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Abstract. Machine learning is taking an increasingly relevant role in
science, business, entertainment, and other fields. However, the most
advanced techniques are still in the hands of well-educated and -funded
experts only. To help to democratize machine learning, we propose Deep-
Notebooks as a novel way to empower a broad spectrum of users, which
are not machine learning experts, but might have some basic program-
ming skills and are interested data science. Within the DeepNotebook
framework, users feed a cleaned tabular datasets to the system. The
system then automatically estimates a deep but tractable probabilistic
model and compiles an interactive Python notebook out of it that already
contains a preliminary yet comprehensive analysis of the dataset at hand.
If the users want to change the parameters of the interactive report or
make different queries to the underlying model, they can quickly do that
within the DeepNotebook. This flexibility allows the users to interact
with the framework in a feedback loop—they can discover patterns and
dig deeper into the data using targeted questions, even if they are not
experts in machine learning.

1 Introduction

Data science has enjoyed considerable successes in recent years, both in creat-
ing more powerful models and broadening the range of potential applications.
However, behind all these exceptional success stories, there are troves of human
experts, including machine learning and domain experts, statisticians, and com-
puter scientists, among others. These experts focus on different aspects aspect
of the data analysis pipeline, from data acquisition and feature engineering to
modeling selection, training, and evaluation. As the complexity of each of these
tasks increases, even experts can lose track of all the details and nuances of each
part of the pipeline. As for non-experts, they might not be aware of best prac-
tices nor have a chance to keep track of the rapidly evolving state-of-the-art.
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These difficulties have given rise to a new area of research focused on building
off-the-shelf machine learning methods that can easily be used by non-experts –
automatic machine learning (AutoML).

Indeed, several different approaches to AutoML do already exist, ranging
from automatic building blocks for feature engineering [1–3] and model learning
[4,5], to automatic reporting as in the Automatic Statistician [6–8] and interac-
tive machine learning notebooks1. There is also work on interpreting the compu-
tations of modern machine learning models [9–11] as this is of crucial importance
to non-experts. However, to the best of our knowledge, there is no framework
yet that incorporates modeling, learning, reporting, explainability and interac-
tivity at the same time. The question whether such an exploratory automatic
statistician, which is not limited to only investigating a single target variable, is
possible, was the seed that grew into the present paper.

Specifically, triggered by the recent successes of deep and tractable proba-
bilistic models, we introduce DeepNotebooks2—an interactive system that auto-
matically constructs data reports in the form of Python notebooks using mixed
sum-product networks (MSPNs) [12,13]. Similar approaches for modelling het-
erogeneous data have been explored before [14], leading to the BayesDB system
for exploring databases [15]. Instead of exploring a method for approximate
inference in databases, DeepNotebooks are built on models for tractable, exact
inference for single table data. In addition, they are not only a framework for
user interaction with data, but also reporting tool, which performs a preliminary
array of common statistical tests. Python notebooks provide an interactive com-
putational environment, in which you can combine code execution, rich text,
mathematics, plots, and rich media. A DeepNotebook is therefore not just a
data report as it allows non-experts to interactively answer complex queries
using tractable inference within the underlying MSPN.

We proceed as follows: We start off by briefly reviewing MSPNs. We then
introduce DeepNotebooks. Before concluding, we illustrate them on several
datasets, including one on myocardial infarction diagnosis.

2 Automatic Statisticians via Deep Probabilistic Models

The vision of an automatic statistician [6–8] is to build statistical models with
minimal input from experts in statistics and machine learning. Probabilistic
graphical models (PGMs) [16] are arguably a promising tool for realizing this
vision. They can solve many ML tasks by estimating a distribution and then
answering probabilistic queries. Consider, e.g. predictive modeling. One may
train a PGM and use inference to obtain probabilistic answers to queries; for
multi-class classification answering the query arg maxc P (Class = c|data) gives
us the most likely class according to our model. Alternatively, we can ask which is
1 www.h2o.ai/h2o-old/h2o-flow/.
2 Code available at https://github.com/cvoelcker/DeepNotebooks, an example of

a generated DeepNotebooks at https://cvoelcker.github.io/DeepNotebooks/demo/
deepnotebook.html.

www.h2o.ai/h2o-old/h2o-flow/
https://github.com/cvoelcker/DeepNotebooks
https://cvoelcker.github.io/DeepNotebooks/demo/deepnotebook.html
https://cvoelcker.github.io/DeepNotebooks/demo/deepnotebook.html
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Fig. 1. An example of a valid SPN. Here, x1, x2 and x3 are random variables modelled
by histograms. The structure represents the joint distribution P (x1, x2, x3).

the most likely value of any feature: arg maxx P (X = x|evidence). Unfortunately,
inference in unrestricted PGMs is intractable.

2.1 Deep and Tractable Probabilistic Models

Motivated by the importance of efficient inference for large-scale applications, a
substantial amount of work has been devoted to learning probabilistic models for
which inference is guaranteed to be tractable. Examples of these model classes
include sum-product networks (SPNs) [17] and in particular mixed sum-product
networks (MSPNs) [12], hinge-loss Markov random fields [18], and tractable
higher-order potentials [19]. In this work, we have focused on SPNs.

Being instances of Arithmetic Circuits (ACs) [20], SPNs are a deep archi-
tecture that can represent high-treewidth models [21] and facilitate fast, exact
inference for a range of queries in time linear in the network size [17]. They
inherit universal approximation properties from mixture models – a mixture
model is simply a “shallow” SPN with a single sum node. Consequently, SPNs
can represent any prediction function, very much like deep neural networks.
However, having exact probabilistic inference at hand offers an advantage not
present in other PGMs and deep neural networks. One can compare the probabil-
ities computed by different models and not only solve classification or regression
problems, but also do anomaly detection at the same time while taking into
account the statistical nature of the data. Also, instead of e.g. classical deep
neural networks, SPNs are not only trained to predict the probability of a single
target variable. This makes them especially useful in a data exploration context,
where the true target of the investigation might not be known prior. Further-
more, any measures based on probabilities such as entropy, mutual information,
and information gain can be computed efficiently. In the present paper, we will
also show this for Shapley values [10].

2.2 Mixed Sum-Product Networks (MSPNs)

DeepNotebooks resort to MSPNs, as they are currently the only model able to
build an SPN structure in a likelihood-agnostic way – using piecewise polyno-
mials to encode the leaf distributions – therefore being suitable for our hetero-
geneous setting. MSPN learning is also able to deal with missing or unknown
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values out of the box, by implicit marginalization over the missing features. This
makes them applicable in contexts where common imputation methods might
not be able to easily fill in a lot of the data.

Representation of MSPNs: Formally, an MSPN is a rooted directed acyclic
graph, comprising sum, product, and leaf nodes as seen in Fig. 1. The scope of an
MSPN is the set of random variables appearing on the network. More precisely,
an MSPN can be defined recursively as follows:

1. a tractable univariate distribution is an MSPN.
2. a product of MSPNs defined over different scopes is an MSPN, and
3. a convex combination of MSPNs over the same scope is an MSPN.

Here, a product node encodes a factorization over independent distributions
defined over different random variables, while a sum node stands for a mixture of
distributions defined over the same variables. From this definition, it follows that
the joint distribution modeled by an MSPN is a valid probability distribution,
i.e. each complete and partial evidence inference query produces a consistent
probability value [17,22]. This also implies that we can construct multivariate
distributions from simpler univariate ones. To build the structure in a likelihood-
agnostic way, we make a piecewise approximation to the leaf distributions. In
their purest form, piecewise constant functions are often adopted in the form of
histograms or staircase functions. More expressive approximations are comprised
of mixtures of truncated polynomials and exponentials.

Tractable Inference in MSPNs. To answer probabilistic queries in an MSPN,
we evaluate the nodes starting at the leaves. Given some evidence, the probabil-
ity output of querying leaf distributions is propagated bottom up. For product
nodes, the values of the child nodes are multiplied and propagated to their par-
ents. For sum nodes, instead, we sum the weighted values of the child nodes.
The value at the root indicates the probability of the asked query.

To compute marginals, i.e., the probability of partial configurations, we set
the probability at the leaves for those variables to 1 and then proceed as before.
All these operations traverse the tree at most twice and therefore can be achieved
in linear time w.r.t. the size of the MSPN.

Learning MSPNs. Existing SPN learning works focus on learning the SPN
parameters given a structure [23–25] or jointly learn both the structure and
the parameters [26–28]. A particular prominent approach is LearnSPN [29,30],
which recursively partitions a data matrix using hierarchical co-clustering. In
particular, LearnSPN alternates between partitioning features into independent
groups, inducing a product node, and clustering the data instances, inducing a
sum node. As the base step, univariate likelihood models for single features are
induced. To learn MSPNs, the LearnSPN algorithm is adapted to deal with the
lack of parametric forms by performing a partitioning over mixed continuous
and discrete data by exploiting a randomized approximation of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (RDC) [31]. Thus, MSPNs
maintain their expressiveness while representing a wide range of statistical data
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Fig. 2. Illustration of DeepNotebooks. A user feeds data into the system, and an MSPN
is trained. The MSPN along with analysis information computed from the MSPN are
then embedded into a Jupyter Python notebook, producing an interactive data report
that uses the MSPN as “virtual statistical machine”.

types, which can even be estimated automatically from data [13], resulting in an
automatic exploratory density estimation approach.

3 DeepNotebooks – Constructing Data Reports
in the Form of Python Notebooks Based on MSPNs

Generally, the idea behind DeepNotebooks can be defined as follows: A Deep-
Noteboook for a dataset D is a Jupyter notebook [32] with an embedded (deep)
probabilistic model encoding the distribution of D. The model is used used to
precompute the cells of the notebook describing the dataset D.

The workflow of DeepNotebooks is depicted in Fig. 2: A user loads a dataset
into the system, which automatically creates a probabilistic model that encodes
the distribution of the data, in our case an MSPN. Using the MSPN, the sys-
tem proceeds without user interaction and performs statistical analysis based on
the model. Both the model and the analysis are then stored in a Jupyter note-
book, the DeepNotebook. The user then opens the DeepNotebook where they
can see the automatically generated report, as well as interact with the model.
Changing the parameters of the reports is easy, as well as doing further analysis
or even evaluating other datasets with the given model. All those options and
more are available to the user from within the DeepNotebook. Each generated
DeepNotebook contains three major sections, cf. Fig. 2:

Section 1: a general report on descriptive statistics and feature marginals,
Section 2: an analysis of the clusters encoded by the SPN structure
Section 3: report of the impact of features on conditional probabilities,
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Fig. 3. Textual introduction to the DeepNotebook automatically written for Iris.

which are wrapped into natural text produced by templates and by a prob-
abilistic grammar making the report more user-friendly, cf. Fig. 3. Normally,
the notebook reports the top 5 results (variables with the highest correlation,
variables with the most impact on a prediction), but the user can also provide
thresholds for reporting or specify which variables they are specifically interested
in. We will now describe each section of a DeepNotebook in more detail.

DeepNotebook Section 1 - General Report. The general report provides a
description of the data at hand. It includes descriptive statistics like correlations,
dependencies, and mutual information among the random variables. Since the
network represents the full joint probability density function of all variables, it
allows efficient computation of these common statistical measures. Each calcula-
tion only requires one full bottom-up evaluation of the MSPN. The expectations
of each variable can be computed by propagating expectations from the leaves
to the root and treating each sum node as a weighted sum of expectations. The
variable correlations can be computed similarly by recursively evaluating the
covariance of the variables at each node. Covariance and correlation are only
defined for ordered attributes in the data. Therefore, these measures cannot be
computed for all variable combinations when the dataset contains categorical
features. For the coupling between a categorical and a continuous variable, the
notebook reports the coefficient of variation. For categorical variables without
an ordering, normalized mutual information (MI) is reported.

Due to the efficient inference, it is possible to present partial dependency
plots [33] for categorical and continuous variables. By default, a DeepNotebook
selects all those features, which show a linkage (either due to covariance or
MI) above a certain threshold. This can be adapted dynamically by the users
according to their specific needs. Similar to the other sections, the notebook
also contains a written explanation of the visualization, constructed from the
probabilistic grammar shown in Fig. 4.

DeepNotebook Section 2 - Cluster Analysis. The MSPN structure contains
an implicit hierarchical clustering due to the sum nodes. A DeepNotebook uses
this to explain sub-clusters of the data and to provide descriptions for them.
Furthermore, the distribution of variance for each variable between the clusters
is calculated and presented. This allows users to understand the different parts of
the underlying model better. Intuitively, if a particular cluster explains a large
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<start> ::= <fullClause> | ... omitted for brevity

<fullClause> ::= <subject_feature> <object_dependency> |

<subject_dependency> <object_feature>↪→
<subject_dependency> ::= There is a {strength} {neg_pos} <dependency> | The model

shows a {strength} {direction} <dependency>↪→
<object_feature> ::= <conjunctionFor> <features?> "{x}" and "{y}"

<subject_feature> ::= <features?> "{x}" and "{y}" have

<object_dependency> ::= a {strength} {neg_pos} <dependency>

<conjunctionFor> ::= between | for

<dependency> ::= <linear?> dependency | <linear?> relation | <linear?>

relationship↪→
<features> ::= the features

<conjunctionWhile> ::= , while | , but | . on the other hand

Fig. 4. Parts of the grammar used for producing correlation descriptions. Variables
with a “?” at the end are randomly included/omitted for variation. Variables in curly
brackets are replaced with the computed values from the MSPN.

part of the variance of an interesting feature, this cluster and its constituent
nodes are important for a more in-depth analysis.

DeepNotebook Section 3 - Feature Impact. Finally, a DeepNotebook com-
putes different conditional probabilities for important variables and analyzes the
influence of the features on predictions. To do this, each categorical variable is
treated as a target variable separately, and the SPN is used as a predictive model.
These predictions are then analyzed using the methods proposed by Robnik-
Šikonja and Kononenko [34], Baehrens et al. [35] and Štrumbelj and Kononenko
[36]. These explanation approaches allow the users to understand how differ-
ent variables change the conditional probability of others and to estimate the
importance of a feature for classification. They require only the computation
of marginals, or gradients on the network. Due to the graph structure of the
MSPN, gradients can be computed by a simple backward pass through the net-
work using automatic differentiation. Marginalization of features is also easy in
MSPNs [17]. For more details about the computations, we refer to Sect. 4.

The information is aggregated and normalized to provide an easy overview.
Using Baehrens et al. [35]’s approach, the gradients are computed for each point
in the original dataset and then normalized. This normalization is important,
as the piecewise linear structure of the MSPN can result in very sharp edges
with correspondingly large gradients. The normalized gradients represent rela-
tive importance for each feature and datapoint. These are then aggregated into
one plot per feature and prediction, which describes the relative importance
for the prediction. With significant computational resources, users can also use
Shapley values [37] to estimate feature importance, which generalize the gradient
approach but requires a Monte Carlo sampling step. Overall feature importance
for each possible prediction attribute is then summarized using the mean squared
distance of each gradient component to zero. This assures that features which
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never have any local impact on the classification are also assumed to not con-
tribute to the impact globally. Finally, the Shapley values are visualized.

Since DeepNotebooks are Jupyter notebooks, the users can add more cells,
access the model and the data, and add arbitrary Python code for further queries
and analysis. A DeepNotebook therefore serves as an easy and accessible intro-
duction to a dataset and enables a user to employ the reported results in their
own data analytics pipeline later on. The data science loop does not start with
an empty but with a pre-filled Python notebook, “programmed” by the machine.

4 Computing Statistical Measures Using MSPNs

Each section of a DeepNotebook provides a different view on the data at hand
and is based on statistical measures computed form MSPNs as underlying “vir-
tual statistical machine”. Showing how to compute them is one of our main
technical contributions.

Computing Covariance Using MSPNs. Calculating the covariance of two
variables in a distribution can be decomposed into computing the joint expec-
tation and the marginal expectation of each variable. The graph structure of
an SPN allows an algorithm to calculate the moments of a probability function
directly from the network, in one bottom-up pass. At a sum node, the moment
of the distribution can be calculated as follows: mk = E[xk] =

∑
piE[xk] =∑

pim
k
i . At a product node, the moments of independent variables are also

independent, and therefore the moment of the child nodes can just be combined
in a vector. At a leaf node, the moments need to be calculated according to
the distributions. In the case of MSPNs, all leaves are piecewise linear density
approximations, therefore it is very easy to calculate the required integral for
the estimation, since all moments are polynomial functions of the base points.
Using the moments as computational blocks, it is possible to compute the corre-
lation matrix in closed form from the covariance matrix of the whole probability
density function.

The joint expectation can also be calculated efficiently in a similar manner:
First, the means of all leaf nodes are calculated independently. These are then
combined at the sum and product nodes in a bottom-up-pass. At a product node,
due to the assumption of independence, the joint expectation is equal to the
product of the expectation: E[xy] = E[x] ·E[y]. At a sum node, the expectations
are multiplied by the weights and summed together. Finally, the correlation
can be obtained by normalizing the covariance matrix by the variances of the
features.

Dependencies Among Variables Using the Law of Total Variance. When
dealing with general tabular data, it is necessary to deal with categorical vari-
ables. In this case, the covariance is not defined, and therefore we use the coeffi-
cient of determination as a measure for categorical-continuous variables and the
mutual information for categorical-categorical dependence. Both are normalized
between 0 and 1 and serve a similar purpose of estimating variable dependency as
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the correlation. The coefficient of determination between a categorical variable
X and a continuous variable Y can be calculated as follows. If the categorical
variable is assumed to correspond to clusters in the continuous one, the coef-
ficient shows that the total variance of Y results from adding the intra- and
inter-cluster variance:

1 =
E[σ2(p(Y |X))]

σ2(p(Y ))
+

σ2(E[p(Y |X)])
σ2(p(Y ))

.

The first term approaches zero as the clusters become smaller and more and more
separated, while the second term approaches zero if the conditional means of the
clusters do not vary significantly. To compute them, we extended the algorithm
for computing mean and variance to conditional probabilities in MSPNs.

Compiling Conditional MSPNs from MSPNs. Calculating moments as
presented above, marginalizes the MSPNs over and over. We can optimize that by
compiling a network that computes the conditional probability function p(x|y).
At a product node, the probability of p(x) and p(y) are independent of each
other and therefore the conditional probability p(x|y) equals the marginal p(x).
The leaf node representing pi(y) is omitted from the graph. At a sum node, the
conditional probability function reads as

p(x|y) = p(y)−1
∑

i
αipi(x, y) =

∑

i
αipi(y)p(y)−1p(x) .

The probability pi(y) for each child serves as an update on the weights of the
sum node. This assumes that the probabilities of x and y are independent for
each child of the sum node, which is guaranteed if the algorithm is run bottom-
up on the network as p(y) has already been removed for all children. After
extracting the conditional MSPN, the algorithm detailed above can be run to
get the conditional means and variances of the continuous variable. Likewise,
one can compute the mutual information:

MI(x, y) =
I(x, y)

√
H(x)H(y)

=

∑
x

∑
y p(x, y)(log(p(x, y)) − log(p(x)p(y)))

√∑
x p(x) log(p(x))

∑
y p(y) log(p(y))

.

Indeed, mutual information has been used in the context of evaluating (M)SPNs
[38], to visualize the connection between two variables. But evaluating the equa-
tion above using a numeric method by repeatedly calculating the needed proba-
bilities for continuous features is potentially slow since the probability functions
represented by MSPNs can be non-smooth. This is the reason this framework
uses correlation for the dependency between continuous variables since approxi-
mating the mutual information becomes practically intractable for more complex
marginal distributions, which would incur a runtime overhead not feasible in
data exploration settings. For categorical variables, where the possible states are
finite, and often few, the mutual information can be calculated precisely using
the equation above.
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Estimating Shapley Explanation Values from MSPNs. SHAP values
[10,36] estimate the impact of a feature on a single classification using the
game-theoretic concept of Shapley values. These values represent the contri-
bution each feature brings to the outcome of the classification by looking at
subsets of features. In general, a complete calculation of these values for a clas-
sifier is intractable, because the number of possible subsets of features grows
exponentially, but they can be estimated using Monte Carlo sampling [36]. Since
MSPNs have a natural way of marginalizing over missing features, this can be
done efficiently without using interpolation or summation over missing values.

5 Illustrations of DeepNotebooks

To investigate DeepNotbooks empirically, we implemented the system in Python
using the SPFlow library [39] for learning the MSPN. Then we generated Deep-
Notebooks for four well known UCI datasets [40]. We used the Iris dataset to
develop and test all algorithms and descriptions. We then generated DeepNote-
books on the Titanic, Boston Housing and Adult datasets. As a final validation,
we generated a DeepNotebook for a real-world medical dataset comprised of
information on heart infarct patients, which has not been studied in the context
of machine learning or exploratory data analysis before.

Experimental Protocol. The Iris and Boston Housing datasets were used
as provided by the sklearn library [41], while the Titanic and Adult datasets
were cleaned and preprocessed. Finally, the medical dataset considers diagnosis
of myocardial infarction using high-sensitivity troponin l 1-h [42]. The dataset
contains a large number of variables and a lot of missing values since not all
patients are subject to all test procedures. We filtered this dataset by estimating
the 20 most relevant attributes for diagnosis by using gradient tree boosting.
We then generated a DeepNotebook to further investigate the relationship of
these features to each other and the final diagnosis. For each dataset, we inves-
tigated three questions to assess the usability of the report for exploratory data
analysis: Does the report reflect patterns in the data as expected from prior
knowledge?, are there unexpected results?, and do these reflect genuine infor-
mation discernible from the data?. Together, these questions aim at deducing
whether the generated report provides reasonable insight into the data. Since
the datasets are originally intended for classification or regression, we focused
on understanding the relationship between the features and the label.

Correlation and Statistical Measures. For all datasets, we found that an
overview of the marginal distributions can help the user to assess the general
shape of the data quickly. The histograms calculated from the MSPN correspond
to empirical histograms of the data, albeit smoothed by the training process.

Figure 5 shows the correlation and determination coefficients for the UCI
datasets. For the Boston housing data, the correlation already captures many
important relationships within the data. This is to be expected, as the Boston
housing data is specifically intended to showcase simple regression models and
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Fig. 5. MSPN Correlations reported in the DeepNotebooks on four UCI datasets.
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Fig. 6. Relative impact of the features with the widest spread on classifying high
income in the Adult dataset as reported in the DeepNotebook.

linear correlations. Similarly, the Iris dataset contains a lot of well known depen-
dencies. On the Titanic and Adult dataset, the descriptive statistics are non-
informative, since the MSPN finds nearly no correlations within the data. The
only significant finding in the Adult data results from two redundant attributes,
the “education level” and a numeric representation thereof.

For the medical dataset, the mutual information (not shown here) indicates
a clear dependence between the diagnosis and the troponin levels of a patient,
which is a well known medical indicator for cardiovascular disease. The troponin
levels of a patient at different test times were also clearly correlated with each
other and less strongly with most other features, indicating their medical rel-
evance among the tests. Other weaker dependencies do not warrant a closer
inspection on the first pass, but might be interesting for a second, more thor-
ough, investigation. Since all features were already selected as being predictive
for the diagnosis, this was counter-intuitive, but mutual information and corre-
lation consider only pairwise interactions. This highlights the importance of non
traditional statistical tests, like feature importance analysis for prediction.

Explaining Predictions. We found that explaining predictions can highlight
variable interactions, which are not directly evident from correlation measures
alone. On the Adult dataset, the variable most commonly chosen as the target
for classification analysis is the variable “income”, which has two possible val-
ues, representing a yearly income below or above USD 50, 000 respectively. The
predictive precision of DeepNotebook for this target was 76.28%. To assess the
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(a) Importance per class (b) Importance for predicting “no issues”

(c) Importance for predicting “STEMI” (d) Importance for predicting “NSTEMI”

Fig. 7. Shapley impact values for the diagnosis prediction on the medical dataset. Grey
dots visualize values for other class predictions. (Color figure online)

usefulness of the feature importance and impact measures, this classification was
investigated in more detail.

Figure 6 shows that the normalized gradient strengths for these features com-
puted by the DeepNotebook. One can clearly see that “education level”, “sex”,
and “marital status” are informative features for the prediction with a clear
impact. Also, by inspecting the visual explanations automatically created in a



40 C. Völcker et al.

DeepNotebook, a user is able to assess that the values “bachelors” and “masters”
for the variable “education” have a pronounced, and opposed impact on the con-
ditional probability. The histogram is clearly separated, with the value “masters”
generally increasing the probability of a person earning more than USD 50,000,
and “bachelors” decreasing this probability. Another feature which results in a
relatively strong difference in probability is gender. Males are more likely to earn
more than females. Both of these results are not unexpected from the domain of
the data and conform with prior expectations and as well as inspection of the
underlying data. Another, less intuitive result of the DeepNotebook is that the
“marital status” has a recognizable effect on the probability of the income. A fur-
ther investigation of this phenomenon shows that this pattern is also reflected in
the data. This shows that it is indeed possible to quickly glean facts and avenues
for further investigation from the automated analysis that might not have been
expected a priori.

For the medical dataset we show the Shapley values computed by the Deep-
Notebook. As one can see in Fig. 7, different features are important for the
separate classifications. This is a distinct case when compared to the Adult
example, since in a multi-class prediction, the Shapley values and explanation
vectors will not be symmetrical. Overall, the troponin levels (features lb mmy)
are the most important predictive features, which aligns with the strong mutual
information coupling to the diagnosis and the medical background knowledge.
The next important features contain information about symptoms, admission to
the ICU, and ECG patterns detected. This conforms clearly to the expectation,
for example in cases where the symptoms leading to ICU admission are long
passed (feature qu sym001 with high values) the chances of an acute infarction
are far lower, while a specific ECG signal (low values for feature pe ecg0041) are
indicative of a STEMI type myocardial infarction (this signal is very typical for
STEMI infarctions). The signal for the strong indicator troponin is only relevant
for excluding heart attacks, STEMI and NSTEMI type occurrences both lead to
high levels, although very high levels seem mostly indicative of a STEMI type
infarction. For differentiating between different types of infarction, looking for
example at the ECG result can help. This is a good starting point for a more
in depth analysis of the detailed differences between the different heart attack
types. Overall, DeepNotebooks can yield several findings that were not obvious
to non-medics but conformed to medical knowledge.

6 Conclusions

We have presented DeepNotebooks—a novel way of interacting with data using a
deep probabilistic model in the background. The generated reports automatically
capture several insights from the data presented in a natural, comprehensible
way. The automatic evaluation presented in written and graphical form enables
domain experts that are not machine learning experts to get feedback instantly
and to explore their data at their own pace. Changing the parameters of the
generated report allows a user to choose between an in-depth analysis and a
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quick overview of the most important patterns. Also, since the data reports
are Jupyter notebooks, the results reported are highly interactive and flexible.
Overall, the example DeepNotebooks show that they allow one to find patterns
in the data, which conform to prior expectation, but also result in novel findings.
Given these insights, the user can directly investigate the model and data further
using standard Python.

Nevertheless, DeepNotebooks are only a starting point and many things are
left to be done. One should extend DeepNotebooks to include other statistical
measures. Currently, DeepNotebooks are also specifically focused on analyzing
categorical datasets. They should be extended to analyzing regression and time
series data. Extending SPNs to provide better or even counterfactual explana-
tions of the underlying model is another interesting avenue. Incorporating other
model agnostic or developing similar measures specifically for SPNs could pro-
vide additional insight into the predictive capabilities of the network. Likewise,
extracting Bayesian and Markov networks from SPNs would also lead to addi-
tional insights into the underlying data. Finally, there are many SPN learning
algorithms with different properties. A thorough investigation of these, espe-
cially concerning how easy they are to use and tune for a non-expert user, would
greatly improve the usability of the method for a wide audience.
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PKDD 2013. LNCS (LNAI), vol. 8189, pp. 612–627. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40991-2 39

29. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In:
ICML, pp. 873–880 (2013)

https://www.nature.com/articles/s41467-019-08987-4
https://www.nature.com/articles/s41467-019-08987-4
http://arxiv.org/abs/1512.05006
https://doi.org/10.1007/978-3-642-40991-2_39


DeepNotebooks 43

30. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthen-
ing sum-product network structure learning. In: Appice, A., Rodrigues, P.P., San-
tos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS
(LNAI), vol. 9285, pp. 343–358. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23525-7 21

31. Lopez-Paz, D., Hennig, P., Schölkopf, B.: The randomized dependence coefficient.
In: NIPS, pp. 1–9 (2013)

32. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible com-
putational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016)

33. Molnar, C.: Interpretable Machine Learning (2018). https://christophm.github.io/
interpretable-ml-book/. Accessed 4 June 2019

34. Robnik-Šikonja, M., Kononenko, I.: Explaining classifications for individual
instances. IEEE Trans. Knowl. Data Eng. 20, 589–600 (2008)

35. Baehrens, D., et al.: How to explain individual classification decisions. J. Mach.
Learn. Res. 11, 1803–1831 (2010)
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