and finalisation in Koka, as well as ambient values and ambient functions.
We thank Guillaume Munch-Maccagnoni and Matija Pretnar for discussing re-
sources and potential future directions for λcoop. We are also grateful to the
participants of the NII Shonan Meeting “Programming and reasoning with alge-
braic effects and effect handlers” for feedback on an early version of this work.

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-17-1-0326.

References

1. Ahman, D.: Library Haskell-Coop. Available at https://github.com/
danelahman/haskell-coop (2019)

2. Ahman, D., Fournet, C., Hritcu, C., Maillard, K., Rastogi, A., Swamy, N.: Recalling
a witness: foundations and applications of monotonic state. PACMPL 2(POPL),
65:1–65:30 (2018)

3. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers. Logical
Methods in Computer Science 10(4) (2014)

4. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebr. Meth. Program. 84(1), 108–123 (2015)

5. Bauer, A.: What is algebraic about algebraic effects and handlers? CoRR
abs/1807.05923 (2018)

6. Bauer, A.: Programming language coop. Available at https://github.com/
andrejbauer/coop (2019)

7. Benton, N., Kennedy, A.: Exceptional syntax. Journal of Functional Programming
11(4), 395–410 (2001)

8. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A.,
Swamy, N., Zanella-Beguelin, S., Bhargavan, K., Pan, J., Zinzindohoue, J.K.: Im-
plementing and proving the tls 1.3 record layer. In: 2017 IEEE Symp. on Security
and Privacy (SP). pp. 463–482 (2017)

9. Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakrishnan,
K.C., White, L.: Concurrent system programming with effect handlers. In: Wang,
M., Owens, S. (eds.) Trends in Functional Programming. pp. 98–117. Springer
International Publishing, Cham (2018)

10. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

11. Hyland, M., Plotkin, G., Power, J.: Combining effects: Sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006)

12. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proc. of 18th ACM
SIGPLAN Int. Conf. on Functional Programming, ICFP 2013. ACM (2013)

13. Katsumata, S., Rivas, E., Uustalu, T.: Interaction laws of monads and comonads.
CoRR abs/1912.13477 (2019)

14. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. In: Proc. of 2015
ACM SIGPLAN Symp. on Haskell. pp. 94–105. Haskell ’15, ACM (2015)

15. Koopman, P., Fokker, J., Smetsers, S., van Eekelen, M., Plasmeijer, R.: Functional
Programming in Clean. University of Nijmegen (1998), draft

16. Leijen, D.: Structured asynchrony with algebraic effects. In: Proceedings of
the 2nd ACM SIGPLAN International Workshop on Type-Driven Development,
TyDe@ICFP 2017, Oxford, UK, September 3, 2017. pp. 16–29. ACM (2017)

17. Leijen, D.: Algebraic effect handlers with resources and deep finalization. Tech.
Rep. MSR-TR-2018-10, Microsoft Research (April 2018)

18. Leijen, D.: Programming with implicit values, functions, and control (or, implicit
functions: Dynamic binding with lexical scoping). Tech. Rep. MSR-TR-2019-7,
Microsoft Research (March 2019)

19. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer (2004)

20. Miltner, A., Maina, S., Fisher, K., Pierce, B.C., Walker, D., Zdancewic, S.: Synthe-
sizing symmetric lenses. Proc. ACM Program. Lang. 3(ICFP), 95:1–95:28 (2019)

54 D. Ahman and A. Bauer

https://github.com/danelahman/haskell-coop
https://github.com/danelahman/haskell-coop
https://github.com/andrejbauer/coop
https://github.com/andrejbauer/coop

21. Møgelberg, R.E., Staton, S.: Linear usage of state. Logical Methods in Computer
Science 10(1) (2014)

22. Moggi, E.: Computational lambda-calculus and monads. In: Proc. of 4th Ann.
Symp. on Logic in Computer Science, LICS 1989. pp. 14–23. IEEE (1989)

23. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
24. O’Connor, R.: Functor is to lens as applicative is to biplate: Introducing multiplate.

CoRR abs/1103.2841 (2011)
25. Plotkin, G., Power, J.: Semantics for algebraic operations. In: Proc. of 17th Conf. on

the Mathematical Foundations of Programming Semantics, MFPS XVII. ENTCS,
vol. 45, pp. 332–345. Elsevier (2001)

26. Plotkin, G., Power, J.: Algebraic operations and generic effects. Appl. Categor.
Struct. (1), 69–94 (2003)

27. Plotkin, G., Power, J.: Tensors of comodels and models for operational semantics.
In: Proc. of 24th Conf. on Mathematical Foundations of Programming Semantics,
MFPS XXIV. ENTCS, vol. 218, pp. 295–311. Elsevier (2008)

28. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: Proc. of
5th Int. Conf. on Foundations of Software Science and Computation Structures,
FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer (2002)

29. Plotkin, G.D., Pretnar, M.: A logic for algebraic effects. In: Proc. of 23th Ann.
IEEE Symp. on Logic in Computer Science, LICS 2008. pp. 118–129. IEEE (2008)

30. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Logical Methods in Com-
puter Science 9(4:23) (2013)

31. Power, J., Shkaravska, O.: From comodels to coalgebras: State and arrays. Electr.
Notes Theor. Comput. Sci. 106, 297–314 (2004)

32. Power, J.: Enriched Lawvere theories. Theory Appl. Categ 6(7), 83–93 (1999)
33. Pretnar, M.: The Logic and Handling of Algebraic Effects. Ph.D. thesis, School of

Informatics, University of Edinburgh (2010)
34. Saleh, A.H., Karachalias, G., Pretnar, M., Schrijvers, T.: Explicit effect subtyping.

In: Proc. of 27th European Symposium on Programming, ESOP 2018. pp. 327–354.
LNCS, Springer (2018)

35. Uustalu, T.: Stateful runners of effectful computations. Electr. Notes Theor. Com-
put. Sci. 319, 403–421 (2015)

36. Wadler, P.: The essence of functional programming. In: Sethi, R. (ed.) Proc. of 19th
Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL 1992. pp. 1–14. ACM (1992)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Runners in action 55

http://creativecommons.org/licenses/by/4.0/

	2
 Runners in action
	1 Introduction
	2 Algebraic effects, handlers, and runners
	2.1 Algebraic effects and handlers
	2.2 Runners
	References

	3 Programming with runners
	3.1 The user and kernel monads
	3.2 Runners as a programming construct

	4 A calculus for programming with runners
	4.1 Types
	4.2 Values and computations
	4.3 Type system
	4.4 Equational theory

	5 Denotational semantics
	5.1 Semantics of types
	5.2 Semantics of values and computations
	5.3 Coherence, soundness, and finalisation theorems

	6 Runners in action
	7 Implementation
	8 Related work
	9 Conclusion and future work

