
Modular Inference of Linear Types for
Multiplicity-Annotated Arrows

Kazutaka Matsuda1

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
kztk@ecei.tohoku.ac.jp

Abstract. Bernardy et al. [2018] proposed a linear type system λq
→ as a

core type system of Linear Haskell. In the system, linearity is represented
by annotated arrow types A →m B, where m denotes the multiplicity
of the argument. Thanks to this representation, existing non-linear code
typechecks as it is, and newly written linear code can be used with
existing non-linear code in many cases. However, little is known about
the type inference of λq

→. Although the Linear Haskell implementation
is equipped with type inference, its algorithm has not been formalized,
and the implementation often fails to infer principal types, especially for
higher-order functions. In this paper, based on OutsideIn(X) [Vytiniotis
et al., 2011], we propose an inference system for a rank 1 qualified-typed
variant of λq

→, which infers principal types. A technical challenge in this
new setting is to deal with ambiguous types inferred by naive qualified
typing. We address this ambiguity issue through quantifier elimination
and demonstrate the effectiveness of the approach with examples.

Keywords: Linear Types · Type Inference · Qualified Typing.

1 Introduction

Linearity is a fundamental concept in computation and has many applications.
For example, if a variable is known to be used only once, it can be freely inlined
without any performance regression [29]. In a similar manner, destructive updates
are safe for such values without the risk of breaking referential transparency [32].
Moreover, linearity is useful for writing transformation on data that cannot be
copied or discarded for various reasons, including reversible computation [19, 35]
and quantum computation [2, 25]. Another interesting application of linearity is
that it helps to bound the complexity of programs [1, 5, 13]

Linear type systems use types to enforce linearity. One way to design a
linear type system is based on Curry-Howard isomorphism to linear logic. For
example, in Wadler [33]’s type system, functions are linear in the sense that their
arguments are used exactly once, and any exception to this must be marked by
the type operator (!). Such an approach is theoretically elegant but cumbersome
in programming; a program usually contains both linear and unrestricted code,
and many manipulations concerning (!) are required in the latter and around the

c© The Author(s) 2020
P. Müller (Ed.): ESOP 2020, LNCS 12075, pp. 456–483, 2020.
https://doi.org/10.1007/978-3-030-44914-8_17

http://orcid.org/0000-0002-9747-4899
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44914-8_17&domain=pdf

interface between the two. Thus, there have been several proposed approaches
for more practical linear type systems [7, 21,24,28].

Among these approaches, a system called λq
→, the core type system of Linear

Haskell, stands out for its ability to have linear code in large unrestricted code
bases [7]. With it, existing unrestricted code in Haskell typechecks in Linear
Haskell without modification, and if one desires, some of the unrestricted code
can be replaced with linear code, again without any special programming effort.
For example, one can use the function append in an unrestricted context as
λx.tail (append x x), regardless of whether append is a linear or unrestricted
function. This is made possible by their representation of linearity. Specifically,
they annotate function type with its argument’s multiplicity (“linearity via
arrows” [7]) as A →m B, where m = 1 means that the function of the type
uses its argument linearly, and m = ω means that there is no restriction in
the use of the argument, which includes all non-linear standard Haskell code.
In this system, linear functions can be used in an unrestricted context if their
arguments are unrestricted. Thus, there is no problem in using append : List A →1

List A →1 List A as above, provided that x is unrestricted. This promotion of
linear expressions to unrestricted ones is difficult in other approaches [21, 24,28]
(at least in the absence of bounded kind-polymorphism), where linearity is a
property of a type (called “linearity via kinds” in [7]).

However, as far as we are aware, little is known about type inference for
λq
→. It is true that Linear Haskell is implemented as a fork1 of the Glasgow

Haskell Compiler (GHC), which of course comes with type inference. However,
the algorithm has not been formalized and has limitations due to a lack of proper
handling of multiplicity constraints. Indeed, Linear Haskell gives up handling
complex constraints on multiplicities such as those with multiplications p · q; as
a result, Linear Haskell sometimes fails to infer principal types, especially for
higher-order functions.2 This limits the reusability of code. For example, Linear
Haskell cannot infer an appropriate type for function composition to allow it to
compose both linear and unrestricted functions.

A classical approach to have both separated constraint solving that works
well with the usual unification-based typing and principal typing (for a rank 1
fragment) is qualified typing [15]. In qualified typing, constraints on multiplicities
are collected, and then a type is qualified with it to obtain a principal type.
Complex multiplicities are not a problem in unification as they are handled by a
constraint solver. For example, consider app = λf.λx.f x. Suppose that f has
type a →p b, and x has type a (here we focus only on multiplicities). Let us write
the multiplicities of f and x as pf and px, respectively. Since x is passed to f ,
there is a constraint that the multiplicity px of x must be ω if the multiplicity p
of the f ’s argument also is. In other words, px must be no less than p, which is
represented by inequality p ≤ px under the ordering 1 ≤ ω. (We could represent
the constraint as an equality px = p · px, but using inequality is simpler here.)

1 https://github.com/tweag/ghc/tree/linear-types
2 Confirmed for commit 1c80dcb424e1401f32bf7436290dd698c739d906 at May 14,

2019.

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 457

https://github.com/tweag/ghc/tree/linear-types

For the multiplicity pf of f , there is no restriction because f is used exactly once;
linear use is always legitimate even when pf = ω. As a result, we obtain the
inferred type ∀p pf px a b. p ≤ px ⇒ (a →p b) →pf

a →px b for app. This type is
a principal one; it is intuitively because only the constraints that are needed for
typing λf.λx.f x are gathered. Having separate constraint solving phases itself
is rather common in the context of linear typing [3, 4, 11, 12, 14, 23, 24, 29, 34].
Qualified typing makes the constraint solving phase local and gives the principal
typing property that makes typing modular. In particular, in the context of
linearity via kinds, qualified typing is proven to be effective [11,24].

As qualified typing is useful in the context of linearity via kinds, one may
expect that it also works well for linearity via arrows such as λq

→. However, naive
qualified typing turns out to be impractical for λq

→ because it tends to infer
ambiguous types [15,27]. As a demonstration, consider a slightly different version
of app defined as app′ = λf.λx.app f x. Standard qualified typing [15,31] infers
the type

∀q qf qx pf px a b. (q ≤ qx ∧ qf ≤ pf ∧ qx ≤ px) ⇒ (a →q b) →pf
a →px

b

by the following steps:

– The polymorphic type of app is instantiated to (a →q b) →qf a →qx b and
yields a constraint q ≤ qx (again we focus only on multiplicity constraints).

– Since f is used as the first argument of app, f must have type a →q b. Also,
since the multiplicity of app’s first argument is qf , there is a restriction on
the multiplicity of f , say pf , that qf ≤ pf .

– Similarly, since x is used as the second argument of app, x must have type a,
and there is a constraint on the multiplicity of x, say px, that qx ≤ px.

This inference is unsatisfactory, as the inferred type leaks internal details and
is ambiguous [15, 27] in the sense that one cannot determine qf and qx from
an instantiation of (a →q b) →pf

a →px b. Due to this ambiguity, the types of
app and app’ are not judged as equivalent; in fact, the standard qualified typing
algorithms [15, 31] reject app′ : ∀p pf px a b. p ≤ px ⇒ (a →p b) →pf

a →px
b. We

conjecture that the issue of inferring ambiguous types is intrinsic to linearity via
arrows because of the separation of multiplicities and types, unlike the case of
linearity via kinds, where multiplicities are always associated with types. Simple
solutions such as rejecting ambiguous types are not desirable as this case appears
very often. Defaulting ambiguous variables (such as qf and qx) to 1 or ω is not a
solution either because it loses principality in general.

In this paper, we propose a type inference method for a rank 1 qualified-typed
variant of λq

→, in which the ambiguity issue is addressed without compromising
principality. Our type inference system is built on top of OutsideIn(X) [31],
an inference system for qualified types used in GHC, which can handle local
assumptions to support let, existential types, and GADTs. An advantage of using
OutsideIn(X) is that it is parameterized over theory X of constraints. Thus,
applying it to linear typing boils down to choosing an appropriate X. We choose
X carefully so that the representation of constraints is closed under quantifier

458 K. Matsuda

elimination, which is the key to addressing the ambiguity issue. Specifically, in
this paper:

– We present a qualified typing variant of a rank-1 fragment of λq
→ without

local definitions, in which manipulation of multiplicities is separated from
the standard unification-based typing (Sect. 2).

– We give an inference method for the system based on gathering constraints
and solving them afterward (Sect. 3). This step is mostly standard, except
that we solve multiplicity constraints in time polynomial in their sizes.

– We address the ambiguity issue by quantifier elimination under the assumption
that multiplicities do not affect runtime behavior (Sect. 4).

– We extend our technique to local assumptions (Sect. 5), which enables let
and GADTs, by showing that the disambiguation in Sect. 4 is compatible
with OutsideIn(X).

– We report experimental results using our proof-of-concept implementation
(Sect. 6). The experiments show that the system can infer unambiguous
principal types for selected functions from Haskell’s Prelude, and performs
well with acceptable overhead.

Finally, we discuss related work (Sect. 7) and then conclude the paper (Sect. 8).
The prototype implementation is available as a part of a reversible programming
system Sparcl, available from https://bitbucket.org/kztk/partially-reversible-lang-impl/.
Due to space limitation, we omit some proofs from this paper, which can be
found in the full version [20].

2 Qualified-Typed Variant of λq
→

In this section, we introduce a qualified-typed [15] variant of λq
→ [7] for its

rank 1 fragment, on which we base our type inference. Notable differences to the
original λq

→ include: (1) multiplicity abstractions and multiplicity applications
are implicit (as type abstractions and type applications), (2) this variant uses
qualified typing [15], (3) conditions on multiplicities are inequality based [6],
which gives better handling of multiplicity variables, and (4) local definitions
are excluded as we postpone the discussions to Sect. 5 due to their issues in the
handling of local assumptions in qualified typing [31].

2.1 Syntax of Programs

Programs and expressions, which will be typechecked, are given below.

prog ::= bind1; . . . ; bindn

bind ::= f = e | f : A = e
e ::= x | λx.e | e1 e2 | C e | case e0 of {Ci xi → ei}i

A program is a sequence of bindings with or without type annotations, where
bound variables can appear in following bindings. As mentioned at the beginning

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 459

https://bitbucket.org/kztk/partially-reversible-lang-impl/

A,B ::= ∀pa.Q ⇒ τ (polytypes)
σ, τ ::= a | D μ τ | σ →μ τ (monotypes)
μ ::= p | 1 | ω (multiplicities)

Q ::=
∧

i φi (constraints)
φ ::= M ≤ M ′ (predicates)
M,N ::=

∏
i μi (multiplications)

Fig. 1. Types and related notions: a and p are type and multiplicity variables, respec-
tively, and D represents a type constructor.

of this section, we shall postpone the discussions of local bindings (i.e., let) to
Sect. 5. Expressions consist of variables x, applications e1 e2, λ-abstractions λx.e,
constructor applications C e, and (shallow) pattern matching case e0 of {Ci xi →
ei}i. For simplicity, we assume that constructors are fully-applied and patterns
are shallow. As usual, patterns Ci xi must be linear in the sense that each variable
in xi is different. Programs are assumed to be appropriately α-renamed so that
newly introduced variables by λ and patterns are always fresh. We do not require
the patterns of a case expression to be exhaustive or no overlapping, following
the original λq

→ [7]; the linearity in λq
→ cares only for successful computations.

Unlike the original λq
→, we do not annotate λ and case with the multiplicity of

the argument and the scrutinee, respectively.
Constructors play an important role in λq

→. As we will see later, they can be
used to witness unrestrictedness, similarly to ! of !e in a linear type system [33].

2.2 Types

Types and related notations are defined in Fig. 1. Types are separated into
monotypes and polytypes (or, type schemes). Monotypes consist of (rigid) type
variables a, datatypes D μ τ , and multiplicity-annotated function types τ1 →μ τ2.
Here, a multiplicity μ is either 1 (linear), ω (unrestricted), or a (rigid) multiplicity
variable p. Polytypes have the form ∀pa.Q ⇒ τ , where Q is a constraint that
is a conjunction of predicates. A predicate φ has the form of M ≤ M ′, where
M ′ and M are multiplications of multiplicities. We shall sometimes treat Q as
a set of predicates, which means that we shall rewrite Q according to contexts
by the idempotent commutative monoid laws of ∧. We call both multiplicity (p)
and type (a) variables type-level variables, and write ftv(t) for the set of free
type-level variables in syntactic objects (such as types and constraints) t.

The relation (≤) and operator (·) in predicates denote the corresponding
relation and operator on {1, ω}, respectively. On {1, ω}, (≤) is defined as the
reflexive closure of 1 ≤ ω; note that ({1, ω} ,≤) forms a total order. Multiplication
(·) on {1, ω} is defined by

1 ·m = m · 1 = m ω ·m = m · ω = ω.

For simplicity, we shall sometimes omit (·) and write m1m2 for m1 ·m2. Note
that, for m1,m2 ∈ {1, ω}, m1 ·m2 is the least upper bound of m1 and m2 with
respect to ≤. As a result, m1 ·m2 ≤ m holds if and only if (m1 ≤ m)∧ (m2 ≤ m)
holds; we will use this property for efficient handling of constraints (Sect. 3.2).

460 K. Matsuda

We assume a fixed set of constructors given beforehand. Each constructor
is assigned a type of the form ∀pa. τ1 →μ1

. . . →μn1
τn →μn

D p a where
each τi and μi do not contain free type-level variables other than {pa}, i.e.,⋃

i ftv(τi, μi) ⊆ {pa}. For simplicity, we write the above type as ∀pa. τ →μ D p a.
We assume that types are well-kinded, which effectively means that D is applied
to the same numbers of multiplicity arguments and type arguments among the
constructor types. Usually, it suffices to use constructors of linear function types
as below because they can be used in both linear and unrestricted code.

(−,−) : ∀a b. a →1 b →1 a⊗ b

Nil : ∀a. List a Cons : ∀a. a →1 List a →1 List a

In general, constructors can encapsulate arguments’ multiplicities as below,
which is useful when a function returns both linear and unrestricted results.

MkUn : ∀a. a →ω Un a MkMany : ∀p a. a →p Many p a

For example, a function that reads a value from a mutable array at a given
index can be given as a primitive of type readMArray : ∀a.MArray a →1 Int →ω

(MArray a ⊗ Un a) [7]. Multiplicity-parameterized constructors become useful
when the multiplicity of contents can vary. For example, the type IOL p a with
the constructor MkIOL : (World →1 (World ⊗ Many p a)) →1 IOL p a can
represent the IO monad [7] with methods return : ∀p a. a →p IOL p a and
(>>=) : ∀p q a b. IOL p a →1 (a →p IOL q b) →1 IOL q b.

2.3 Typing Rules

Our type system uses two sorts of environments A typing environment maps
variables into polytypes (as usual in non-linear calculi), and a multiplicity envi-
ronment maps variables into multiplications of multiplicities. This separation of
the two will be convenient when we discuss type inference. As usual, we write
x1 : A1, . . . , xn : An instead of {x1
→ A1, . . . , xn
→ An} for typing environments.
For multiplicity environments, we use multiset-like notation as x1

M1 , . . . , xn
Mn .

We use the following operations on multiplicity environments:3

(Δ1 +Δ2)(x) =

{
ω if x ∈ dom(Δ1) ∩ dom(Δ2)

Δi(x) if x ∈ dom(Δi) \ dom(Δj) (i �= j ∈ {1, 2})
(μΔ)(x) = μ ·Δ(x)

(Δ1
Δ2)(x) =

{
Δ1(x) ·Δ2(x) if x ∈ dom(Δ1) ∩ dom(Δ2)

ω if x ∈ dom(Δi) \ dom(Δj) (i �= j ∈ {1, 2})
3 In these definitions, we implicitly consider multiplicity 0 and regard Δ(x) = 0 if
x �∈ dom(Δ). It is natural that 0 + m = m + 0. With 0, multiplication ·, which is
extended as 0 ·m = m · 0 = 0, no longer computes the least upper bound. Therefore,
we use � for the last definition; in fact, the definition corresponds to the pointwise
computation of Δ1(x) �Δ2(x), where ≤ is extended as 0 ≤ ω but not 0 ≤ 1. This
treatment of 0 coincides with that in the Linear Haskell proposal [26].

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 461

Q;Γ ;Δ′ 	 e : τ ′

Q |= Δ = Δ′ Q |= τ ∼ τ ′

Q;Γ ;Δ 	 e : τ
Eq

Γ (x) = ∀pa.Q′ ⇒ τ
Q |= Q′[p �→ μ] Q |= x1 ≤ Δ

Q;Γ ;Δ 	 x : τ [p �→ μ, a �→ τ]
Var

Q;Γ, x : σ;Δ,xμ 	 e : τ

Q;Γ ;Δ 	 λx.e : σ →μ τ
Abs

Q;Γ ;Δ1 	 e1 : σ →μ τ Q;Γ ;Δ2 	 e2 : σ

Q;Γ ;Δ1 + μΔ2 	 e1 e2 : τ
App

C : ∀pa. τ →ν D p a {Q;Γ ;Δi 	 ei : τi[p �→ μ, a �→ σ]}i
Q;Γ ;ωΔ0 +

∑
i νi[p �→ μ]Δi 	 C e : D μ σ

Con

Q;Γ ;Δ0 	 e0 : D μ σ{
Ci : ∀pa. τi →νi D p a

Q;Γ, xi : τi[p �→ μ, a �→ σ];Δi, xi
μ0νi[p →μ] 	 ei : τ

′

}
i

Q;Γ ;μ0Δ0 +
⊔

i Δi 	 case e0 of {Ci xi → ei}i : τ ′ Case

Fig. 2. Typing relation for expressions

Intuitively, Δ(x) represents the number of uses of x. So, in the definition of
Δ1 + Δ2, we have (Δ1 + Δ2)(x) = ω if x ∈ dom(Δ1) ∩ dom(Δ2) because this
condition means that x is used in two places. Operation Δ1
Δ2 is used for case
branches. Suppose that a branch e1 uses variables as Δ1 and another branch e2
uses variables as Δ2. Then, putting the branches together, variables are used
as Δ1
Δ2. The definition says that x is considered to be used linearly in the
two branches put together if and only if both branches use x linearly, where
non-linear use includes unrestricted use (Δi(x) = ω) and non-use (x �∈ dom(Δ)).

We write Q |= Q′ if Q logically entails Q′. That is, for any valuation of
multiplicity variables θ(p) ∈ {1, ω}, Q′θ holds if Qθ does. For example, we have
p ≤ r ∧ r ≤ q |= p ≤ q. We extend the notation to multiplicity environments
and write Q |= Δ1 ≤ Δ2 if dom(Δ1) ⊆ dom(Δ2) and Q |= ∧

x∈dom(Δ) Δ1(x) ≤
Δ2(x)∧

∧
x∈dom(Δ2)\dom(Δ1)

ω ≤ Δ2(x) hold. We also write Q |= Δ1 = Δ2 if both
Q |= Δ1 ≤ Δ2 and Q |= Δ2 ≤ Δ1 hold. We then have the following properties.

Lemma 1. Suppose Q |= Δ ≤ Δ′ and Q |= Δ = Δ1 +Δ2. Then, there are some
Δ′

1 and Δ′
2 such that Q |= Δ′ = Δ′

1 +Δ′
2, Q |= Δ1 ≤ Δ′

1 and Q |= Δ2 ≤ Δ′
2. �

Lemma 2. Q |= μΔ ≤ Δ′ implies Q |= Δ ≤ Δ′. �

Lemma 3. Q |= Δ1
Δ2 ≤ Δ′ implies Q |= Δ1 ≤ Δ′ and Q |= Δ2 ≤ Δ′. �

Constraints Q affect type equality; for example, under Q = p ≤ q ∧ q ≤ p,
σ →p τ and σ →q τ become equivalent. Formally, we write Q |= τ ∼ τ ′ if
τθ = τ ′θ for any valuation θ of multiplicity variables that makes Qθ true.

Now, we are ready to define the typing judgment for expressions, Q;Γ ;Δ � e :
τ , which reads that under assumption Q, typing environment Γ , and multiplicity
environment Δ, expression e has monotype τ , by the typing rules in Fig. 2. Here,
we assume dom(Δ) ⊆ dom(Γ). Having x ∈ dom(Γ) \ dom(Δ) means that the
multiplicity of x is essentially 0 in e.

Rule Eq says that we can replace τ and Δ with equivalent ones in typing.

462 K. Matsuda

Γ 	 ε
Empty

Q;Γ ;Δ 	 e : τ pa = ftv(Q, τ) Γ, f : ∀pa.Q ⇒ τ 	 prog

Γ 	 f = e; prog
Bind

Q;Γ ;Δ 	 e : τ pa = ftv(Q, τ) Γ, f : ∀pa.Q ⇒ τ 	 prog

Γ 	 f : (∀pa.Q ⇒ τ) = e; prog
BindA

Fig. 3. Typing rules for programs

Rule Var says that x is used once in a variable expression x, but it is safe to
regard that the expression uses x more than once and uses other variables ω times.
At the same time, the type ∀pa.Q′ ⇒ τ of x instantiated to τ [p
→ μ, a
→ σ] with
yielding constraints Q′[p
→ μ], which must be entailed from Q.

Rule Abs says that λx.e has type σ →μ τ if e has type τ , assuming that
the use of x in e is μ. Unlike the original λq

→ [7], in our system, multiplicity
annotations on arrows must be μ, i.e., 1, ω, or a multiplicity variable, instead of
M . This does not limit the expressiveness because such general arrow types can
be represented by type σ →p τ with constraints p ≤ M ∧M ≤ p.

Rule App sketches an important principle in λq
→; when an expression with

variable use Δ is used μ-many times, the variable use in the expression becomes
μΔ. Thus, since we pass e2 (with variable use Δ2) to e1, where e1 uses the
argument μ-many times as described in its type σ →μ τ , the use of variables in
e2 of e1 e2 becomes μΔ2. For example, for (λy.42) x, x is considered to be used
ω times because (λy.42) has type σ →ω Int for any σ.

Rule Con is nothing but a combination of Var and App. The ωΔ0 part is
only useful when C is nullary; otherwise, we can weaken Δ at leaves.

Rule Case is the most complicated rule in this type system. In this rule, μ0

represents how many times the scrutinee e0 is used in the case. If μ0 = ω, the
pattern bound variables can be used unrestrictedly, and if μ0 = 1, the pattern
bound variables can be used according to the multiplicities of the arguments of the
constructor.4 Thus, in the ith branch, variables in xi can be used as μ0νi[p
→ μ],
where μi[p
→ μ] represents the multiplicities of the arguments of the constructor
Ci. Other than xi, each branch body ei can contain free variables used as Δi.
Thus, the uses of free variables in the whole branch bodies are summarized as⊔

i Δi. Recall that the case uses the scrutinee μ0 times; thus, the whole uses of
variables are estimated as μ0Δ0 +

⊔
i Δi.

Then, we define the typing judgment for programs, Γ � prog , which reads that
program prog is well-typed under Γ , by the typing rules in Fig. 3. At this place,
the rules Bind and BindA have no significant differences; their difference will be
clear when we discuss type inference. In the rules Bind and BindA, we assumed
that Γ contains no free type-level variables. Therefore, we can safely generalize
all free type-level variables in Q and τ . We do not check the use Δ in both rules

4 This behavior, inherited from λq
→ [7], implies the isomorphism !(A⊗B) ≡ !A⊗ !B,

which is not a theorem in the standard linear logic. The isomorphism intuitively means
that unrestricted products can (only) be constructed from unrestricted components,
as commonly adopted in linearity-via-kind approaches [11,21,24,28,29].

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 463

as bound variables are assumed to be used arbitrarily many times in the rest
of the program; that is, the multiplicity of a bound variable is ω and its body
uses variable as ωΔ, which maps x ∈ dom(Δ) to ω and has no free type-level
variables.

2.4 Metatheories

Lemma 4 is the standard weakening property. Lemma 5 says that we can replace
Q with a stronger one, Lemma 6 says that we can replace Δ with a greater one,
and Lemma 7 says that we can substitute type-level variables in a term-in-context
without violating typeability. These lemmas state some sort of weakening, and
the last three lemmas clarify the goal of our inference system discussed in Sect. 3.

Lemma 4. Q;Γ ;Δ � e : τ implies Q;Γ, x : A;Δ � e : τ . �

Lemma 5. Q;Γ ;Δ � e : τ and Q′ |= Q implies Q′;Γ ;Δ � e : τ . �

Lemma 6. Q;Γ ;Δ � e : τ and Q |= Δ ≤ Δ′ implies Q;Γ ;Δ′ � e : τ . �

Lemma 7. Q;Γ ;Δ � e : τ implies Qθ;Γθ;Δθ � e : τθ. �

We have the following form of the substitution lemma:

Lemma 8 (Substitution). Suppose Q0;Γ, x : σ;Δ0, xμ � e : τ , and Qi;Γ ;Δi �
e′i : σi for each i. Then, Q1 ∧

∧
i Qi;Γ ;Δ0 +

∑
i μiΔi � e[x
→ e′] : τ . �

Subject Reduction We show the subject reduction property for a simple call-by-
name semantics. Consider the standard small-step call-by-name relation e −→ e′

with the following β-reduction rules (we omit the congruence rules):

(λx.e1) e2 −→ e1[x
→ e2] case Cj ej of {Ci xi → e′i}i −→ e′j [xj
→ ej]

Then, by Lemma 8, we have the following subjection reduction property:

Lemma 9 (Subject Reduction). Q;Γ ;Δ � e : τ and e −→ e′ implies
Q;Γ ;Δ � e′ : τ . �

Lemma 9 holds even for the call-by-value reduction, though with a caveat.
For a program f1 = e1; . . . ; fn = en, it can happen that some ei is typed
only under unsatisfiable (i.e., conflicting) Qi. As conflicting Qi means that ei
is essentially ill-typed, evaluating ei may not be safe. However, the standard
call-by-value strategy evaluates ei, even when fi is not used at all and thus the
type system does not reject this unsatisfiability. This issue can be addressed
by the standard witness-passing transformation [15] that converts programs so
that Q ⇒ τ becomes WQ → τ , where WQ represents a set of witnesses of Q.
Nevertheless, it would be reasonable to reject conflicting constraints locally.

We then state the correspondence with the original system [7] (assuming the
modification [6] for the variable case5) to show that the qualified-typed version
5 In the premise of Var, the original [7] uses ∃Δ′. Δ = x1 + ωΔ′, which is modified

to x1 ≤ Δ in [6]. The difference between the two becomes clear when Δ(x) = p, for
which the former one does not hold as we are not able to choose Δ′ depending on p.

464 K. Matsuda

captures the linearity as the original. While the original system assumes the
call-by-need evaluation, Lemma 9 could be lifted to that case.

Theorem 1. If �;Γ ;Δ � e : τ where Γ contains only monotypes, e is also
well-typed in the original λq

→ under some environment. �

The main reason for the monotype restriction is that our polytypes are strictly
more expressive than their (rank-1) polytypes. This extra expressiveness comes
from predicates of the form · · · ≤ M ·M ′. Indeed, f = λx.case x of {MkMany y →
(y, y)} has type ∀p q a. ω ≤ p · q ⇒ MkMany p a →q a⊗ a in our system, while it
has three incomparable types in the original λq

→.

3 Type Inference

In this section, we give a type inference method for the type system in the
previous section. Following [31, Section 3], we adopt the standard two-phase
approach; we first gather constraints on types and then solve them. As mentioned
in Sect. 1, the inference system described here has the issue of ambiguity, which
will be addressed in Sect. 4.

3.1 Inference Algorithm

We first extend types τ and multiplicities μ to include unification variables.

τ ::= · · · | α μ ::= · · · | π
We call α/π a unification type/multiplicity variable, which will be substituted
by a concrete type/multiplicity (including rigid variables) during the inference.
Similarly to ftv(t), we write fuv(t) for the unification variables (of both sorts) in
t, where each ti ranges over any syntactic element (such as τ , Q, Γ , and Δ).

Besides Q, the algorithm will generate equality constraints τ ∼ τ ′. Formally,
the sets of generated constraints C and generated predicates ψ are given by

C ::=
∧
i

ψi ψ ::= φ | τ ∼ τ ′

Then, we define type inference judgment for expressions, Γ �� e : τ � Δ;C,
which reads that, given Γ and e, type τ is inferred together with variable use Δ
and constraints C, by the rules in Fig. 4. Note that Δ is also synthesized as well
as τ and C in this step. This difference in the treatment of Γ and Δ is why we
separate multiplicity environments Δ from typing environments Γ .

Gathered constraints are solved when we process top-level bindings. Figure 5
defines type inference judgment for programs, Γ �� prog , which reads that the
inference finds prog well-typed under Γ . In the rules, manipulation of constraints
is done by the simplification judgment Q ��simp C � Q′; θ, which simplifies
C under the assumption Q into the pair (Q′, θ) of residual constraints Q′ and
substitution θ for unification variables, where (Q′, θ) is expected to be equivalent

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 465

Γ (x) = ∀pa.Q ⇒ τ α, π : fresh

Γ 	� x : τ [p �→ π, a �→ α] � x1;Q[p �→ π]

Γ, x : α 	� e : τ � Δ,xM ;C α, π : fresh
Γ 	� λx.e : α →π τ � Δ;C ∧M ≤ π

Γ 	� e1 : τ1 � Δ1;C2 Γ 	� e2 : τ2 � Δ2;C1 β, π : fresh
Γ 	� e1 e2 : β � Δ1 + πΔ2;C1 ∧ C2 ∧ τ1 ∼ (τ2 →π β)

C : ∀pa. σ →ν D p a {Γ 	� ei : τi � Δi;Ci}i α, π : fresh
Γ 	� C e : D π α �

∑
i νi[p �→ π]Δi;

∧
i Ci ∧ τi ∼ σi[p �→ π, a �→ α]

Γ 	� e0 : τ0 � Δ0;C0 π0, πi, αi, β : fresh{
Ci : ∀pa. τi →νi D p a

Γ, xi : τi[p �→ πi, a �→ αi] 	� ei : τ
′
i � Δi, xi

Mi ;Ci

}
i

C′ = C0 ∧∧
i

(
Ci ∧ β ∼ τ ′

i ∧ (τ0 ∼ D πi αi) ∧∧
j Mij ≤ π0νij [p �→ πi]

)

Γ 	� case e0 of {Ci xi → ei}i : β � π0Δ0 +
⊔

i Δi;C
′

Fig. 4. Type inference rules for expressions

Γ 	� ε

Γ 	� e : τ � Δ;C � 	�simp C � Q; θ {πα} = fuv(Q, τθ)
p, a : fresh Γ, f : ∀pa.(Q ⇒ τθ)[α �→ a, π �→ p] 	� prog

Γ 	� f = e; prog

Γ 	� e : σ � Δ;C Q 	�simp C ∧ τ ∼ σ � �; θ Γ, f : ∀pa.Q ⇒ τ 	� prog

Γ 	� f : (∀pa.Q ⇒ τ) = e; prog

Fig. 5. Type inference rules for programs

in some sense to C under the assumption Q. The idea underlying our simplification
is to solve type equality constraints in C as much as possible and then remove
predicates that are implied by Q. Rules s-Fun, s-Data, s-Uni, and S-Triv
are responsible for the former, which decompose type equality constraints and
yield substitutions once either of the sides becomes a unification variable. Rules
S-Entail and S-Rem are responsible for the latter, which remove predicates
implied by Q and then return the residual constraints. Rule S-Entail checks
Q |= φ; a concrete method for this check will be discussed in Sect. 3.2.

Example 1 (app). Let us illustrate how the system infers a type for app =
λf.λx.f x. We have the following derivation for its body λf.λx.f x:

f : αf �� f : αf � f1;� x : αx �� x : αx � x1;�
f : αf , x : αx �� f x : β � f1, xπ;αf ∼ (αx →π β)

f : αf �� λx.f x : αx →πx
β � f1;αf ∼ (αx →π β) ∧ πx ≤ π

�� λf.λx.f x : αf →πf
αx →πx

β � ∅;αf ∼ (αx →π β) ∧ πx ≤ π ∧ 1 ≤ πf

The highlights in the above derivation are:

– In the last two steps, f is assigned to type αf and multiplicity πf , and x is
assigned to type αx and multiplicity πx.

466 K. Matsuda

Q 	�simp σ ∼ σ′ ∧ μ ≤ μ′ ∧ μ′ ≤ μ ∧ τ ∼ τ ′ � Q′; θ

Q 	�simp (σ →μ τ) ∼ (σ′ →μ′ τ ′) ∧ C � Q′; θ
S-Fun

Q 	�simp μ ≤ μ′ ∧ μ′ ≤ μ ∧ σ ∼ σ′ ∧ C � Q′; θ

Q 	�simp (D μ σ) ∼ (D μ′ σ′) ∧ C � Q′; θ
S-Data

α �∈ fuv(τ) Q 	�simp C[α �→ τ] � Q′; θ

Q 	�simp α ∼ τ ∧ C � Q′; θ ◦ [α �→ τ]
S-Uni

Q 	�simp C � Q′; θ

Q 	�simp τ ∼ τ ∧ C � Q′; θ
S-Triv

Q ∧Qw |= φ Q 	�simp Qw ∧ C � Q′; θ

Q 	�simp φ ∧Qw ∧ C � Q′; θ
S-Entail

no other rules can apply
Q 	�simp Q′ � Q′; ∅ S-Rem

Fig. 6. Simplification rules (modulo commutativity and associativity of ∧ and commu-
tativity of ∼)

– Then, in the third last step, for f x, the system infers type β with constraint
αf ∼ (αx →π β). At the same time, the variable use in f x is also inferred
as f1, xπ. Note that the use of x is π because it is passed to f : αx →π β.

– After that, in the last two steps again, the system yields constraints πx ≤ π
and 1 ≤ πf .

As a result, the type τ = αf →πf
αx →πx

β is inferred with the constraint
C = αf ∼ (αx →π β) ∧ πx ≤ π ∧ 1 ≤ πf .

Then, we try to assign a polytype to app by the rules in Fig. 4. By simplifi-
cation, we have � ��simp C � πx ≤ π; [αf
→ (αx →π β)]. Thus, by generalizing
τ [αf
→ (αx →π β)] = (αx →π β) →πf

αx →πx
β with πx ≤ π, we obtain the

following type for app:

app : ∀p pf px a b. p ≤ px ⇒ (a →p b) →pf
a →px

b �

Correctness We first prepare some definitions for the correctness discussions.
First, we allow substitutions θ to replace unification multiplicity variables as well
as unification type variables. Then, we extend the notion of |= and write C |= C ′

if C ′θ holds when Cθ holds. From now on, we require that substitutions are
idempotent, i.e., τθθ = τθ for any τ , which excludes substitutions [α
→ List α]
and [α
→ β, β
→ Int] for example. Let us write Q |= θ = θ′ if Q |= τθ ∼ τθ′ for
any τ . The restriction of a substitution θ to a domain X is written by θ|X .

Consider a pair (Qg, Cw), where we call Qg and Cw given and wanted con-
straints, respectively. Then, a pair (Q, θ) is called a (sound) solution [31] for the
pair (Qg, Cw) if Qg ∧Q |= Cwθ, dom(θ) ∩ fuv(Qg) = ∅, and dom(θ) ∩ fuv(Q) = ∅.
A solution is called guess-free [31] if it satisfies Qg ∧ Cw |= Q ∧∧

π∈dom(θ)(π =

θ(π))∧∧
α∈dom(θ)(α ∼ θ(α)) in addition. Intuitively, a guess-free solution consists

of necessary conditions required for a wanted constraint Cw to hold, assuming
a given constraint Qg. For example, for (�, α ∼ (β →1 β)), (�, [α
→ (Int →1

Int), β
→ Int]) is a solution but not guess-free. Very roughly speaking, being for
(Q, θ) a guess-free solution of (Qg, Cw) means that (Q, θ) is equivalent to Cw

under the assumption Qg. There can be multiple guess-free solutions; for example,
for (�, π ≤ 1), both (π ≤ 1, ∅) and (�, [π
→ 1]) are guess-free solutions.

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 467

Lemma 10 (Soundness and Principality of Simplification). If Q ��simp

C � Q′; θ, (Q′, θ) is a guess-free solution for (Q,C). �

Lemma 11 (Completeness of Simplification). If (Q′, θ) is a solution for
(Q,C) where Q is satisfiable, then Q ��simp C � Q′′; θ′ for some Q′′ and θ′. �

Theorem 2 (Soundness of Inference). Suppose Γ �� e : τ � Δ;C and there
is a solution (Q, θ) for (�, C). Then, we have Q;Γθ;Δθ � e : τθ. �

Theorem 3 (Completeness and Principality of Inference). Suppose Γ ��
e : τ � Δ;C. Suppose also that Q′;Γθ′;Δ′ � e : τ ′ for some substitution θ′

on unification variables such that dom(θ′) ⊆ fuv(Γ) and dom(θ′) ∩ fuv(Q′) = ∅.
Then, there exists θ such that dom(θ) \ dom(θ′) ⊆ X, (Q′, θ) is a solution for
(�, C), Q′ |= θ|dom(θ′) = θ′, Q′ |= τθ ∼ τ ′, and Q′ |= Δθ ≤ Δ′, where X is the
set of unification variables introduced in the derivation. �

Note that the constraint generation Γ �� e : τ � Δ;C always succeeds,
whereas the generated constraints may possibly be conflicting. Theorem 3 states
that such a case cannot happen when e is well-typed under the rules in Fig. 2.

Incompleteness in Typing Programs. It may sound contradictory to Theorem 3,
but the type inference is indeed incomplete for checking type-annotated bindings.
Recall that the typing rule for type-annotated bindings requires that the resulting
constraint after simplification must be �. However, even when there exists a
solution of the form (�, θ) for (Q,C), there can be no guess-free solution of this
form. For example, (�, π ≤ π′) has a solution (�, [π
→ π′]), but there are no
guess-free solutions of the required form. Also, even though there exists a guess-
free solution of the form (�, θ), the simplification may not return the solution, as
guess-free solutions are not always unique. For example, for (�, π ≤ π′ ∧ π′ ≤ π),
(�, [π
→ π′]) is a guess-free solution, whereas we have � ��simp π ≤ π′∧π′ ≤ π �

π ≤ π′ ∧ π′ ≤ π; ∅. The source of the issue is that constraints on multiplicities
can (also) be solved by substitutions.

Fortunately, this issue disappears when we consider disambiguation in Sect. 4.
By disambiguation, we can eliminate constraints for internally-introduced multi-
plicity unification variables that are invisible from the outside. As a result, after
processing equality constraints, we essentially need only consider rigid multiplicity
variables when checking entailment for annotated top-level bindings.

Promoting Equalities to Substituions. The inference can infer polytypes ∀p. p ≤
1 ⇒ Int →p Int and ∀p1 p2. (p1 ≤ p2 ∧ p2 ≤ p1) ⇒ Int →p1 Int →p2 Int, while
programmers would prefer more simpler types Int →1 Int and ∀p. Int →p Int →p

Int; the simplification so far does not yield substitutions on multiplicity unification
variables. Adding the following rule remedies the situation:

π �∈ fuv(Q) π �= μ
Q ∧Qw |= π ≤ μ ∧ μ ≤ π Q ��simp (Qw ∧ C)[π
→ μ] � Q′; θ

Q ��simp Qw ∧ C � Q′; θ ◦ [π
→ μ]
S-Eq

468 K. Matsuda

This rule says that if π = μ must hold for Qw∧C to hold, the simplification yields
the substitution [π
→ μ]. The condition π �∈ fuv(Q) is required for Lemma 10; a
solution cannot substitute variables in Q. Note that this rule essentially finds an
improving substitution [16].

Using the rule is optional. Our prototype implementation actually uses S-Eq
only for Qw for which we can find μ easily: M ≤ 1, ω ≤ μ, and looping chains
μ1 ≤ μ2 ∧ · · · ∧ μn−1 ≤ μn ∧ μn ≤ μ1.

3.2 Entailment Checking by Horn SAT Solving

The simplification rules rely on the check of entailment Q |= φ. For the constraints
in this system, we can perform this check in quadratic time at worst but in linear
time for most cases. Specifically, we reduce the checking Q |= φ to satisfiability of
propositional Horn formulas (Horn SAT), which is known to be solved in linear
time in the number of occurrences of literals [10], where the reduction (precisely,
the preprocessing of the reduction) may increase the problem size quadratically.
The idea of using Horn SAT for constraint solving in linear typing can be found
in Mogensen [23].

First, as a preprocess, we normalize both given and wanted constraints by
the following rules:

– Replace M1 ·M2 ≤ M with M1 ≤ M ∧M2 ≤ M .
– Replace M · 1 and 1 ·M with M , and M · ω and ω ·M with ω.
– Remove trivial predicates 1 ≤ M and M ≤ ω.

After this, each predicate φ has the form μ ≤ ∏
i νi.

After the normalization above, we can reduce the entailment checking to
satisfiability. Specifically, we use the following property:

Q |= μ ≤
∏
i

νi iff Q ∧
∧
i

(νi ≤ 1) ∧ (ω ≤ μ) is unsatisfiable

Here, the constraint Q∧∧
i(νi ≤ 1)∧ (ω ≤ μ) intuitively asserts that there exists

a counterexample of Q |= μ ≤ ∏
i νi.

Then, it is straightforward to reduce the satisfiability of Q to Horn SAT;
we just map 1 to true and ω to false and accordingly map ≤ and · to ⇐ and
∧, respectively. Since Horn SAT can be solved in linear time in the number of
occurrences of literals [10], the reduction also shows that the satisfiability of Q is
checked in linear time in the size of Q if Q is normalized.

Corollary 1. Checking Q |= φ is in linear time if Q and φ are normalized. �

The normalization of constraints can duplicate M of · · · ≤ M , and thus

increases the size quadratically in the worst case. Fortunately, the quadratic
increase is not common because the size of M is bounded in practice, in many cases
by one. Among the rules in Fig. 2, only the rule that introduces non-singleton
M in the right-hand side of ≤ is Case for a constructor whose arguments’

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 469

multiplicities are non-constants, such as MkMany : ∀p a.a →p Many p a. However,
it often suffices to use non-multiplicity-parameterized constructors, such as
Cons : ∀a. a →1 List a →1 List a, because such constructors can be used to
construct or deconstruct both linear and unrestricted data.

3.3 Issue: Inference of Ambiguous Types

The inference system so far looks nice; the system is sound and complete, and
infers principal types. However, there still exists an issue to overcome for the
system to be useful: it often infers ambiguous types [15, 27] in which internal
multiplicity variables leak out to reveal internal implementation details.

Consider app′ = λf.λx.app f x for app = λf.λx.f x from Example 1. We
would expect that equivalent types are inferred for app′ and app. However, this
is not the case for the inference system. In fact, the system infers the following
type for app′ (here we reproduce the inferred type of app for comparison):

app : ∀p pf px a b. (p ≤ px) ⇒ (a →p b) →pf
a →px

b
app′ : ∀q qf qx pf px a b. (q ≤ qx ∧ qf ≤ pf ∧ qx ≤ px) ⇒ (a →q b) →pf

a →px
b

We highlight why this type is inferred as follows.

– By abstractions, f is assigned to type αf and multiplicity πf , and x is
assigned to type αx and multiplicity πx.

– By its use, app is instantiated to type (α′ →π′ β′) →π′
f
α′ →π′

x
β′ with

constraint π′ ≤ π′
x.

– For app f , the system infers type β with constraint ((α′ →π′ β′) →π′
f
α′ →π′

x

β′) ∼ (αf →π1
β). At the same time, the variable use in the expression is

inferred as app1, fπ1 .
– For (app f x), the system infers type γ with constraint β ∼ (α′ →π2

γ). At
the same time, the variable use in the expression is inferred as app1, fπ1 , xπ2 .

– As a result, λf.λx.app f x has type αf →πf
αx →πx γ, yielding constraints

π1 ≤ πf ∧ π2 ≤ πx.

Then, for the gathered constraints, by simplification (including S-Eq), we obtain
a (guess-free) solution (Q, θ) such that Q = (π′

f ≤ πf ∧ π′ ≤ π′
x ∧ π′

x ≤ πx) and
θ = [αf
→ (α′ →π′ β′), π′

1
→ π′
f , β
→ (αf →π′

x
β′), π2
→ π′

x, γ
→ β′]). Then,
after generalizing (αf →πf

αx →πx γ)θ = (α′ →π′ β′) →πf
α′ →πx β, we obtain

the inferred type above.
There are two problems with this inference result:

– The type of app′ is ambiguous in the sense that the type-level variables in the
constraint cannot be determined only by those that appear in the type [15,27].
Usually, ambiguous types are undesirable, especially when their instantiation
affects runtime behavior [15,27,31].

– Due to this ambiguity, the types of app and app′ are not judged equivalent
by the inference system. For example, the inference rejects the binding
app′′ : ∀p pf px a b. (p ≤ px) ⇒ (a →p b) →pf

a →px
b = app′ because the

system does not know how to instantiate the ambiguous type-level variables
qf and qx, while the binding is valid in the type system in Sect. 2.

470 K. Matsuda

Inference of ambiguous types is common in the system; it is easily caused by
using defined variables. Rejecting ambiguous types is not a solution for our case
because it rejects many programs. Defaulting such ambiguous type-level variables
to 1 or ω is not a solution either because it loses principality in general. However,
we have no other choices than to reject ambiguous types, as long as multiplicities
are relevant in runtime behavior.

In the next section, we will show how we address the ambiguity issue un-
der the assumption that multiplicities are irrelevant at runtime. Under this
assumption, it is no problem to have multiplicity-monomorphic primitives such
as array processing primitives (e.g., readMArray : ∀a. MArray a →1 Int →ω

(MArray a ⊗ Un a)) [31]. Note that this assumption does not rule out all
multiplicity-polymorphic primitives; it just prohibits the primitives from in-
specting multiplicities at runtime.

4 Disambiguation by Quantifier Elimination

In this section, we address the issue of ambiguous and leaky types by using
quantifier elimination. The basic idea is simple; we just view the type of app′ as

app′ : ∀q pf px a b. (∃qx qf . q ≤ qx ∧ qf ≤ pf ∧ qx ≤ px) ⇒ (a →q b) →pf
a →px b

In this case, the constraint (∃qx qf . q ≤ qx ∧ qf ≤ pf ∧ qx ≤ px) is logically
equivalent to q ≤ px, and thus we can infer the equivalent types for both app
and app′. Fortunately, such quantifier elimination is always possible for our repre-
sentation of constraints; that is, for ∃p.Q, there always exists Q′ that is logically
equivalent to ∃p.Q. A technical subtlety is that, although we perform quantifier
elimination after generalization in the above explanation, we actually perform
quantifier elimination just before generalization, or more precisely, as a final step
of simplification, for compatibility with the simplification in OutsideIn(X) [31],
especially in the treatment of local assumptions.

4.1 Elimination of Existential Quantifiers

The elimination of existential quantifiers is rather easy; we simply use the well-
known fact that a disjunction of a Horn clause and a definite clause can also be
represented as a Horn clause. Regarding our encoding of normalized predicates
(Sect. 3.2) that maps μ ≤ M to a Horn clause, the fact can be rephrased as:

Lemma 12. (μ ≤ M ∨ ω ≤ M ′) ≡ μ ≤ M ·M ′. �

Here, we extend constraints to include ∨ and write ≡ for the logical equivalence;
that is, Q ≡ Q′ if and only if Q |= Q′ and Q′ |= Q.

As a corollary, we obtain the following result:

Corollary 2. There effectively exists a quantifier-free constraint Q′, denoted by
elim(∃π.Q), such that Q′ is logically equivalent to ∃π.Q.

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 471

Proof. Note that ∃π.Q means Q[π
→ 1]∨Q[π
→ ω] because π ranges over {1, ω}.
We safely assume that Q is normalized (Sect. 3.2) and that Q does not contain a
predicate π ≤ M where π appears also in M , because such a predicate trivially
holds.

We define Φ1, Φω, and Qrest as Φ1 = {μ ≤ M | (μ ≤ π ·M) ∈ Q,μ �= π}, Φω =
{ω ≤ M | (π ≤ M) ∈ Q, π �∈ fuv(M)}, and Qrest =

∧ {φ | φ ∈ Q, π �∈ fuv(φ)}. Here,
we abused the notation to write φ ∈ Q to mean that Q =

∧
i φi and φ = φi

for some i. In the construction of Φ1, we assumed the monoid laws of (·);
the definition says that we remove π from the right-hand sides and M be-
comes 1 if the right-hand side is π. By construction, Q[p
→ 1] and Q[p
→ ω]
are equivalent to (

∧
Φ1) ∧ Qrest and (

∧
Φω) ∧ Qrest, respectively. Thus, by

Lemma 12 and by the distributivity of ∨ over ∧ it suffices to define Q′ as
Q′ = (

∧ {μ ≤ M ·M ′ | μ ≤ M ∈ Φ1, ω ≤ M ′ ∈ Φω}) ∧Qrest. �

Example 2. Consider Q = (π′

f ≤ πf ∧ π′ ≤ π′
x ∧ π′

x ≤ πx); this is the constraint
obtained from λf.λx.app f x (Sect. 3.3). Since π′

f and π′
x do not appear in the

inferred type (α′ →π′ β′) →πf
α′ →πx

β, we want to eliminate them by the
above step. There is a freedom to choose which variable is eliminated first. Here,
we shall choose π′

f first.
First, we have elim(∃π′

f .Q) = π′ ≤ π′
x ∧ π′

x ≤ πx because for this case
we have Φ1 = ∅, Φω = {ω ≤ πf}, and Qrest = π′ ≤ π′

x ∧ π′
x ≤ πx. We then

have elim(∃π′
x.π

′ ≤ π′
x ∧ π′

x ≤ πx) = π′ ≤ πx because for this case we have
Φ1 = {π′ ≤ 1}, Φ2 = {ω ≤ πx}, and Qrest = �. �

In the worst case, the size of elim(∃π.Q) can be quadratic to that of Q. Thus,
repeating elimination can make the constraints exponentially bigger. We believe
that such blow-up rarely happens because it is usual that π occurs only in a few
predicates in Q. Also, recall that non-singleton right-hand sides are caused only
by multiplicity-parameterized constructors. When each right-hand side of ≤ is a
singleton in Q, the same holds in elim(∃π.Q). For such a case, the exponential
blow-up cannot happen because the size of constraints in the form is at most
quadratic in the number of multiplicity variables.

4.2 Modified Typing Rules

As mentioned at the begging of this section, we perform quantifier elimination as
the last step of simplification. To do so, we define Q ��τ

simp C � Q′′; θ as follows:

Q ��simp C � Q′; θ {π} = fuv(Q′) \ fuv(τθ) Q′′ = elim(∃π.Q′)
Q ��τ

simp C � Q′′; θ

Here, τ is used to determine which unification variables will be ambiguous after
generalization. We simply identify variables (π above) that are not in τ as
ambiguous [15] for simplicity. This check is indeed conservative in a more general
definition of ambiguity [27], in which ∀p r a. (p ≤ r, r ≤ p) ⇒ a →p a for example
is not judged as ambiguous because r is determined by p.

472 K. Matsuda

Then, we replace the original simplification with the above-defined version.

Γ �� e : τ � Δ;C � ��τ
simp C � Q; θ {πα} = fuv(Q, τθ)

p, a : fresh Γ, f : ∀pa.(Q ⇒ τθ)[α
→ a, π
→ p] �� prog

Γ �� f = e; prog

Γ �� e : σ � Δ;C Q ��σ
simp C ∧ τ ∼ σ � �; θ Γ, f : ∀pa.Q ⇒ τ �� prog

Γ �� f : (∀pa.Q ⇒ τ) = e; prog

Here, the changed parts are highlighted for readability.

Example 3. Consider (Q, θ) in Sect. 3.3 such that Q = (π′
f ≤ πf ∧π′ ≤ π′

x∧π′
x ≤

πx) and θ = [αf
→ (α′ →π′ β′), π′
1
→ π′

f , β
→ (αf →π′
x
β′), π2
→ π′

x, γ
→
β′]), which is obtained after simplification of the gathered constraint. Following
Example 2, eliminating variables that are not in τθ = (α′ →π′ β′) →πf

α′ →πx
β

yields the constraint π′ ≤ πx. As a result, by generalization, we obtain the
polytype

∀q pf px a b. (q ≤ px) ⇒ (a →q b) →pf
a →px b

for app′, which is equivalent to the inferred type of app. �

Note that (Q′, θ) of Q ��τ

simp C � Q′; θ is no longer a solution of (Q,C)
because C can have eliminated variables. However, it is safe to use this version
when generalization takes place, because, for variables q that do not occur in τ ,
∀pqa. Q ⇒ τ and ∀pa. Q′ ⇒ τ have the same set of monomorphic instances, if
∃q.Q is logically equivalent to Q′. Note that in this type system simplification
happens only before (implicit) generalization takes place.

5 Extension to Local Assumptions

In this section, following OutsideIn(X) [31], we extend our system with local
assumptions, which enable us to have lets and GADTs. We focus on the treatment
of lets in this section because type inference for lets involves a linearity-specific
concern: the multiplicity of a let-bound variable.

5.1 “Let Should Not Be Generalized” for Our Case

We first discuss that even for our case “ let should not be generalized” [31]. That
is, generalization of let sometimes results in counter-intuitive typing and conflicts
with the discussions so far.

Consider the following program:

h = λf.λk.let y = f (λx.k x) in 0

Suppose for simplicity that f and x have types (a →π1
b) →π2

c and a →π3
b,

respectively (here we only focus on the treatment of multiplicity). Then, f (λx.k x)

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 473

has type c with the constraint π3 ≤ π1. Thus, after generalization, y has type
π3 ≤ π1 ⇒ c, where π3 and π1 are neither generalized nor eliminated because
they escape from the definition of y. As a result, h has type ∀p1 p2 p3 a b c.((a →p1

b) →p2 c) →ω (a →p3 b) →ω Int; there is no constraint p3 ≤ p1 because the
definition of y does not yield a constraint. This nonexistence of the constraint
would be counter-intuitive because users wrote f (λx.k x) while the constraint
for the expression is not imposed. In particular, it does not cause an error even
when f : (a →1 b) →1 c and k : a →ω b, while f (λx.k x) becomes illegal for this
case. Also, if we change 0 to y, the error happens at the use site instead of the
definition site. Moreover, the type is fragile as it depends on whether y occurs or
not; for example, if we change 0 to const 0 y where const = λa.λb.a, the type of
h changes to ∀p1 p2 p3 a b c. p1 ≤ p3 ⇒ ((a →p1

b) →p2
c) →ω (a →p3

b) →ω Int.
In this discussion, we do not consider type-equality constraints, but there are no
legitimate reasons why type-equality constraints are solved on the fly in typing y.

As demonstrated in the above example, “ let should not be generalized” [30,31]
in our case. Thus, we adopt the same principle in OutsideIn(X) that let will
be generalized only if users write a type annotation for it [31]. This principle is
also adopted in GHC (as of 6.12.1 when the language option MonoLocalBinds is
turned on) with a slight relaxation to generalize closed bindings.

5.2 Multiplicity of Let-Bound Variables

Another issue with let-generalization, which is specific to linear typing, is that a
generalization result depends on the multiplicity of the let-bound variable. Let
us consider the following program, where we want to generalize the type of y
(even without a type annotation):

g = λx.let y = λf.f x in y not

Suppose for simplicity that not has type Bool →1 Bool and x has type Bool already
in typing let. Then, y’s body λf.f x has a monotype (Bool →π r) →π′ r with
no constraints (on multiplicity). There are two generalization results depending
on the multiplicity πy of y because the use of x also escapes in the type system.

– If πy = 1, the type is generalized into ∀q r. (Bool →π r) →q r, where π is not
generalized because the use of x in y’s body is π.

– If πy = ω, the type is generalized into ∀p q r. (Bool →p r) →q r, where π is
generalized (to p) because the use of x in y’s body is ω.

A difficulty here is that πy needs to be determined at the definition of y, while
the constraint on πy is only obtained from the use of y.

Our design choice is the latter; the multiplicity of a generalizable let-bound
variable is ω in the system. One justification for this choice is that a motivation
of polymorphic typing is to enhance reusability, while reuse is not possible for
variables with multiplicity 1. Another justification is compatibility with recursive
definitions, where recursively-defined variables must have multiplicity ω; it might
be confusing, for example, if the multiplicity of a list-manipulation function
changes after we change its definition from an explicit recursion to foldr .

474 K. Matsuda

5.3 Inference Rule for Lets

In summary, the following are our criteria about let generalization:

– Only lets with polymorphic type annotations are generalized.
– Variables introduced by let to be generalized have multiplicity ω.

This idea can be represented by the following typing rule:

Γ �� e1 : τ1 � Δ1;C1 {πα} = fuv(τ1, C1) \ fuv(Γ)
C ′

1 = ∃πα.(Q |=τ1 C1 ∧ τ ∼ τ1)
Γθ1, x : (∀pa.Q ⇒ τ) �� e2 : τ2 � Δ2, x

M ;C2

Γ �� let x : (∀pa.Q ⇒ τ) = e1 in e2 : τ2 � ωΔ1 +Δ2;C
′
1 ∧ C2

LetA

(We do not discuss non-generalizable let because they are typed as (λx.e2) e1.)
Constraints like ∃πα.(Q |=τ1 C1 ∧ τ ∼ τ1) above are called implication con-
straints [31], which states that the entailment must hold only by instantiating
unification variables in πα. There are two roles of implication constraints. One
is to delay the checking because τ1 and C1 contain some unification variables
that will be made concrete after this point by solving C2. The other is to guard
constraints; in the above example, since the constraints C1 ∧ τ ∼ τ1 hold by
assuming Q, it is not safe to substitute variables outside πα in solving the con-
straints because the equivalence might be a consequence of Q; recall that Q
affects type equality. We note that there is a slight deviation from the original
approach [31]; an implication constraint in our system is annotated by τ1 to
identify for which subset of {πα} the existence of a unique solution is not required
and thus quantifier elimination is possible, similarly to Sect. 4.

5.4 Solving Constraints

Now, the set of constraints is extended to include implication constraints.

C ::=
∧
i

ψi ψi ::= · · · | ∃πα.(Q |=τ C)

As we mentioned above, an implication constraint ∃πα.(Q |=τ C) means that
Q |= C must hold by substituting π and α with appropriate values, where we do
not require uniqueness of solutions for unification variables that do not appear
in τ . That is, Q ��τ

simp C � �; θ must hold with dom(θ) ⊆ {πα}.
Then, following OutsideIn(X) [31], we define the solving judgment πα.Q ��τ

solv

C � Q′; θ, which states that we solve (Q,C) as (Q′, θ) where θ only touches
variables in πα, where τ is used for disambiguation (Sect. 4). Let us write impl(C)
for all the implication constraints in C, and simpl(C) for the rest. Then, we can
define the inference rules for the judgment simply by recursive simplification,
similarly to the original [31].

πα. Q ��τ
simpl simpl(C) � Qr; θ

{πiαi. Q ∧Qi ∧Qr ��τi
solv Ci � �; θi}(∃πiαi.(Qi|=τiCi))∈impl(Cθ)

πα. Q ��τ
solv C � Qr; θ

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 475

Here, πα. Q ��τ
simpl C � Qr; θ is a simplification relation defined similarly to

Q ��τ
simp C � Qr; θ except that we are allowed to touch only variables in πα. We

omit the concrete rules for this version of simplification relation because they are
straightforward except that unification caused by S-Uni and S-Eq and quantifier
elimination (Sect. 4) are allowed only for variables in {πα}.

Accordingly, we also change the typing rules for bindings to use the solving
relation instead of the simplification relation.

Γ 	� e : τ � Δ;C fuv(C, τ).� 	�τ
solv C � Q; θ {πα} = fuv(Q, τθ)

p, a : fresh Γ, f : ∀pa.(Q ⇒ τθ)[α �→ a, π �→ p] 	� prog

Γ 	� f = e; prog

Γ 	� e : σ � Δ;C fuv(C, σ). Q 	�σ
solv C ∧ τ ∼ σ � �; θ Γ, f : ∀pa.Q ⇒ τ 	� prog

Γ 	� f : (∀pa.Q ⇒ τ) = e; prog

Above, there are no unification variables other than fuv(C, τ) or fuv(C, σ).
The definition of the solving judgment and the updated inference rules for

programs are the same as those in the original OutsideIn(X) [31] except τ for
disambiguation. This is one of the advantages of being based on OutsideIn(X).

6 Implementation and Evaluation

In this section, we evaluate the proposed inference method using our prototype
implementation. We first report what types are inferred for functions from
Prelude to see whether or not inferred types are reasonably simple. We then
report the performance evaluation that measures efficiency of type inference and
the overhead due to entailment checking and quantifier elimination.

6.1 Implementation

The implementation follows the present paper except for a few points. Following
the implementation of OutsideIn(X) in GHC, our type checker keeps a natural
number, which we call an implication level, corresponding to the depth of implica-
tion constraints, and a unification variable also accordingly keeps the implication
level at which the variable is introduced. As usual, we represent unification
variables by mutable references. We perform unification on the fly by destructive
assignment, while unification of variables that have smaller implication levels than
the current level is recorded for later checking of implication constraints; such a
variable cannot be in πα of ∃πα.Q |=τ C. The implementation supports GADTs
because they can be implemented rather easily by extending constraints Q to
include type equalities, but does not support type classes because the handling
of them requires another X of OutsideIn(X).

Although we can use a linear-time Horn SAT solving algorithm [10] for
checking Q |= φ, the implementation uses a general SAT solver based on DPLL [8,
9] because the unit propagation in DPLL works efficiently for Horn formulas.
We do not use external solvers, such as Z3, as we conjecture that the sizes of
formulas are usually small, and overhead to use external solvers would be high.

476 K. Matsuda

(◦) : (q ≤ s ∧ q ≤ t ∧ p ≤ t) ⇒ (b →q c) →r (a →p b) →s a →t c
curry : (p ≤ r ∧ p ≤ s) ⇒ ((a⊗ b) →p c) →q a →r b →s c

uncurry : (p ≤ s ∧ q ≤ s) ⇒ (a →p b →q c) →r (a⊗ b) →s c
either : (p ≤ r ∧ q ≤ r) ⇒ (a →p c) →ω (b →q c) →ω Either a b →r c
foldr : (q ≤ r ∧ p ≤ s ∧ q ≤ s) ⇒ (a →p b →q b) →ω b →r List a →s b
foldl : (p ≤ r ∧ r ≤ s ∧ q ≤ s) ⇒ (b →p a →q b) →ω b →r List a →s b
map : (p ≤ q) ⇒ (a →p b) →ω List a →q List b
filter : (a →p Bool) →ω List a →ω List a

append : List a →p List a →q List a
reverse : List a →p List a
concat : List (List a) →p List a

concatMap : (p ≤ q) ⇒ (a →p List b) →ω List a →q List b

Fig. 7. Inferred types for selected functions from Prelude (quantifications are omitted)

6.2 Functions from Prelude

We show how our type inference system works for some polymorphic functions
from Haskell’s Prelude. Since we have not implemented type classes and I/O
in our prototype implementation and since we can define copying or discarding
functions for concrete first-order datatypes, we focus on the unqualified poly-
morphic functions. Also, we do not consider the functions that are obviously
unrestricted, such as head and scanl , in this examination. In the implementation
of the examined functions, we use natural definitions as possible. For example, a
linear-time accumulative definition is used for reverse. Some functions can be
defined by both explicit recursions and foldr/foldl ; among the examined functions,
map, filter , concat , and concatMap can be defined by foldr , and reverse can be
defined by foldl . For such cases, both versions are tested.

Fig. 7 shows the inferred types for the examined functions. Since the inferred
types coincide for the two variations (by explicit recursions or by folds) of map,
filter , append , reverse, concat , and concatMap, the results do not refer to these
variations. Most of the inferred types look unsurprising, considering the fact that
the constraint p ≤ q is yielded usually when an input that corresponds to q is
used in an argument that corresponds to p. For example, consider foldr f e xs.
The constraint q ≤ r comes from the fact that e (corresponding to r) is passed as
the second argument of f (corresponding to q) via a recursive call. The constraint
p ≤ s comes from the fact that the head of xs (corresponding to s) is used as the
first argument of f (corresponding to p). The constraint q ≤ s comes from the
fact that the tail of xs is used in the second argument of f . A little explanation
is needed for the constraint r ≤ s in the type of foldl , where both r and s are
associated with types with the same polarity. Such constraints usually come from
recursive definitions. Consider the definition of foldl :

foldl = λf.λe.λx.case x of {Nil → e;Cons a y → foldl f (f e a) y}
Here, we find that a, a component of x (corresponding to s), appears in the
second argument of fold (corresponding to r), which yields the constraint r ≤ s.

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 477

Note that the inference results do not contain →1; recall that there is no problem
in using unrestricted inputs linearly, and thus the multiplicity of a linear input
can be arbitrary. The results also show that the inference algorithm successfully
detected that append , reverse, and concat are linear functions.

It is true that these inferred types indeed leak some internal details into their
constraints, but those constraints can be understood only from their extensional
behaviors, at least for the examined functions. Thus, we believe that the inferred
types are reasonably simple.

6.3 Performance Evaluation

Table 1. Experimental results
Total SAT QE

Program LOC Elapsed Elapsed (#) Elapsed (#)
funcs 40 4.3 0.70 (42) 0.086 (15)
gv 53 3.9 0.091 (9) 0.14 (17)
app1 4 0.34 0.047 (4) 0.012 (2)
app10 4 0.84 0.049 (4) 0.038 (21)

(times are measured in ms)

We measured the elapsed time
for type checking and the over-
head of implication checking
and quantifier elimination. The
following programs were exam-
ined in the experiments: funcs:
the functions in Fig. 7, gv:
an implementation of a simple
communication in a session-type system GV [17] taken from [18, Section 4] with
some modifications,6 app1: a pair of the definitions of app and app′, and app10:
a pair of the definitions of app and app10 = λf.λx. app . . . app︸ ︷︷ ︸

10

f x. The former

two programs are intended to be miniatures of typical programs. The latter
two programs are intended to measure the overhead of quantifier elimination.
Although the examined programs are very small, they all involve the ambiguity
issues. For example, consider the following fragment of the program gv:

answer : Int = fork prf calculator $ \c -> left c & \c ->
send (MkUn 3) c & \c -> send (MkUn 4) c & \c ->
recv c & \(MkUn z, c) -> wait c & \() -> MkUn z

(Here, we used our paper’s syntax instead of that of the actual examined code.)
Here, both $ and & are operator versions of app, where the arguments are flipped
in &. As well as treatment of multiplicities, the disambiguation is crucial for this
expression to have type Int.

The experiments were conducted on a MacBook Pro (13-inch, 2017) with
Mac OS 10.14.6, 3.5 GHz Intel Core i7 CPU, and 16 GB memory. GHC 8.6.5
with -O2 was used for compiling our prototype system.

Table 1 lists the experimental results. Each elapsed time is the average of 1,000
executions for the first two programs, and 10,000 executions for the last two. All
columns are self-explanatory except for the # column, which counts the number of

6 We changed the type of fork : Dual s s′ →ω (Ch s →1 Ch End) →1 (Ch s′ →1

Un r) →1 r, as their type Dual s s′ ⇒ (Ch s →1 Ch End) →1 Ch s′ is incorrect for
the multiplicity erasing semantics. A minor difference is that we used a GADT to
witness duality because our prototype implementation does not support type classes.

478 K. Matsuda

executions of corresponding procedures. We note that the current implementation
restricts Qw in S-Entail to be � and removes redundant constraints afterward.
This is why the number of SAT solving in app1 is four instead of two. For the
artificial programs (app1 and app10), the overhead is not significant; typing
cost grows faster than SAT/QE costs. In contrast, the results for the latter two
show that SAT becomes heavy for higher-order programs (funcs), and quantifier
elimination becomes heavy for combinator-heavy programs (gv), although we
believe that the overhead would still be acceptable. We believe that, since we
are currently using naive algorithms for both procedures, there is much room
to reduce the overhead. For example, if users annotate most general types, the
simplification invokes trivial checks

∧
i φi |= φi often. Special treatment for such

cases would reduce the overhead.

7 Related Work

Borrowing the terminology from Bernardy et al. [7], there are two approaches to
linear typing: linearity via arrows and linearity via kinds. The former approaches
manage how many times an assumption (i.e., a variable) can be used; for example,
in Wadler [33]’s linear λ calculus, there are two sort of variables: linear and
unrestricted, where the latter variables can only be obtained by decomposing
let !x = e1 in e2. Since primitive sources of assumptions are arrow types, it is nat-
ural to annotate them with arguments’ multiplicities [7,12,22]. For multiplicities,
we focused on 1 and ω following Linear Haskell [6, 7, 26]. Although {1, ω} would
already be useful for some domains including reversible computation [19, 35]
and quantum computation [2, 25], handling more general multiplicities, such
as {0, 1, ω} and arbitrary semirings [12], is an interesting future direction. Our
discussions in Sect. 2 and 3, similarly to Linear Haskell [7], could be extended
to more general domains with small modifications. In contrast, we rely on the
particular domains {1, ω} of multiplicities for the crucial points of our inference,
i.e., entailment checking and quantifier elimination. Igarashi and Kobayashi [14]’s
linearity analysis for π calculus, which assigns input/output usage (multiplicities)
to channels, has similarity to linearity via arrows. Multiplicity 0 is important in
their analysis to identify input/output only channels. They solve constraints on
multiplicities separately in polynomial time, leveraging monotonicity of multi-
plicity operators with respect to ordering 0 ≤ 1 ≤ ω. Here, 0 ≤ 1 comes from the
fact that 1 in their system means “at-most once” instead of “exactly once”.

The “linearity via kinds” approaches distinguish types of which values are
treated linearly and types of which values are not [21,24,28], where the distinction
usually is represented by kinds [21,28]. Interestingly, they also have two function
types—function types that belong to the linear kind and those that belong to
the unrestricted kind—because the kind of a function type cannot be determined
solely by the argument and return types. Mazurak et al. [21] use subkinding to
avoid explicit conversions from unrestricted values to linear ones. However, due
to the variations of the function types, a function can have multiple incompatible
types; e.g., the function const can have four incompatible types [24] in the system.

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 479

Universal types accompanied by kind abstraction [28] address the issue to some
extent; it works well for const , but still gives two incomparable types to the
function composition (◦) [24]. Morris [24] addresses this issue of principality
with qualified typing [15]. Two forms of predicates are considered in the system:
Un τ states that τ belongs to the unrestricted kind, and σ ≤ τ states that
Un σ implies Un τ . This system is considerably simple compared with the
previous systems. Turner et al. [29]’s type-based usage analysis has a similarity
to the linearity via kinds; in the system, each type is annotated by usage (a
multiplicity) as (List Intω)ω. Wansbrough and Peyton Jones [34] extends the
system to include polymorphic types and subtyping with respect to multiplicities,
and have discussions on multiplicity polymorphism. Mogensen [23] is a similar
line of work, which reduces constraint solving on multiplicities to Horn SAT.
His system concerns multiplicities {0, 1, ω} with ordering 0 ≤ 1 ≤ ω, and his
constraints can involve more operations including additions and multiplications
but only in the left-hand side of ≤.

Morris [24] uses improving substitutions [16] in generalization, which some-
times are effective for removing ambiguity, though without showing concrete
algorithms to find them. In our system, as well as S-Eq, elim(∃π.Q) can be
viewed as a systematic way to find improving substitutions. That is, elim(∃π.Q)
improves Q by substituting π with min{Mi | ω ≤ Mi ∈ Φω}, i.e., the largest
possible candidate of π. Though the largest solution is usually undesirable, espe-
cially when the right-hand sides of ≤ are all singletons, we can also view that
elim(∃π.Q) substitutes π by

∏
μi≤1∈Φ1

μi, i.e., the smallest possible candidate.

8 Conclusion

We designed a type inference system for a rank 1 fragment of λq
→ [7] that can infer

principal types based on the qualified typing system OutsideIn(X) [31]. We
observed that naive qualified typing infers ambiguous types often and addressed
the issue based on quantifier elimination. The experiments suggested that the
proposed inference system infers principal types effectively, and the overhead
compared with unrestricted typing is acceptable, though not negligible.

Since we based our work on the inference algorithm used in GHC, the natural
expectation is to implement the system into GHC. A technical challenge to achieve
this is combining the disambiguation techniques with other sorts of constraints,
especially type classes, and arbitrarily ranked polymorphism.

Acknowledgments

We thank Meng Wang, Atsushi Igarashi, and the anonymous reviewers of ESOP
2020 for their helpful comments on the preliminary versions of this paper. This
work was partially supported by JSPS KAKENHI Grant Numbers 15H02681
and 19K11892, JSPS Bilateral Program, Grant Number JPJSBP120199913, the
Kayamori Foundation of Informational Science Advancement, and EPSRC Grant
EXHIBIT: Expressive High-Level Languages for Bidirectional Transformations
(EP/T008911/1).

480 K. Matsuda

References

1. Aehlig, K., Berger, U., Hofmann, M., Schwichtenberg, H.: An arithmetic for non-
size-increasing polynomial-time computation. Theor. Comput. Sci. 318(1-2), 3–27
(2004). https://doi.org/10.1016/j.tcs.2003.10.023

2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June
2005, Chicago, IL, USA, Proceedings. pp. 249–258. IEEE Computer Society (2005).
https://doi.org/10.1109/LICS.2005.1

3. Baillot, P., Hofmann, M.: Type inference in intuitionistic linear logic. In: Kut-
sia, T., Schreiner, W., Fernández, M. (eds.) Proceedings of the 12th Interna-
tional ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 26-28, 2010, Hagenberg, Austria. pp. 219–230. ACM (2010).
https://doi.org/10.1145/1836089.1836118

4. Baillot, P., Terui, K.: A feasible algorithm for typing in elementary affine
logic. In: Urzyczyn, P. (ed.) Typed Lambda Calculi and Applications, 7th In-
ternational Conference, TLCA 2005, Nara, Japan, April 21-23, 2005, Proceed-
ings. Lecture Notes in Computer Science, vol. 3461, pp. 55–70. Springer (2005).
https://doi.org/10.1007/11417170_6

5. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda cal-
culus. Inf. Comput. 207(1), 41–62 (2009). https://doi.org/10.1016/j.ic.2008.08.005

6. Bernardy, J.P., Boespflug, M., Newton, R., Jones, S.P., Spiwack, A.: Linear mini-
core. GHC Developpers Wiki, https://gitlab.haskell.org/ghc/ghc/wikis/uploads/
ceaedb9ec409555c80ae5a97cc47470e/minicore.pdf, visited Oct. 14, 2019.

7. Bernardy, J., Boespflug, M., Newton, R.R., Peyton Jones, S., Spiwack, A.: Lin-
ear haskell: practical linearity in a higher-order polymorphic language. PACMPL
2(POPL), 5:1–5:29 (2018). https://doi.org/10.1145/3158093

8. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

9. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

10. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfia-
bility of propositional horn formulae. J. Log. Program. 1(3), 267–284 (1984).
https://doi.org/10.1016/0743-1066(84)90014-1

11. Gan, E., Tov, J.A., Morrisett, G.: Type classes for lightweight substructural types.
In: Alves, S., Cervesato, I. (eds.) Proceedings Third International Workshop on
Linearity, LINEARITY 2014, Vienna, Austria, 13th July, 2014. EPTCS, vol. 176,
pp. 34–48 (2014). https://doi.org/10.4204/EPTCS.176.4

12. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) Programming Languages and Systems - 23rd European Symposium on
Programming, ESOP 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings. Lecture Notes in Computer Science, vol. 8410, pp. 331–350. Springer
(2014). https://doi.org/10.1007/978-3-642-54833-8_18

13. Girard, J., Scedrov, A., Scott, P.J.: Bounded linear logic: A modular approach
to polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66 (1992).
https://doi.org/10.1016/0304-3975(92)90386-T

14. Igarashi, A., Kobayashi, N.: Type reconstruction for linear -calculus with I/O sub-
typing. Inf. Comput. 161(1), 1–44 (2000). https://doi.org/10.1006/inco.2000.2872

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 481

https://doi.org/10.1016/j.tcs.2003.10.023
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1145/1836089.1836118
https://doi.org/10.1007/11417170_6
https://doi.org/10.1016/j.ic.2008.08.005
https://gitlab.haskell.org/ghc/ghc/wikis/uploads/ceaedb9ec409555c80ae5a97cc47470e/minicore.pdf
https://gitlab.haskell.org/ghc/ghc/wikis/uploads/ceaedb9ec409555c80ae5a97cc47470e/minicore.pdf
https://doi.org/10.1145/3158093
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1016/0743-1066(84)90014-1
https://doi.org/10.4204/EPTCS.176.4
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1006/inco.2000.2872

15. Jones, M.P.: Qualified Types: Theory and Practice. Cambridge University Press,
New York, NY, USA (1995)

16. Jones, M.P.: Simplifying and improving qualified types. In: Williams, J. (ed.)
Proceedings of the seventh international conference on Functional programming
languages and computer architecture, FPCA 1995, La Jolla, California, USA, June
25-28, 1995. pp. 160–169. ACM (1995). https://doi.org/10.1145/224164.224198

17. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J.
(ed.) Programming Languages and Systems - 24th European Symposium on Pro-
gramming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings. Lecture Notes in Computer Science, vol. 9032, pp. 560–584. Springer (2015).
https://doi.org/10.1007/978-3-662-46669-8_23

18. Lindley, S., Morris, J.G.: Embedding session types in haskell. In: Main-
land, G. (ed.) Proceedings of the 9th International Symposium on Haskell,
Haskell 2016, Nara, Japan, September 22-23, 2016. pp. 133–145. ACM (2016).
https://doi.org/10.1145/2976002.2976018

19. Lutz, C.: Janus: a time-reversible language. Letter to R. Landauer. (1986), available
on: http://tetsuo.jp/ref/janus.pdf

20. Matsuda, K.: Modular inference of linear types for multiplicity-annotated arrows
(2020), http://arxiv.org/abs/1911.00268v2

21. Mazurak, K., Zhao, J., Zdancewic, S.: Lightweight linear types in system fdegree.
In: TLDI. pp. 77–88. ACM (2010)

22. McBride, C.: I got plenty o’ nuttin’. In: Lindley, S., McBride, C., Trinder, P.W., San-
nella, D. (eds.) A List of Successes That Can Change the World - Essays Dedicated
to Philip Wadler on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 9600, pp. 207–233. Springer (2016). https://doi.org/10.1007/978-3-
319-30936-1_12

23. Mogensen, T.Æ.: Types for 0, 1 or many uses. In: Clack, C., Hammond, K.,
Davie, A.J.T. (eds.) Implementation of Functional Languages, 9th International
Workshop, IFL’97, St. Andrews, Scotland, UK, September 10-12, 1997, Selected
Papers. Lecture Notes in Computer Science, vol. 1467, pp. 112–122. Springer (1997).
https://doi.org/10.1007/BFb0055427

24. Morris, J.G.: The best of both worlds: linear functional programming with-
out compromise. In: Garrigue, J., Keller, G., Sumii, E. (eds.) Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18-22, 2016. pp. 448–461. ACM (2016).
https://doi.org/10.1145/2951913.2951925

25. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science 16(3), 527–552 (2006).
https://doi.org/10.1017/S0960129506005238

26. Spiwack, A., Domínguez, F., Boespflug, M., Bernardy, J.P.: Linear types. GHC
Proposals, https://github.com/tweag/ghc-proposals/blob/linear-types2/proposals/
0000-linear-types.rst, visited Sep. 11, 2019.

27. Stuckey, P.J., Sulzmann, M.: A theory of overloading. ACM Trans. Program. Lang.
Syst. 27(6), 1216–1269 (2005). https://doi.org/10.1145/1108970.1108974

28. Tov, J.A., Pucella, R.: Practical affine types. In: Ball, T., Sagiv, M. (eds.) Proceed-
ings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. pp. 447–458. ACM
(2011). https://doi.org/10.1145/1926385.1926436

482 K. Matsuda

https://doi.org/10.1145/224164.224198
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
http://tetsuo.jp/ref/janus.pdf
http://arxiv.org/abs/1911.00268v2
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/BFb0055427
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1017/S0960129506005238
https://github.com/tweag/ghc-proposals/blob/linear-types2/proposals/0000-linear-types.rst
https://github.com/tweag/ghc-proposals/blob/linear-types2/proposals/0000-linear-types.rst
https://doi.org/10.1145/1108970.1108974
https://doi.org/10.1145/1926385.1926436

29. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Williams, J. (ed.)
Proceedings of the seventh international conference on Functional programming
languages and computer architecture, FPCA 1995, La Jolla, California, USA, June
25-28, 1995. pp. 1–11. ACM (1995). https://doi.org/10.1145/224164.224168

30. Vytiniotis, D., Peyton Jones, S.L., Schrijvers, T.: Let should not be gener-
alized. In: Kennedy, A., Benton, N. (eds.) Proceedings of TLDI 2010: 2010
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, Madrid, Spain, January 23, 2010. pp. 39–50. ACM (2010).
https://doi.org/10.1145/1708016.1708023

31. Vytiniotis, D., Peyton Jones, S.L., Schrijvers, T., Sulzmann, M.: Outsidein(x)
modular type inference with local assumptions. J. Funct. Program. 21(4-5), 333–
412 (2011). https://doi.org/10.1017/S0956796811000098

32. Wadler, P.: Linear types can change the world! In: Broy, M. (ed.) Programming
concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working
Conference on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5
April, 1990. p. 561. North-Holland (1990)

33. Wadler, P.: A taste of linear logic. In: Borzyszkowski, A.M., Sokolowski, S. (eds.)
Mathematical Foundations of Computer Science 1993, 18th International Sym-
posium, MFCS’93, Gdansk, Poland, August 30 - September 3, 1993, Proceed-
ings. Lecture Notes in Computer Science, vol. 711, pp. 185–210. Springer (1993).
https://doi.org/10.1007/3-540-57182-5_12

34. Wansbrough, K., Peyton Jones, S.L.: Once upon a polymorphic type. In: Appel,
A.W., Aiken, A. (eds.) POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX, USA, Jan-
uary 20-22, 1999. pp. 15–28. ACM (1999). https://doi.org/10.1145/292540.292545

35. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: Vos, A.D., Wille, R. (eds.) RC. Lecture Notes in Computer Science, vol. 7165,
pp. 14–29. Springer (2011). https://doi.org/10.1007/978-3-642-29517-1_2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Modular Inference of Linear Types for Multiplicity-Annotated Arrows 483

https://doi.org/10.1145/224164.224168
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1007/3-540-57182-5_12
https://doi.org/10.1145/292540.292545
https://doi.org/10.1007/978-3-642-29517-1_2
http://creativecommons.org/licenses/by/4.0/

	17
Modular Inference of Linear Types for Multiplicity-Annotated Arrows
	1 Introduction
	2 Qualified-Typed Variant of λq→

	2.1 Syntax of Programs
	2.2 Types
	2.3 Typing Rules
	2.4 Metatheories

	3 Type Inference
	3.1 Inference Algorithm
	3.2 Entailment Checking by Horn SAT Solving
	3.3 Issue: Inference of Ambiguous Types

	4 Disambiguation by Quantifier Elimination
	4.1 Elimination of Existential Quantifiers
	4.2 Modified Typing Rules

	5 Extension to Local Assumptions
	5.1 “Let Should Not Be Generalized” for Our Case
	5.2 Multiplicity of Let-Bound Variables
	5.3 Inference Rule for Lets
	5.4 Solving Constraints

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Functions from Prelude
	6.3 Performance Evaluation

	7 Related Work
	8 Conclusion
	References

