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Multi-scale Modeling of Partially
Stabilized Zirconia with Applications
to TRIP-Matrix Composites
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Abstract The understanding of how the microstructure influences the mechani-
cal response is an essential pre-requisite for materials tailored to match specific
requirements. The aim of this chapter is to further this understanding in the context
of Mg-PSZ-TRIP-steel composites on three different scales using a set of meth-
ods ranging from phase-field simulations over micromechanics to continuum con-
stitutive modeling. On the microscale, using a Ginzburg-Landau type phase-field
model the effects of cooling- and stress-induced martensitic phase transformation in
MgO-PSZ is clearly distinguished. Additionally with this method the role of energy
barrier in variant selection and the effect of residual stress contributing to the stability
of the tetragonal phase are also investigated. On themesomechanical scale, an analyt-
ical 2D model for the martensitic phase transformation and self-accommodation of
inclusions within linear elastic materials has been successfully developed. The influ-
ences of particle size and geometry, chemical driving force, temperature and surface
energy on the t → m transformation are investigated in a thermostatic approach.
On the continuum scale, a continuum material model for transformation plasticity
in partially stabilized zirconia ceramics has been developed. Nonlinear hardening
behavior, hysteresis and monoclinic phase fraction during a temperature cycle are
analyzed. Finally, The mechanical properties of a TRIP steel matrix reinforced by
ZrO2 particles are analyzed on representative volume elements. Here the mechanical
properties of the composite as function of volume fraction of both constituents and
the strength of the interface are studied.
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21.1 Introduction

21.1.1 Aims and Scopes of the Present Work

One central aim of the Collaborative Research Center SFB799 “TRIP-matrix com-
posites” was the development of a particle reinforced composite, composed of a
TRIP-steel metallic matrix and ceramic particles of partially stabilized zirconia PSZ.
The underlying idea was to exploit the phase transformation capability of both con-
stituents in order to enhance and to optimize the mechanical properties by making
such a composite.

In particular, the combination of the strain-induced phase transformation in the
TRIP steel and the stress-induced transformation in PSZ offers the opportunity to
compensate local stress concentrations at considerably high plastic deformations.
This reinforcing effect has been verified by several experiments with these metal-
matrix-composites MMC under monotonous [1] loading.

In complementation to the fabrication and characterization of these MMC, a thor-
ough theoretical-numerical modeling of the composite material was necessary to
understand and to simulate the phase transformation and the deformation behavior
of both constituents.

This work was devoted to the simulation of the phase transformation processes
in the PSZ ceramics and the MMC, whereas in another work the behavior of the
TRIP-steel was investigated. The aim was to provide proper constitutive equations
for stress and temperature controlled tetragonal-to-monoclinic phase transformation
of PSZ ceramics, based on physical assumptions accounting for the responsible
micromechanical mechanisms. The problem has been approached at various length
scales, see Fig. 21.1:

• At the microscale level it was needed to simulate the actual kinetics of the trans-
formation process inside of single tetragonal phase particles in PSZ. This task
could be best accomplished by using the phase-field method.

• To study the transformation conditions of an ensemble of tetragonal lentils in
polycrystalline PSZceramics, a semi-analytical thermostatic approachwas applied
at the mesoscale.

• In order to enable quantitative strength analysis of structures made of PSZ and
MMC, a phenomenological constitutive law at themacroscale was further devel-
oped and implemented in a FEM-environment.

• To support the development of tailored particle MMC TRIP-matrix composites,
representative volume elements on the composite level were simulated, which
allow to predict the mechanical properties of the composite as function of volume
fraction of both constituents and the strength of the interface.



21 Multi-scale Modeling of Partially Stabilized Zirconia with Applications … 681

microscale

ZrO2 TRIP-steel

TRIP-steel

cubic
ZrO2

tetragonal
ZrO2

monoclinic
ZrO2

tetragonal
ZrO2

monoclinic
ZrO2

mesoscale macroscale

Fig. 21.1 Different scales of modeling partially stabilized zirconia

21.1.2 Introduction to Partially Stabilized Zirconia

Partially stabilized zirconia (PSZ) is widely used because of its enhanced fracture
toughness and nonlinear stress-strain behavior. These favorable mechanical proper-
ties of PSZ result from a solid state phase transformation at regions of high stress
concentration (e.g. crack tips). This effect, known as transformation toughening,
was first reported by Garvie et al. [2] and was extensively investigated by [3–5].
Generally, some conditions have to be fulfilled for transformation toughening. The
existence of a metastable phase in the material is required, which can be achieved
either by microstructural parameters such as grain size or by changing the chemi-
cal composition. Themartensitic (instantaneous) transformation from the metastable
parent phase to the stable resultant phase has to be stress-induced.

The PSZ ceramic material under consideration is stabilized by MgO, resulting in
finelydispersed lenticular precipitates of tetragonal (t-phase) embedded coherently in
the grains of a polycrystalline cubicmatrixmaterial (see Fig. 21.2). These precipitates
can transform into the monoclinic (m-phase) [7] triggered either by temperature or
stress, resulting in the formation of multiple, partially self-accommodating variants.
The t → m phase transformation, if unconstrained, is accompanied by a volume
dilatation of about 4% and a shear strain of about 8%. The increase in volume
induces (residual) compressive stresses in the cubic (c-phase) matrix leading to a
shielding effect at stress concentrations, which contributes to the toughness of the
material.
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Fig. 21.2 Typical
microstructure of a
TRIP-PSZ composite
produced in the CRC 799 by
spark plasma sintering. The
image shows a PSZ particle
surrounded by TRIP steel
together with a zoom into the
particle showing the typical
PSZ microstructure
(reprinted from [6])

1 mμ←⎯⎯→

21.2 Micromechanical Phase-Field Approach

Phase-field is considered to be a powerful mathematical computational tool in sim-
ulations involving interface kinetics. In the past decades PF approach has been suc-
cessfully established in various fields for materials science understanding such as:
solidification, solid-state phase transformation, precipitate evolution and coarsening
kinetics, grain growth, martensitic phase transformation (MPT) and also in damage
and crack growth phenomena.

For past few decades there has been active research towards the direction of mod-
elling partially stabilized zirconia (PSZ) materials. Wang et al. [8] was one of the
early study on PSZ for c → t phase transformation involvingGinzburg-Landau (GL)
phenomenological theory based PFmodel. Later in [9] the authors simulated alternat-
ing band structure formed by self-organized orientation variants of t-phase particles.
In [10] the first three-dimensional model for generic c → t MPT was presented.
Mamivand et al. [11] reported the first work on anisotropic and inhomogeneous
PF modeling for t → m phase transformation in zirconia ceramics. The work dis-
cussed the simulation results based on different initial and boundary conditions in
comparison to experimental observations. Further the authors [12] incorporated the
effect of stress and temperature to capture the forward t → m and reverse m → t
transformation to model pseudo-elastic behavior in polycrystalline zirconia.

A comprehensive work on non-conserved type GL-based phase-field models for
generic martensitic phase transformation was developed in a series of three papers
fromLevitas et al. [13–15]. Levitas et al. used a 2 − 3 − 4 or higher order polynomial
for approximating the Gibbs energy and effective strain transition from austenite to
any martensitic variant. This work principally relies on the phenomenological GL
phase-field model developed by Levitas et al. with 2 − 4 − 6 type Landau potential.
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21.2.1 Phase-Field Method

The temporal and spatial evolutionof non-conservedphase-fieldvariables is described
by the phenomenological Ginzburg-Landau kinetic equation

∂φ

∂t
= −L

(
−β∇2φ + ∂ψgl

∂φ

)
. (21.1)

Here L is the positive kinetic coefficient, and β is a positive gradient energy
coefficient. The interface energy contribution provided by Levitas and Preston [13]
was used.

Here the total enthalpy ψgl is described by additive contributions from an elastic
ψel and a stress-independent chemical part of free enthalpy ψch. The individual
contributions are based on the work of Levitas and Preston [13, 14].

ψgl = ψel(ε, εtr, φ) + ψch(θ, φ). (21.2)

The order parameter considered here ranges from −1 � φ � 1, where φ = ±1
are the two possible product variants of m-phase and φ = 0 represents the parent
t-phase in two dimensions, see Fig. 21.3b. The values ±1 correspond to the variants
having opposite shear (self accommodating variants) in order to form twins during
t → m transformation. So, a single order parameter φ represents a group of phases
consisting of variant m+, its counter self accommodating variant m− and the parent
phase t in t → m transformation. As discussed in the work of Levitas et al. [15] the
most opted 2 − 4 − 6 polynomial for such a crystal set is used further to describe

Fig. 21.3 Order parameter and lattice transformation representation of parent and product phases
during martensitic phase transformation in zirconia ceramics. a c → t lattice transformation, b
t → m lattice transformation schematic in two dimensions
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the potential in this work and to model the phase transformation. A similar method
is considered in representing parent c-phase and product variants of t-phase during
c → t transformation.

In mechanics total strain tensor is decomposed into an elastic and an inelas-
tic/transformation term, such as,

ε = εel + εtr(φ̃). (21.3)

Here εtr(φ̃) provides resultant transformation strain weighted with fraction of
product phase ϕ(φ̃). The modified order parameter φ̃ is used instead of φ to avoid
any unbounded solution which may lead to unphysical mechanical properties. This
implies εtr(0) = 0 and εtr(±1) = εm±

tr respectively. In sameway fourth-rank effective
elastic constants Eeff can be written as fraction weighted with respect to product
phase. The transformation/Bain strains and elastic constants are listed in Tables21.1
and 21.2. For more detailed explanation on the PF method applied especially to
simulation of zirconia material we refer to our previous work [16].

The Ginzburg-Landau equations are coupled to the basic equations of contin-
uum mechanics by applying the week form of equilibrium of momentum in a FEM
framework.

∇ · σ = 0. (21.4)

The resulting second order partial differential equations for phase-field variable φ

and displacement vector ui are solved concurrently using the finite element method
framework implemented in COMSOL multiphysics.

21.2.2 Model Setup

Since both the transformations c → t and t → m are martensitic, the aforemen-
tioned PF approach is used to describe both phase transformation scenarios in zir-
conia ceramics. It is known that, t-phase and m-phase crystal during t → m trans-
formation share same crystal lattice points in a symmetrical manner leading to 12
possible orientation relations of parent lattice to product lattice in three dimensions
(3 correspondences based on choice of lattice axis direction, two variants for each
correspondence and two orientations for each variant). This is also similar to the
case of c-phase and t-phase crystal during c → t transformation. In two dimensions
the problem reduces to a simple set of two product crystal variants (see Fig. 21.3).
The other cases of crystal transformation belong on the third dimension, so for sim-
plification, they could be neglected from modeling. In t → m transformation this
simple crystal lattice transformation set (see Fig. 21.3b) is enough to describe twin
formation during transformation in two dimensions and thus could reproduce the
effect of self accommodation in order to reduce the total strain energy of the system.

Since the specific domain setup differs in some cases of our simulations pro-
vided in the following subsections, they are discussed in detail in the corresponding
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Table 21.1 Variant transformation strains involved in c → t and t → m transformation [8, 17, 18]

Lattice transformation Transformation strain εi j

c → t1 εt1tr =
[

−0.0007 0

0 0.0197

]

c → t2 εt2tr =
[

0.0197 0

0 −0.0007

]

t → m+ εm+
tr =

[
0.012479 0.079614

0.079614 0.019139

]

t → m− εm−
tr =

[
0.012479 −0.079614

−0.079614 0.019139

]

Table 21.2 Elastic stiffness (in GPa) of c-phase , t-phase and m-phase [19]

Phases E11 E22 E33 E44 E55 E66 E12 E13 E16 E23 E26 E36 E45

c-phase 390 390 390 60 60 60 162 162 0 162 0 0 0

t-phase 327 327 264 59 59 59 100 62 0 62 0 0 0

m-phase 361 408 258 100 81 126 142 55 −21 196 31 −18 −23

subsections of selected results. Overall in common, we assume anisotropic elastic
behaviour in both elastic and phase transformation domain in our simulations. The
effective transformation strain and elastic constants at a material point inside the
phase transformation domain are evaluated as a function of φ [16]. The description
of anisotropy is necessary to capture variant orientation relationship and the effects
of various external loading directions on MPT. The material parameters used in the
model are listed in Tables21.1 and 21.2.

21.2.3 Selected Results and Discussion

21.2.3.1 Phase Stability and Energy Barriers

Using CALPHAD [20] method an unambiguous representation of the temperature
dependent Gibbs free energy values of individual phases from the thermodynamical
aspect could be evaluated [21]. But the form of energy landscape for intermediate
phase transition from parent to product phase is still ambiguous and is a missing
piece of puzzle. Most of the phase-field methods rely on these energy landscape to
reproduce amore relevant and accurate material behavior. There are twomajor meth-
ods used by phase-field to approximate the transformation path a common tangent
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method [20] which expresses a linear behavior between parent and product phase
minima. On other hand potential function methods [13, 22] utilize an non-linear
analytical representation of path between parent and product phase minima. Both of
these methods confide in phenomenological modeling of free energy based on the
phase stability conditions. In this work a generic model for martensitic phase trans-
formation developed by Levitas and Preston [14] is used and adapted for simulating
zirconia ceramics material. We use 2 − 4 − 6 potential function [16] method which
is utilized to represent a non-linear behavior and exhibit a transition barrier based on
thermo-mechanical conditions.

On the thermodynamic perspective of zirconia at ambient temperature, it is clear
that the global minimum is at m-phase and the global maximum is at t-phase . So
theoretically themetastable t-phase always tends to transform to stablem-phase . But
in almost all commercial PSZ ceramics (refer MgO-ZrO2micrographs from the book
of Hannink et al. [18]) the t-phase is observed to be stable at ambient temperature.
Multiple factors may cause such a stabilization, which include: stabilizer doping
such asMgO, presence of residual stresses from prior c → t transformation, but also
defects like dislocations and grain boundaries. Later in thiswork, the effect of residual
stress is investigated. Here in this section we compare the potential functions from
Mamivand et al. [11] and Levitas and Preston [14] commonly used in literature for
modelling t → m transformations. We investigate the capabilities of these functions
for such a stabilization.

The 2 − 4 − 6 potential used by Mamivand et al. [11] for approximating the
Gibbs energy contribution defines energy barrier just by the analytical function.
The barrier is then levered by the enthalpy difference between the parent and prod-
uct phase irrespective of temperature, see Fig. 21.4a. Even at ambient temperature
the approximated Gibbs energy landscape provides an energy barrier considering
only thermodynamic contribution by pure zirconia, which is in contradiction to true
physical behaviour. In the case of Levitas and Preston [14] based formulation for
temperatures below Ms the function doesn’t exhibit any barrier for transformation.

At high temperature just aboveMs (see Fig. 21.4d) the energy landscape calculated
based on Mamivand’s potential formulation shows local minima at the parent and
product phase. For the same, a global maximum or energy barrier is visible at order
parameter φ ≈ 0.1 (see T < Ms). But as the temperature increases this decreases the
barrier, and after crossing the T0 there remains an intermediate local minimumwhich
is neither parent nor product phase, the local minimum is close to order parameter
φ ≈ 0.1, see Fig. 21.4b, c. In contrast, Levitas type potential used in this work has
no intermediate minimum rather provides a barrier between the parent and product
phase for temperatures above Ms .

Based on Levitas et al. formulation, utilized in this work for zirconia ceramics
at any temperature, a global/local minima is retained at the product phase. And for
T > Ms a local minimum is also retained in parent phase, see Fig. 21.4b, d. Thus
the potential function used in this work results in a proper representation of zirconia
ceramics material behaviour from a pure thermodynamic stand point.
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Fig. 21.4 Comparison of estimated 2 − 4 − 6 potential based thermodynamic Gibbs enthalpy
ψch(θ, φ) as a function of order parameter during t → m transformation at various temperatures
for Levitas and Preston [14] based model used for zirconia ceramics [16] to Mamivand et al. [11]
model

21.2.3.2 Variant Selection by Energy Barriers

In this section we would like present distinctive differences in microstructure and
evolution path between cooling induced and stress induced t → m transformations.
We show that the different behaviour can be explained by the presence of an energy
barrier in the Gibbs free enthalpy. In the latter case, sequential growth of monoclinic
lamellae is observed because of possible variant selection based on energy barriers,
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Fig. 21.5 a Representation of simulation domain with boundary conditions. Material coordinate
system (abc) and geometrical coordinate system (xyz). Axis c and z are outward normal to the
paper. b Comparison of stress-independent chemical free enthalpy

whereas cooling induced microstructure evolution is characterized by an almost
homogeneous nucleation of the monoclinic phase.

For simulating different microstructure evolution, such a domain setup is cho-
sen, where the t-phase lentils are stabilized in the cubic matrix after annealing. A
single crystal setup with a square c-phase elastic domain (ED) of 0.5 µm× 0.5
µm with an embedded circular phase transformation domain (PTD) of radius 0.125
µm (see Fig. 21.5a) is created. As initial condition in PTD the tetragonal phase is
superimposed with random noise on order parameter φ within a given range. The
elastic domain here represents a cubic matrix surrounding a single t-phase particle.
A circular form of embedded phase transformation domain is chosen in order to avoid
any geometrical influence on the microstructure formation. The initial displacement
is set zero in the whole domain. Additionally, a displacement periodic boundary con-
dition is imposed at the boundaries. In order to mimic a rotated crystal around the
b-axis (normal to the paper) (see Fig. 21.5a) the material parameters, transformation
strain and elastic constants are transformed accordingly. Other common simulation
and material parameters used are already discussed above and listed in Table21.3.

For simulating stress induced transformation,we choose homogeneous isothermal
conditions at 1310 K, above Ms =1305 K. On the other hand, for cooling induced
transformation we choose homogeneous isothermal condition at 1250K below Ms .
The Gibbs enthalpy landscapes based on pure thermodynamic contribution for both
temperatures are compared in Fig. 21.5b.

Figure21.6a–c show a cooling induced martensitic transformation in a single
crystal, rotated by 45◦ around ‘b’-axis (see Fig. 21.5a) with isothermal condition
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Table 21.3 Input parameters used in t → m simulation

Description Symbol Value Unit

m-phase start temperature Mt→m
s 1305 K

m-phase equilibrium temperature T t→m
0 1367 K

Gradient energy coefficient β 5× 10−11 J/m

Kinetic coefficient L 2 m3/Js

Material parameter a 6 –

(a) (b) (c)

(d) (e) (f)

Fig. 21.6 A comparison between cooling induced case (top row (a–c)) and stress induced case
(bottom row (d–f)). The color legend represents the order parameter φ. A sequential growth of
lamella, observed during stress induced case due to variant selection based on external loading.
Microstructure evolution snapshots at various stages of pseudo-time

below Ms at 1250K. A surface plot inside the PTD shows the evolution of order
parameter φ where the color legend represents, red being m+, blue as m− and green
as t .

In cooling induced case there is no intermediate energy barrier between par-
ent and product phase for transformation (see Fig. 21.5b) since the temperature
is below Ms and here product m-phase is stable. So after initialization an almost
homogeneous nucleation process takes place where all possible nucleation sites
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of all possible variants are preferred to grow because of the adequate thermody-
namic driving force (see Fig. 21.6a–d). In the numerical simulation, such condi-
tion will lead to different microstructure arrangements for different initialization.
The evolved microstructures would be of mixed patterns where junction planes
are parallel or orthogonal to ‘c’-axis, which could be observed within a single
grain (both orientation scenarios specified by Hannink et al. [18]). In Fig. 21.6c
a large quantity of junction plane between two m-phase variants are orthogonal to
‘c’-axis direction and there are small amount of junction planes (upper right, lower
left and lower right) oriented parallel to ‘c’-axis. Figures of both such lamella direc-
tions of twin formation have already been presented in the work of Hannink et al.
[18] within a single t-phase lentil.

Simulation parameters here remain the same as cooling induced microstructure
formation case, except the operating temperature being 1310K above Ms and with
σapp = 1 GPa compression along ‘b’-axis (see Fig. 21.5a). An initial superimposed
noise with a range confined within the barrier of the Gibbs enthalpy landscape (see
Fig. 21.5b) is applied.

Since the pure thermodynamic driving force is not adequate to trigger the trans-
formation, there would not be martensitic evolution at all. As the compressive stress
is superimposed additionally to the thermodynamic contribution, depending on the
orientation of crystal relative to the applied stress some variants are preferred to grow
by decreasing the energy barrier and some are obstructed by increasing the barrier.
In other words, the energy landscape is skewed such that some variants have energy
barrier and others don’t, see Fig. 21.9a. This becomes clear by comparison between
solid blue curve where no external stress is applied, and dashed red curve after appli-
cation of external stress. Here in dashed red curve one variant experiences a barrier
and the other doesn’t. In this example (Fig. 21.6d–f) them+—red nucleation sites are
preferred. At the initial stage,m+ red variant nucleates and grows andmeanwhilem−
blue variant vanishes because of the energy barrier. Additionally, by superimposing
normal stress σapp the driving force exceeds the minimum driving force required for
transformation above Ms and triggers the transformation. Initially only m+ variant
lamellae grow such that they increase the strain energy. As the lamellae reach the
grain boundary or imperfections, this piles up stress and triggers the m− blue self
accommodating variant thus reducing a part of the strain energy gained.

According to the investigation on MgO-ZrO2by Kelly and Ball [17] the potential
twinning plane/junction plane for twin related variants is either [100]m /‘a’-axis or
[001]m /‘c’-axis, based on our model base axis orientation in Fig. 21.3. The resulting
junction plane [001]m /‘c’-axis (see Fig. 21.6) is consistent with the experimental
observations of [17, 18, 23, 24]. It is clear that among the two possible orientation
scenarios specified by Hannink et al. [18] between m-phase and t-phase , junction
plane parallel to ‘c’-axis, twin-related variants retain some untransformed t-phase ,
which is also consistent with our observations. But the reason for possible conditions
under which such oriented structure could be reproduced has not been discussed yet
before.
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21.2.3.3 Origin and Effect of Residual Stresses

The probable initial existence of residual stresses [25, 26] in the t-phase matrix as a
result of the c → t transformation and their effect on t → m transformation is also
not well understood yet. Such a residual stress is not yet considered in modeling for
t → m . In almost all commercial ceramics t-phase is stable at ambient temperature.
Multiple factors may cause such a stabilization, here we look into the possibility and
the effects of residual stress present prior to t → m transformation. In order to eval-
uate the peak residual stress which could be expected during c → t transformation,
we simulate c → t transformation inside a c-phase matrix. The evolution of average
pressure inside the t-phase lentil during transformation is tracked. This pressure is
later used as an initial condition to mimic presence of residual stress during t → m
transformation.

A simplemodel for single lentil setupwithin a square phase transformationdomain
is chosen with a size such that an average size of tetragonal lentil could be accom-
modated. This phase transformation domain is placed within an large elastic domain
with c-phase . The transformation domain is initialized with c-phase and a circular
seed of t-phase is placed at the centre of the phase transformation domain. The ini-
tialization and boundary conditions are set similar to those of model for t → m . The
domain is allowed to transform from cubic to tetragonal (c → t ) by undercooling
at 1300K without any external mechanical loading. The thermodynamic functions
for evaluating Gibbs enthalpy values are taken from [11, 21]. We assume anisotropic
elastic behavior for the whole domain. The elastic constants of respective phases are
provided in Table21.2. Based on the lattice constants from [8] one can evaluate the
transformation strain (see Table21.1), the critical temperature Mc→t

s =1423 K and
equilibrium temperature T c→t

0 =584 K acquired from [27]. All other parameters are
similar to those of previously explained model setup and listed in Tables21.2 and
21.3.

Figure21.7 shows single and multi-variant t-phase lentils evolving inside a
c-phase matrix. As the initial tetragonal inclusion grows to lentil shape, its interior is
under compression. On left half, the mean in-plane pressure σ p̄ = −(σxx + σyy)/2
is plotted. The legend red represents material under compression and blue represents
material under tension. On the right half, the surface plot of order parameter φ is
presented. Therein, green color represents c-phase and red color represents t-phase
. In commercial ceramics, stable tetragonal lentils are observed at ambient tempera-
ture. So the peak mean in-plane pressure experienced by these t-phase lentils during
their formation is considered to be the initial condition for t → m transformation.
Figure21.8 shows an evolution of the mean in-plane pressure versus the area fraction
of a single t-phase lentil in an infinite domain. The numerical fluctuations during
the initial stages are of no interest, but a strong saturation trend in the later stages is
considerd resulting in a 0.21GPa mean in-plane pressure inside a lentil. Although a
single lentil is considered here, in reality the cubic matrix is populated with multiple
lentils so a superimposed stress state of multiple lentils will lead to higher value than
the one estimated here.
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(a) Single lentil simulation (b) Multi lentil simulation

Fig. 21.7 Evolution of single-variant and multi-variant lentils during c → t transformation

Fig. 21.8 Evolution of mean inplane pressure σ p̄ inside t-phase lentil versus fraction of t-phase

In order to evaluate the mean in-plane pressure on a multi lentil setup, a similar
setup like a single lentil setup is choose. This setup represents a periodically placed
RVE. The placement of the initial seeds are arranged such that they represent a
proper microstructure. The seed at the center is replaced with a noise where an equal
possibility is given to both variants to nucleate and grow. Because of the stress state
of the neighboring t-phase lentils a selective nucleation of red variant takes place
which is more favorable. The peak average pressure experienced by these t-phase
lentils are tracked and plotted in Fig. 21.8. In this multi lentil setup the resultingmean
in-plane pressure inside the lentils is 0.35 GPa which is larger than that of the single
lentil simulation case. This gives a clear evidence of residual stress from prior c → t
transformation.

As consequence of result from single and multi lentil simulations we choose
≈0.3 GPa as the initial pressure inside the lentil which is also consistent with the
FEM based investigation on tetragonal inclusion in a cubic matrix by [26].
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By applying a hydrostatic residual stress to the system an energy barrier is intro-
duced thus allowing t-phase stability below Ms . This is visible in Fig. 21.9a on the
solid blue line showing a local maximum near to the t-phase . The dotted green line
shows the pure stress free chemical contribution ofGibbs enthalpywhere them-phase
is stable and there is no energy barrier for t → m transformation. By superimposing
an externally applied compressive stress one could skew the energy landscape, thus
favouring a single variant so that stress induced transformation is possible below Ms

temperature. A similar simulation setup for t → m transformation as described in
the previous section is used. Additionally, for introducing a residual stress an equibi-
axial type loading of σ p̄ =−0.3 GPa is applied. The temperature is T =1250K< Ms .
Figure21.9b shows the microstructure formed by stress induced transformation at
1250 K. It is clear that the residual stress from the c → t transformation contributed
to the stability of t-phase . As the operating temperature decreases the residual stress
required to introduce a barrier for transformation increases (see Fig. 21.10). By this it
becomes clear that residual stress is not the only contribution involved in the t-phase
stability.

(a) (b)

Fig. 21.9 Possibility of t-phase stability and stress induced transformation below Ms temperature
at 1250K, influence of residual stress and asymmetry in energy barrier by superimposing externally
applied compression. On left, effect of residual stress and applied uniaxial compression on Gibbs
enthalpy landscape below Ms at 1250K. On right, surface plot of order parameter φ inside PTD. a
Enthalpy landscape with various energy contributions, b surface plot of φ
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(a) (b)

Fig. 21.10 Impact of residual stress on energy barrier at various temperatures. The intermediate
local maxima showing presence of a energy barrier are represented with unique marker. A trend of
increasing energy barrier with increasing residual stress is visible. a T =1250 K, b T = 100 K

21.3 Mesomechanical Model

Theunderstandingof how themicrostructure influences themechanical response is an
essential pre-requisite for materials tailored to match specific requirements. The aim
of the present work is to develop a transformation criterion for lenticular inclusions
embedded into an elasticmatrix based on thework of Hensl et al. [6] that accounts for
the experimentally observed tension-compression asymmetry. This criterion is then
used in order to investigate the influence of the microstructural features, such as size
and shape of the inclusions, on themechanical response.Ahomogenization approach,
schematically depicted in Fig. 21.11, provides first insights into the response of a
grain.

21.3.1 Transformation Criterion for a Single Precipitate
Embedded in an Infinite Matrix

In this section we extend the transformation criterion developed in [6] in order to
account for the pressure sensitivity of the material. This is done in a plane-strain
setting based on a number of assumptions.
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Fig. 21.11 Illustration of homogenization techniques used to model the effective material behavior
of a polycrystal, influenced by the microstructure of each grain

21.3.1.1 Working Hypotheses

1. The elastic tensors of the cubic matrix and tetragonal precipitate (inclusion) are
assumed to be isotropic and identical.

2. The inclusion is modeled as having a rectangular cross-section with width B,
height H and aspect ratio α = H/B in its untransformed state.

3. The pseudo-twin structure after t → m transformation is modeled as a stack
of equal-thickness lamellae, each of which carries a strain of ˜̃ε11 = ˜̃ε22 = 2%
resulting in a relative volume change of ˜̃εvol = 4% and shear transformation
strain ˜̃ε12 = ±8% (specified in the crystallographic coordinate system1). Note
that, while all lamellae are assumed to have the same thickness, the actual value
of this thickness as well as the number of lamellae 2k are part of the solution and

the corresponding effective shear strain of the inclusion is denoted by ε̃(k) :=
〈 ˜̃ε〉

I
,

where 〈·〉I is the averaging operator over the domain of the inclusion. Specifically,

ε̃
(k)
11 = ˜̃ε11, ε̃(k)

22 = ˜̃ε22 resulting in ε̃
(k)
vol = ˜̃εvol =: ε̃vol and ε̃

(k)
12 =

〈 ˜̃ε12
〉
I
.

4. As the specific lamellae arrangement is not part of the solution, we estimate the
elastic energy contribution resulting from the “zig-zag” at the inclusion boundary
by assuming strictly alternating configuration (see Fig. 21.12).

5. We assume that phase transformation occurs when the Gibbs-enthalpy is equal in
the transformed (Gm) and untransformed

(
G t

)
states, i.e.,

�G = Gm − G t = �Eel + �Ech + �Esur
!= 0, (21.5)

1If nothing else is specified, all tensor components in this work are referred to a coordinate system
with orthonormal basis (O, {e1, e2}), where e1 is aligned along the tetragonal c-axis.
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Fig. 21.12 Schematic illustration of the superposition scheme used to estimate the elastic energy
of a “twinned” inclusion

where �Eel is the difference in the elastic strain energy, �Ech is the difference
in the chemical part of the bulk enthalpy and �Esur is the difference in surface
energy.

21.3.1.2 Energetic Contributions

The difference in surface energies is readily obtained as

�Esur = 2(B + H)�βI/M + (2k − 1)B βI/I, (21.6)

where the first term is the contribution of the interface between inclusion and matrix
and the second term corresponds to the newly formed interfaces between differ-
ent monoclinic variants. Here βI/M is the difference in surface energies between a
tetragonal-cubic and amonoclinic-cubic interface andβI/I is the surface energy for an
interface between two different monoclinic variants. The difference in the chemical
bulk enthalpy is given by

�Ech = −BH�Ht→m T0 − T

T0
, (21.7)

where �Ht→m is the specific transformation heat and T0 is the equilibrium temper-
ature between the tetragonal and monoclinic phases.

In general, the elastic strain energy is given by

Eel = 1

2

∫



σ : εel dA. (21.8)

In the untransformed case only the homogeneous far-field stress σ∞ and the cor-
responding elastic strain ε∞

el = C
−1 : σ∞ with elastic stiffness tensor C are present,

i.e.,
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E t
el = 1

2

∫



σ∞ : ε∞
el dA = 1

2
σ∞ : ε∞

el

∫



dA. (21.9)

This energy is unbounded if the domain
 is infinite. After t → m transformation
and self-accommodation, additional elastic strains due to transformation εt→m

el and
the formation of the lamellar structure εtw

el are introduced, i.e.,

εel = ε∞
el + εt→m

el + εtw
el . (21.10)

The corresponding stress is

σ = σ∞ + σ t→m + σ tw (21.11)

and the energy difference between the transformed and untransformed states is imme-
diately found to be

�Eel = Em
el − E t

el = 1

2

∫



[(
σ∞ + σ t→m + σ tw

) : (
ε∞
el + εt→m

el + εtw
el

)

−σ∞ : ε∞
el

]
dA. (21.12)

Note that this difference is bounded, since the contribution of the homogeneous
far-field stress cancels out and we find

�Eel = σ∞ :
∫



εt→m
el dA

︸ ︷︷ ︸
�E t→m,1

el

+ σ∞ :
∫



εtw
el dA

︸ ︷︷ ︸
�E tw,1

el

+ 1

2

∫



σ t→m : εt→m
el dA

︸ ︷︷ ︸
�E t→m,2

el

+

+
∫



σ t→m : εtw
el dA

︸ ︷︷ ︸
�E t→tw

el

+ 1

2

∫



σ tw : εtw
el dA

︸ ︷︷ ︸
�E tw,2

el

. (21.13)

The evalution of the individual integrals is closely related to the procedure pre-
sented in [6], which in turn is based on the closed form solution for rectangular
inclusions with eigenstrains [28].

It can be shown [6] that as a particular result of assuming equal-size monoclinic
lamellae, �E tw,1

el = �E t→tw
el = 0, while �E tw,2

el can be obtained in the form

�E tw,2
el = −B2 E ˜̃ε212

4πk2(1 − ν2)

k∑
ζ=1

k∑
η=1

11∑
i=1

gi (ζ, η, α, k)

︸ ︷︷ ︸
F(α,k)

, (21.14)
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where the gi (ζ, η) are functions of the geometry of the inclusion and number of
lamellae, which are listed in the appendix of [6]. In order to evaluate �E t→m,1

el we
make use of the fact that in the domain of the inclusion 
I the elastic strain due to
phase transformation can be computed as

εt→m
el = εt→m − ε̃(k) (21.15)

and can write

�Et→m,1
el = σ∞ :

∫



εt→m dA − σ∞ : ε̃(k)
∫

I

dA (21.16)

= σ∞ :
∫



εt→m dA − σ∞ : ε̃(k) BH. (21.17)

Introducing the usual split into volumetric and deviatoric parts

σ∞ = s∞ − p∞ I, εt→m = et→m + 1

3
εt→m
vol I, ε̃(k) = ẽ(k) + 1

3
ε̃

(k)
vol I, (21.18)

where I is the unit-tensor, and making use of working Assumption 3 we find

�Et→m,1
el = s∞ :

∫



et→m dA − p∞ :
∫



εt→m
vol dA +

(
p∞ ε̃

(k)
vol − s∞ : ẽ(k)

)
BH

(21.19)

= s∞ :
∫



et→m dA − p∞ :
∫



εt→m
vol dA +

(
p∞ ε̃

(k)
vol − 2σ∞

12 ε̃
(k)
12

)
BH.

(21.20)

The evaluation of the above integrals is more involved than may appear at the first
glance, since the integrands are singular at every kink at the boundary of the inclusion,
therefore integration is carried out using the same procedure that was applied in [6]
by a transformation into equivalent line integrals

�Et→m,1
el = σ∞

12 lim
r→∞

2π∫
0

[u1r sin(ϕ) + u2r cos(ϕ)] dϕ

− p∞ lim
r→∞

2π∫
0

[u1r cos(ϕ) + u2r sin(ϕ)] dϕ +
(
p∞ ε̃

(k)
vol − 2σ∞

12 ε̃
(k)
12

)
BH,

(21.21)
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resulting in the relatively simple expression

�Et→m,1
el = BH

2 (1 − ν)

[
(1 − 2ν) p∞ε̃

(k)
vol − σ∞

12 ε̃
(k)
12

]
, (21.22)

where ν is Poisson’s ratio. For further details on the integration procedure, cf. [6].
The remaining energy difference �Et→m,2

el is calculated using a very similar proce-
dure, resulting in

�Et→m,2
el = μ

1 − ν
BH

[
P1

(
ε̃

(k)
12

)2 + 2

9

1 − ν + P2
1 − 2ν

(
ε̃

(k)
vol

)2
]

, (21.23)

with

P1 = 1

π

[
1

α
ln

(
1 + α2

) + α ln

(
1 + 1

α2

)]
, (21.24a)

P2 = 1

π

[
arctan

(
1

α

)
− arctan(α)

]
. (21.24b)

Using a basis-free representation of the stress tensor we finally find

�Eel = BH

2 (1 − ν)

[
(1 − 2ν) p∞ε̃

(k)
vol −

(
e1 · σ∞ · e2

)
ε̃

(k)
12

]
+

+ μ

1 − ν
BH

[
P1

(
ε̃

(k)
12

)2 + 2

9

1 − ν + P2
1 − 2ν

(
ε̃

(k)
vol

)2
]

. (21.25)

21.3.1.3 The Transformation Criterion

Substituting the energy differences computed in the previous section into the trans-
formation criterion (21.5) we find

1 − ν

αB2μ
�G

(
σ∞, T, k

) = 1

2μ

[
(1 − 2ν) p∞ε̃vol −

(
e1 · σ∞ · e2

)
ε̃

(k)
12

]
+

+ P1
(
ε̃

(k)
12

)2 + 2

9

1 − ν + P2
1 − 2ν

ε̃2vol −
1

2πk2α
˜̃ε212F(α, k)

− �H t→m T0 − T

T0

+ 1 − ν

μα

[
2

B
(α + 1)�βI/M + 1

B
(2k − 1) βI/I

]
!= 0,

(21.26)

Note that (21.26) is not an equation that can be solved directly for the stress (at
fixed temperature) or temperature (at fixed stress level) required to initiate the phase
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transformation, since nearly all terms depend on the number of lamellae 2k. This
ambiguity is resolved by choosing the number of lamellae such that it minimizes the
Gibbs free enthalpy in the transformed state, i.e.,

k̂ = argmink∈N+ �G
(
σ∞, T, k

)
. (21.27)

Having thus determined a value for k, (21.26) can be rewritten e.g. as a criterion
for the applied far-field stress at fixed temperature,

∣∣e1 · σ∞ · e2
∣∣ − (1 − 2ν)

ε̃vol∣∣∣∣∣ε̃
(
k̂
)

12

∣∣∣∣∣
p∞ != C1, (21.28)

with

C1 := 1∣∣∣∣∣ε̃
(
k̂
)

12

∣∣∣∣∣

(
2μP1

(
ε̃

(k)
12

)2 + 4μ

9

1 − ν + P2
1 − 2ν

ε̃2vol −
μ

πk2α
ε̃212F(α, k)

−2μ�Ht→m T0 − T

T0
+ 2(1 − ν)

αB

[
2 (α + 1) �βI/M + (2k − 1) βI/I

])
.

(21.29)

For future reference we note that in the present scenario the far-field stress is at
the same time the average stress over the whole domain 〈σ 〉 and the average matrix
stress 〈σ 〉
M. Since in a general setting the inclusion will transform depending on the
stress in the surrounding matrix, we can reinterpret the criterion (21.28) and write

|e1 · 〈σ 〉
M · e2| − (1 − 2ν)
ε̃vol∣∣∣∣∣ε̃
(
k̂
)

12

∣∣∣∣∣
〈p〉
M

!= C1. (21.30)

21.3.2 Uniaxial Loading

In this section we apply the transformation criterion to uniaxial loading conditions
in order to investigate the tension-compression asymmetry predicted by the model
as well as geometric effects.
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21.3.2.1 Orientation Dependence of the Transformation Stress

In the case of uniaxial loading, i.e., σ∞ = σ̄∞
11 ē1 ⊗ ē1, we find

e1 · σ∞ · e2 = σ̄∞
11 (e1 · ē1)(ē1 · e2) = 1

2
σ̄11 sin(2ϕ) and p∞ = −1

3
σ̄11,

(21.31)

where ϕ is the angle enclosed between the crystallographic a-axis and the direction
of loading. The transformation criterion (21.28) reduces to

∣∣σ̄∞
11

∣∣ = C1

1
2 sin(2ϕ) ± 1

3
(1 − 2ν)

ε̃vol∣∣∣∣∣ε̃
(
k̂
)

12

∣∣∣∣∣︸ ︷︷ ︸
=:C2

=: σtr, (21.32)

where the positive sign holds for tensile and the negative for compressive loading.
Es expected, the stress required to initiate phase transformation strongly depends
on the orientation of the inclusion relative to the applied load and is minimal if the
tetragonal c-axis is aligned along the direction of maximum shear (see Fig. 21.13).
Due to the increase in volume during the phase transition an asymmetry between
tensile and compressive loading is observed. Further, it is clear from Fig. 21.13 that,
while under sufficiently large tensile loading all inclusions will transform, this is
not true in compression. In that case no transformation will occur if the misalign-
ment between the tetragonal a-axis and the loading direction is less than ϕlim ≈ 8◦.
As a consequence, the maximal achievable transformation strain in a texture-free
polycrystal is larger under tensile loading.

21.3.2.2 Sensitivity with Respect to the Inclusion Size, Aspect Ratio and
Interfacial Energy

Is is clear that the critical stress to initiate phase transformation depends not only
on the orientation of the inclusion relative to the applied load as discussed above,
but among other parameters also on its geometry and assumptions concerning the
interface energy between monoclinic lamellae. The effect of these parameters is
investigated here under unaxial compression for a fixed orientation ϕ = 45◦ by vary-
ing the values given in Table21.4 in the range of ±10%. The results are shown in
Figs. 21.14, 21.15 and 21.16 and concur to the expectations: The transformation
stress decreases with increasing size B and aspect ratio α of the inclusions and
increases with increasing surface energy βI/I.

The sensitivity to the inclusion size and shape is particularly pronounced; for
α = 5 a change in B from 29 to 24nm results in a change in transformation stress
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of 250% in relative terms (see Fig. 21.14). A similar effect is achieved by changing
the aspect ratio from 6 to 4 (see Fig. 21.15). Further, it should be noted that the
transformation stress abruptly changes at certain values of B. This effect is due to
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Fig. 21.13 Absolute value of the uniaxial stress necessary to induce phase transformation in depen-
dence on the grain orientation ϕ with respect to the direction of external loading

Table 21.4 Baseline for the material parameters

B α E v βI/I �βI/M �Ht→m T0 T

36 nm 5.0 181 GPa 0.3 0.39 J/m2 [25] 0.79 J/m2 [25] 282 J/m3 [29] 1150 K [30, 31] 22 K
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Fig. 21.14 Influence of the inclusion size B on the transformation stress under uniaxial compression
for inclusions oriented under θ = 45◦ with respect to the direction of external loading
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Fig. 21.15 Influence of the inclusion aspect ratio α on the transformation stress under uniaxial
tension and compression for inclusions oriented under θ = 45◦ with respect to the direction of
external loading
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Fig. 21.16 Influence of the surface energy βI/I between different monoclinic variants on the trans-
formation stress under uniaxial tension and compression for inclusions oriented under θ = 45◦ with
respect to the direction of external loading

the discrete nature of the optimization problem (21.27) and a direct consequence
of our assumptions concerning the post-transformation microstructure; every jump
of the transformation stress corresponds to a change in number of lamellae k and
therefore to a change in microstructure.
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21.4 Homogenization Within an Infinite Grain

The transformation criterion developed in the previous section can be used to describe
the effective mechanical response of a PSZ grain with a volume fraction ft of tetrag-
onal inclusions, i.e. to relate the average stress 〈σ 〉 = σ∞ and the average strain 〈ε〉
via an effective elastic stiffness tensor 〈C〉 (〈σ 〉BM

, T
)
in the form

˙〈σ 〉 = 〈C〉 (〈σ 〉BM
, T

) : ˙〈ε〉, (21.33)

where 〈σ 〉BM
is the average matrix stress, which accounts for the interaction between

the inclusions in accordance with Mori-Tanaka’s method. In the case of mono-
dispersed inclusions of size B̂ the average matrix stress is given directly by [32]

〈σ 〉BM
= σ∞ − fm

(〈σ 〉BM
, T

)
C

M : (S − I) : ε̃(k)
(
〈σ 〉BM

, T, B̂
)

, (21.34)

withmonoclinic volume fraction fm
(〈σ 〉BM

, T
)
, elastic stiffness of thematrixCM =

C and Eshelby tensor S. Together with the transformation criterion (21.30) this
equation can be used to determine the transformation strain in the inclusions, the
average matrix stress and the monoclinic phase content. As the volume expansion
during t → m transformation increases the tensile stresses in the matrix, which in
turn facilitate the transformation, fm

(〈σ 〉BM
, T

) = ft immediately after the onset
of the transformation and the process is autocatalytic. The corresponding effective
elastic stiffness tensor is [33]

〈C〉
(
〈σ 〉BM

, T, B̂
)

= C
M + fm

(〈σ 〉BM
, T

) [
C

I
(
ε̃(k)

(
〈σ 〉BM

, T, B̂
))

− C
M

]
:

: {T} : [(
1 − fm

(〈σ 〉BM
, T

) )
I + fm

(〈σ 〉BM
, T

) {T}]−1
,

(21.35)

where I is the 4th-order identity, CI
(
ε̃(k)

(
〈σ 〉BM

, T, B̂
))

the elastic (tangent) stiff-

ness of the inclusions,

T

(
ε̃(k) (〈σ 〉BM

, T, B
))

:=
[
I + S : (

C
M

)−1

:
[
C

I
(
ε̃(k) (〈σ 〉BM

, T, B
))

− C
M

] ]−1
(21.36)

and {·} denotes the orientation average. It is well known [18] that there exists an
orientation relationship between the tetragonal inclusions and the cubic parent lattice
such that the principal directions of the unit cells coincide, i.e., in a two dimensional
scenario two families of inclusions (denoted by subscripts → and ↑) with mutually
orthogonal c-axes exist in each grain. As a consequence, we find
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{T} = 1

2

(
T

→ + T
↑)

. (21.37)

Choosing an orthonormal basis such that e1 is aligned along the c-axis of inclusion
family →, we find the following non-vanishing components of the Eshelby tensors
S

→ and S
↑

S→
1111 = 1

2
[P1 − (2P2 + P3)] , S→

1122 = −1

2
[P1 + (2P2 + P3)] , (21.38a)

S→
2211 = −1

2
[P1 − (2P2 + P3)] , S→

2222 = 1

2
[P1 + (2P2 + P3)] , (21.38b)

S→
1212 = 1

2
P1, S↑

1111 = 1

2
[P1 + (2P2 + P3)] , (21.38c)

S↑
1122 = −1

2
[P1 − (2P2 + P3)] , S↑

2211 = −1

2
[P1 + (2P2 + P3)] , (21.38d)

S↑
2222 = 1

2
[P1 − (2P2 + P3)] , S↑

1212 = 1

2
P1, (21.38e)

with P1, P2 defined in (21.24) and

P3 = 1

π

[
1

α
ln

(
1 + α2

) − α ln

(
1 + 1

α2

)]
. (21.39)

Prior to the t → m transformation CI = C with bulk modulus K and shear mod-
ulus μ. To complete the formulation, assumptions concerning post-transformation
behavior of CI are required, specifically

1. the elastic properties of the monoclinic and tetragonal phase are identical,

2. as long as
∣∣∣ε̃(k)

12

∣∣∣ < ˜̃ε12, the inclusions have no resistance to shear parallel to the

c-axis, i.e. in the e1 ⊗ e2-direction.

As a consequence we can write the (tangent) elastic stiffness of the inclusion in Voigt
notation referring to the usual crystallographic coordinate system as

C
I =

⎡
⎢⎣
C I
1111 C

I
1122 0

C I
1122 C

I
1111 0

0 0 C I
1212

(
ε̃(k)( 〈σ 〉BM

, T, B
))

⎤
⎥⎦

ei⊗e j⊗ek⊗el

(21.40)

with

C I
1111 = K + 4

3
μ, C I

1122 = K − 2

3
μ,

and
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C I
1212

(
ε̃(k)( 〈σ 〉BM

, T, B
))

=
{

μ

∣∣∣ε̃(k)
12

( 〈σ 〉BM
, T, B

)∣∣∣ = ˜̃ε12,
0 else.

(21.41)

Under these assumptions we obtain from (21.35)

1. before the onset of transformation ( fm
(〈σ 〉BM

, T
) = 0)

〈C〉
(
〈σ 〉BM

, T, B̂
)

= C, (21.42)

2. after the onset of transformation ( fm
(〈σ 〉BM

, T
) = ft)

〈C〉
(
〈σ 〉BM

, T, B̂
)

=⎡
⎣K + [

4
3 − Z1 (ϕ, ft)

]
μ K − [

2
3 − Z1 (ϕ, ft)

]
μ 0

K − [
2
3 − Z1 (ϕ, ft)

]
μ K + [

4
3 − Z1 (ϕ, ft)

]
μ 0

0 0 [1 − Z2 (ϕ, ft)]μ

⎤
⎦ ,

(21.43)

where

Z1 (ϕ, ft) := Z ( ft) sin
2(2ϕ), Z ( ft) cos

2(2ϕ), (21.44)

Z2 (ϕ, ft) := Z ( ft) = ft
1 − [1 − ft] P1

, cosϕ = e1 · ē1 (21.45)

3. after the transformation shear reaches its maximum value ˜̃ε12,

〈C〉
(
〈σ 〉BM

, T, B̂
)

= C. (21.46)

21.5 Continuum Mechanics Approach

A pragmatic engineering approach to phase transition is a phenomenological model-
ing based on non-linear constitutive laws in the framework of continuummechanics.
The fundamentals are outlined e.g. in [34]. In particular for partially stabilized zir-
conia (PSZ), such a model was developed by Sun et al. [29]. Based on the concept
of representative volume element (RVE) and the Hill-Rice internal variable theory
[35], this model provides a set of constitutive equations for the inelastic deforma-
tions caused by tetragonal-monoclinic t → m phase transformation as function of
monoclinic volume fraction. The model is restricted to a material point only. The
authors of [29] did not realize an implementation of their model into a numerical
tool to solve a boundary value problem for applications to real structures of PSZ.
Therefore, in the present work, the Sun model was implemented into the finite ele-
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ment code ABAQUS [36] to allow simulations of the TRIP-matrix composite as will
be reported in Chap.22.

Due to missing quantitative data for the model parameters Sun et al. [29] intro-
duced instead of this an additional hardening term in the transformation condition,
which is limited to the special case of proportional mechanical loading under isother-
mal conditions. Another weakness of this model is the assumption and averaging
of homogeneously distributed microscopic quantities over the RVE. Therefore, in
Mehlhorn et al. [37] the basic concept of the Sun model has been extended to capture
not only the mechanical but as well the thermally induced phase transformation and
thermal expansion to simulate thermomechanical processes. Moreover, the influence
of the size of transformable tetragonal particles in the cubic matrix has been incor-
porated. The basic assumptions and the specific formulation of the model within a
thermodynamic framework will be presented in the following.

21.5.1 Constitutive Model for Phase Transformation in PSZ

21.5.1.1 Homogenization of PSZ Material

Tofind the effectivematerial behavior, aRVE is consideredwith two spatially discrete
components, see Fig. 21.17. The first component, calledmatrix, contains two crystal-
lographic phases: the untransformable cubic zirconia and transformable, tetragonal
particles embedded in the cubic phase. The second component, denoted as inclusions,
contains monoclinic zirconia particles, which are generated by phase transformation
from their metastable tetragonal parents when the RVE is sufficiently high loaded.

Themicro-scale field quantities inside theRVEare denotedwith lower case letters,
such as the stress σ and the strain ε. By calculating the volume average of these
microscopic quantities (denoted by the operator 〈 · 〉), the respective macroscopic
quantities are found, which are referred to with upper case letters � and E. The

Fig. 21.17 Representative
volume element of PSZ:
matrix of cubic and
tetragonal phase, inclusions
of monoclinic particles

pl, , ,Tσ ε ε

, , Tσ ε
ΣΣ,Ε,Τ

http://dx.doi.org/10.1007/978-3-030-42603-3_22
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temperature T is assumed to be homogeneously distributed in the RVE. We denote
the RVE domain withBR , the matrix and inclusion subdomains withBM andBI , and
their volumes with VR , VM and VI , respectively. Thus, the relative volume fraction
of transformed material is the basic internal variable calculated by

fm = VI /VR . (21.47)

The macroscopic stress tensor is obtained by volume averaging as

� = 〈σ 〉BR
= 1

VR

∫
BR

σ dV = fm 〈σ 〉BI
+ (1 − fm) 〈σ 〉BM

. (21.48)

The strain tensors can be decomposed into an elastic and plastic part E = Eel +
Epl and ε = εel + εpl, respectively. Using Hooke’s law, the stress-strain relation for
the RVE is determined by the elastic stiffness tensor C

Eel = C
−1 :� = C

−1 : 〈σ 〉BR
= 〈

C
−1 :σ 〉

BR
= 〈ε〉BR

. (21.49)

The transformation strains exist only in the monoclinic inclusions and consist
of a volumetric (dilatational) and a shear (deviatoric) component. This results in a
macroscopic strain tensor

Epl = Epd + Eps = fm
〈
εpd

〉
BI

+ fm
〈
εps

〉
BI

. (21.50)

The microscopic volume dilatation εpd is assumed to be stress independent and
constant (I denotes the rank-two unit tensor).

εpd = 〈
εpd

〉
BI

= 1

3
tr(εpl)I, (21.51)

The shear component of the transformation strain εps, when averaged over a mon-
oclinic volume element dBI , is proportionally related to the deviatoric stress sM

acting in the matrix material as follows

εps = 〈
εps

〉
dBI

= A
sM

σ M
eq

(21.52)

with the equivalent v.-Mises matrix stress σ M
eq . The constant material parameter A

describes the strength of the constraint imposed on the transformedmonoclinic inclu-
sions by the surrounding elastic matrix. The matrix stress σ M is related to the macro-
scopic stress � acting on the RVE, via the elastic stiffness C and the amount fm of
transformed phase, and can be calculated by an Eshelby approach (see e.g. [38]) and
the Mori-Tanaka homogenization scheme.
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In addition, we consider a thermal expansion strain Eth of the RVE, whereby
�T = T − T0 denotes the difference between the temperature T at a specific process
time and the initial or reference temperature T0. The thermal expansion tensor α is
taken as constant.

Eth = α�T . (21.53)

21.5.1.2 Thermodynamic State Potentials

According to the thermodynamical framework of material modeling (see e.g. [39]),
the constitutive equations of an elastic-plastic material can be derived from energy
potential functions. The thermodynamical state of the RVE can be defined by the
specificHelmholtz free energyϕR , which is a function of the strain E, the temperature
T and the actual state of inelastic deformation represented by the monoclinic volume
fraction fm and the transformation strain 〈εps〉BI

.

ϕR = ϕR

(
E, T, fm,

〈
εps

〉
BI

)
. (21.54)

The Helmholtz free energy ϕR of PSZ consists of three components: the stored
elastic energy ϕel

R , the change in chemical free energy �ϕch
R and the surface free

energy �ϕsur
R

ϕR = ϕel
R + �ϕch

R + �ϕsur
R . (21.55)

The stored elastic energy ϕel
R is composed of two contributions: (i) the energy

stored due to the elastic deformation, which is the total strain minus transformation
and thermal strain terms Eel = E − Epl − Eth, and (ii) the elastic energy stored due
to the internal stresses which are induced by the transformational eigenstrains ε pl .
Substituting the according expressions from (21.50) and (21.53), we get

ϕel
R

(
E, T, fm,

〈
εpl

〉
BI

)
= 1

2

(
E − fm

〈
εpl

〉
BI

− α�T

)
:C :

(
E − fm

〈
εpl

〉
BI

− α�T

)

− fm
2VR

∫
BR

σ :ε pl dV . (21.56)

A detailed derivation of the last term in the above equation is given in [40].
Given the difference of volume specific chemical free energy �ϕch(t→m) between

tetragonal and monoclinic phases of zirconia, the chemical free energy of the RVE
�ϕch

R is changed during phase transformation by

�ϕch
R (T, fm) = fm �ϕch (T ) = fm q

(
T

T ∗ − 1

)
. (21.57)
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In the present extension of the Sun model a temperature dependence of the phase
transformation is incorporated by specifying �ϕch(T ) as a function of the tempera-
ture, where q is the volume specific heat of transformation of zirconia and T ∗ is the
tetragonal-monoclinic equilibrium temperature of zirconia.

Due to phase transformation the interface between particles and matrix exhibits a
surface free energy�ϕsur

R . This energy term per volume of the RVE is calculated from
the change of specific surface free energy �ϕsur(t→m) of zirconia and the monoclinic
volume fraction fm as follows

�ϕsur
R ( fm) = 3 fm

r( fm)
�ϕsur(t→m). (21.58)

In the original work [29] all transformable inclusions are assumed as spheres
of equal size of radius r( fm) = const. However, the phase stability of a particle
depends on its size as shown by Garvie [25], i.e. that smaller crystallites require a
higher thermodynamical driving force to transform than larger particles. Therefore,
Mehlhorn et al. [37] introduced a more realistic approach by assuming a continuous
size distribution of transformable particles in the model. As a first approximation,
this distribution function h(r) may be chosen as constant in the

h(r) =
{ 1

rmax−rmin
for rmin ≤ r ≤ rmax

0 for r < rmin or r > rmax.
(21.59)

During loading, the phase transformation starts at largest particles with radius
rmax. A further increase in loading will trigger smaller particles to transform until all
particles down to the radius rmin have become monoclinic. In the intermediate stage,
the volume of all transformed particles, whose size is in the interval [r, rmax], is

V (r) = 4

3
π

rmax∫
r

h(r̄)r̄3 dr̄ , fm(r) = V (r)

VR
. (21.60)

constituting a corresponding volume fraction fm(r) in the RVE. The maximum vol-
ume fraction is attained when all particles are monoclinic f max

m = fm(rmin). Inserting
(21.59) in (21.60) leads to

fm(r) = 1 − (r/rmax)
4

1 − (rmin/rmax)4
f max
m . (21.61)

The inverse f −1
m (r) = r( fm) can be calculated analytically as follows

r ( fm) = rmax

[
1 − (

1 − (rmin/rmax)
4
) fm
f max
m

] 1
4

, (21.62)

which marks the particle size dependent change in surface energy in (21.58).
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By introducing a second thermodynamic dissipation function, an energetic trans-
formation criterion was derived [29], which represents a combination of an isotropic
expanding and kinematic shifting limit surface in the macroscopic stress space

F
(
�, fm,

〈
εpl

〉
BI

)
=

(
� − fm C :(� − I) : 〈εpl〉BI

)
: 〈εpl〉dBI

− C( fm) = 0.

(21.63)

Hereby, the average matrix eigenstress− fm C :(� − I) : 〈εpl〉BI
acts as backstress.

(� is the so-called Eshelby tensor and I denotes the rank-four unity tensor.) The term
C( fm) represents the energetic barrier, which must be overcome for phase transfor-
mation. It contains energy constants as well as a phenomenological hardening func-
tion depending linearly on fm. Finally, the macroscopic constitutive law is obtained
as relationship between the rates of strain and stress

Ė = C
−1 :�̇ + ḟm

(
εpd I + A

sM

σ M
eq

)
, (21.64)

wherein the first term represents the elastic behavior and the second the inelastic
deformation due to phase transformation. The general form resembles to a rate-
independent associated flow. The rate of phase change ḟm is obtained from the con-
sistency condition Ḟ = 0.

This constitutive relationship is conformal with the second law of thermody-
namics, demanding that the dissipation rate D is always positive. Obviously, the
dissipation rate is proportional to the change in volume fraction of the monoclinic
phase

D =
{
D0 ḟm ḟm > 0 (tetragonal-to-monoclinic)

−D0 ḟm ḟm < 0 (monoclinic-to-tetragonal)
(21.65)

The proportionality factor D0 is a phenomenological model parameter. The
model accounts for both forward and reverse phase transformation by distinguish-
ing between positive and negative rates of change. Also, the expression of C differs
depending on whether forward or reverse transformation occurs.

21.5.2 Numerical Results

21.5.2.1 Particle Size Dependent Surface Energy Change

In order to understand, how the radius r of the currently active transforming particles
varies with the monoclinic volume fraction fm during the process of phase transfor-
mation, (21.62) is studied for three different size distribution functions hi (rmin,i, rmax)

with i = 1, 2, 3. For the upper limit of the particle size range a typical PSZ particle
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Fig. 21.18 Graphical
representation of the
function r( fm) in (21.62) for
different particle size ratios
and f max

m = 0.25 [37]

Fig. 21.19 Graphical
representation of surface
energy �ϕsur

R in (21.58) for
different particle size ratios
[37]

radius of rmax = 1 · 10−7 m is chosen. The values of rmin are taken as following frac-
tions: rmin,1/rmax = 0.95, rmin,2/rmax = 0.5, and rmin,3/rmax = 0.25. Figure21.18
gives a graphical representation of (21.62), using these values. It is obvious that
a narrow size distribution (as rmin/rmax = 0.95) is very close to a constant particle
size of the original Sun model, resulting in a slight dependence of the radius r on the
transformed volume fraction fm. The wider the distribution function h( fm) is (i.e.
with smaller particle size ratios rmin/rmax), the stronger is the nonlinear dependence
of r on fm.

The influence of r( f ) on the volume specific surface energy change �ϕsur
R

(21.58) is illustrated in Fig. 21.19. For a narrow particle size distribution with ratio
rmin/rmax = 0.95, the surface energy change�ϕsur

R grows almost linear with fm sim-
ilar as in the original Sun model. For smaller ratios rmin/rmax, the extended material
model shows a strong nonlinear increase of �ϕsur

R , especially if fm → f max
m , as it

can be seen for rmin/rmax = 0.25 in Fig. 21.19. This means, �ϕsur
R acts as a transfor-

mation barrier, preventing very small particles from transforming even under high
thermal or mechanical loading.
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Fig. 21.20 Calculated strain-temperature curves and corresponding phase development for differ-
ent particle size ratios. The sequence of the cooling-heating cycle is visualized by the numbers
1, …, 6 [37]
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21.5.2.2 Temperature-Induced Phase Transformation

In order to demonstrate the ability of the extended material model to reproduce
the hysteresis strain-temperature behavior of PSZ ceramics, a cooling-heating cycle
1373K – 293K – 1373K is numerically simulated. The required model parame-
ters associated with the changes in chemical energy (q and T ∗, see (21.57)), are
taken from literature: heat of transformation q = 2.82 J/m3 and the phase equilib-
rium temperature T ∗ = 1447K. The difference in specific surface energies between
the tetragonal and monoclinic phase was set to �ϕsur(t→m) = 0.36 J/m2, see [37].
Since no values for the dissipation parameter D0 and the amount of transformable
tetragonal material f max

m were available, they were estimated in order to obtain phys-
ically meaningful results. Moreover, a variation of these parameters is performed to
study their influence on the material model behavior. D0 was specified to the val-
ues 10, 20, and 30MPa. f max

m was set to 0.15, 0.25 and 0.35, respectively. For all
remaining model parameters the values published by Sun et al. [29] are used.

Figure21.20 shows the numerically obtained strain-temperature curves E11 − T
and the corresponding phase evolution fm–T during the cooling-heating cycle for
different sets of model parameters. As it can be seen, the typical strain hysteresis
loops of PSZ ceramics are predicted by the material model, caused by a tetragonal-
to-monoclinic transformation on cooling and a reverse transformation on heating.
In each diagram, the influence of particle size distribution is included by vary-
ing the ratio (rmin,i, rmax). It can be seen in all diagrams, that smaller size ratios
lead to a considerably nonlinear strain-temperature behavior and rounded transition
curves. The influence of D0 on the strain-temperature curves can be observed in
Fig. 21.20a–d. D0 governs the size of the strain hysteresis between cooling and heat-
ing. In contrast, f max

m influences the total transformation strain and hence the length
of the temperature interval in which transformation occurs, see Fig. 21.20e–h.

These results demonstrate the feasibility of the extended material model, which
forms a solid basis for simulations of structures and composites made of PSZ. Unfor-
tunately, it was not possible to identify the required parameters for the type of MgO-
stabilized ZrO2 manufactured in the CRC799.

21.6 Simulations of ZrO2-Particle Reinforced TRIP-Steel
Composite

In order to assist the development of particle reinforced composites manufactured
by a powder metallurgical process route from TRIP-steel and partially stabilized
ZrO2 ceramics particles, accompanying numerical simulations have been carried out.
The mechanical properties of such a composite material are quite complex as they
arise from the properties of its individual components, their volume content, and the
properties of the interface between them. As explained in the previous sections, PSZ
can undergo a stress-triggered phase transformation. This can lead to an additional
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toughening effect compared to non-transformable ceramics as observed in [41]. The
TRIP-steel exhibits a deformation induced phase transformation from the austenitic
parent phase to martensite. By combining the two materials using TRIP steel as
matrix and PSZ as strengthening particles, an elasto-viscoplastic particle-reinforced
composite is created with the capability of phase transformation in each component.

21.6.1 Unit Cell Model of the Composite

A well established method to investigate the mechanical response of composites is
a parameter study using a suitable mechanical cell model of the composite, which is
simulated by means of the finite element method, see for exampleMishnaevsky [42].

In this work, this approach has been applied to study the effective stress-strain
behavior of this particulate TRIP steel-ZrO2 composite. Details can be found in
the publications of Mehlhorn, Prüger et al. [43–45]. The influence of the volume
content of ZrO2 particles and the interface properties on the overall response of the
composite is investigated. Three different interface types are considered: (i) perfectly
bonded, (ii) not bonded, and (iii) cohesive law, respectively, The calculations of the
material responses are performed using a finite element analysis of unit cells of the
composites under tensile, compressive and biaxial loading. Here, selected results
will be reported.

Numerical simulations of composites require proper constitutive equations for
both constituents. Here, the Sun model [29] as explained above is employed for
the PSZ ceramics. For modeling the viscoplastic deformation and martensitic phase
transformation of the TRIP steel, the constitutive law developed by Prüger [46]
is applied. It describes the strain-induced transformation from a fully austenitic
microstructure (γ ) to martensite (α′) under thermal and/or mechanical loading. Both
material models were available as Fortran routines implemented via UMAT inter-
face into the finite element software ABAQUS [47]. More information about the
used material parameters for the PSZ and the specific TRIP-steel can be found in
[43–45], and in Chap.22.

In case of the particular composite, sintered together from steel and ceramic parti-
cles, one can assume a representative unit cell consisting of a large number of approx-
imately equally sized and uniformly distributed ceramic particles in a TRIP steel
matrix. For simplicity, the embedded ceramic particles are assumed to be spheres.
This leads to the unit cellmodel shown in Fig. 21.21,which is a cube of edge length 2a
with a single spherical ZrO2 particle placed in its center.

The mechanical model exhibits a triple symmetry with respect to geometry and
loading. Therefore the use of one-eighth of the RVE is admissible, and a corre-
sponding FEM discretization is elaborated. Although the unit cell was numerically
simulated under various stress triaxialities, only the results for uniaxial loading are
reported here. Regarding the interface between the components, two limiting cases
are discussed here: the perfectly bonded connection and the non-bonded, frictionless
movable contact. An optimal composite possesses a high energy absorption capacity

http://dx.doi.org/10.1007/978-3-030-42603-3_22
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Fig. 21.21 Sketch of unit cell (one-eighth volume) for theTRIP-ZrO2 composite. Symmetry bound-
ary conditions are set on the coordinate planes x = 0, y = 0 and z = 0. Appropriate displacement
and stress boundary conditions are prescribed on opposite planes ∂Bx , ∂By and ∂Bz for the different
load cases.
The radius r of the particle is adjusted to the volume fraction f of zirconia content by f (r) =
Vsphere
Vcube

= πr3

6a3

and exhibits pronounced phase transformation in the ZrO2 ceramic and the TRIP
steel. The macroscopic true stress and true strain tensors � and E are used in order

to evaluate the mechanical work according to W = ∫ Ē
0 � : dE, where Ē denotes

the considered deformation stage. Because the elastic strains are small, W equals
approximately the energy absorption for sufficiently large total strains. In order to
quantify the relative change in energy absorption capacity, this energy is related to
those values Whom obtained for a unit cell made only of TRIP steel.

During deformation an inhomogeneous distribution of the volume fractions of the
monoclinic zirconia and the martensite develop in the ceramic and the TRIP steel,
respectively. Therefore the averages of fα′ and fm over the corresponding volumes
are used. The simulation is stopped, when the maximum principle stress in the PSZ
reaches its ultimate tensile strength σ t

cr = 1600MPa.

21.6.2 Results and Discussion

Themacroscopic true stress and true strain curves are calculated for different variants.
The following diagrams show the second invariants �eq and Eeq of both variables
(to allow comparison with different stress states). The macroscopic strain invariant
acts as a loading parameter, whereas the stress and the phase transformation in both
components of the composite represent thematerial response. Table21.5 summarizes
the relative change in energy absorption capability for uniaxial tension.



21 Multi-scale Modeling of Partially Stabilized Zirconia with Applications … 717

Table 21.5 Energy absorption capacity for the composite with perfectly bonded and non-cohesive
interface in uniaxial loading

f 0.05 0.05 0.10 0.10 0.20 0.20

Interface Bonded Non-cohesive Bonded Non-cohesive Bonded Non-cohesive

W/Whom 1.06 0.92 1.16 0.85 1.37 0.72

(a) (b)

Fig. 21.22 Numerical results for the RVE with perfectly bonded interface in uniaxial loading: a
stress-strain diagram and b phase development curves [43]

In case of the perfectly bonded interface, the stress-strain curves show a distinct
dependence on the volume fraction of ZrO2 ceramic f , as depicted in Fig. 21.22a.
It can be observed that an increasing f leads to higher yield stresses and strain
hardening rates compared to the unreinforced TRIP steel ( f = 0). As consequence,
a pronounced increase in the energy absorption W of the composite is obtained.
Comparing the values given in Table21.5, the ratio W/W hom increases up to more
than 35% (for same macroscopic equivalent strain). Due to the strong interface, load
is transferred from the matrix to the reinforcement during deformation of the com-
posite. Therefore high stresses occur in the ceramic, which reduces the maximal
attainable strain with increasing zirconia content f . Regarding the phase transfor-
mation behavior, a higher volume fraction of zirconia f enhances the tendency to
phase transformation in zirconia as well as in TRIP steel (Fig. 21.22b). The phase
transformation capacity in the PSZ component is saturated to the maximum of 35%
in a smaller strain interval. The tendency to phase transformation in the TRIP steel
f ′
α increases at higher zirconia content, but is limited due to failure of the ceramic.
In case of a non-cohesive interface, both the initial yield stress and the strain

hardening rate tend to decrease with higher zirconia content f , see Fig. 21.23a.
Figure21.23b shows that the development of martensite is considerably higher than
in the case of the perfectly bonded interface. At the end of deformation nearly 30%
of martensite has evolved. Because of the non-cohesive interface, no tensile stresses
are transferred from the TRIP steel matrix to the zirconia inclusion. Thus, no phase
transformation is seen in zirconia. Moreover, the area of the load bearing cross-
section consists of TRIP steel only and is the smaller the higher the zirconia content
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(a) (b)

Fig. 21.23 Numerical results for the RVEwith non-cohesive interface in uniaxial loading: a stress-
strain diagram and b phase development curves [43]

becomes, which reduces macroscopic yield stress. After debonding, the particle acts
partially like a void. However, no softening is observed in the macroscopic stress-
strain response because of the hardening behavior of the TRIP steel and the locking
effect caused by the particle.

One can conclude that the behavior of the real composite material lies between
the two extreme cases considered here, since the interface between ceramic and steel
has a finite strength. Moreover, the impact of particle reinforcement is stronger under
compressive loading [45].

21.7 Conclusions

Based on the work of Levitas and Preston [13] for generic martensitic transfor-
mation, a phase-field model for MgO-ZrO2 material was implemented [16]. The
potential function used in this work results in a proper representation of transfor-
mation behavior of zirconia ceramics from a pure thermodynamic stand point. In
the simulations different patterns of microstructures were found for cooling induced
and stress induced transformation. These patterns are consistent with experimental
observations byHannink et al. [18]. It is evident that the presence of an energy barrier
plays a key role in variant selection and the transformation path taken. By which,
in stress induced case a sequential growth of lamellae was visible. In contrast, the
cooling induced case is categorized with an almost homogeneous nucleation where
all variants are preferred to evolve. Additionally on a single crystal level the simu-
lations showed that, in the stress induced case, microstructure with junction planes
parallel to the ‘c’-axis is formed because of variant selection. It was shown that
residual stresses inside t-phase lentils from c → t transformation have a magnitude
of ≈0.3 GPa and contribute to the stability of the t-phase. Also the magnitude of
stress required for introducing energy barrier increases with decreasing temperature
below Ms .
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A mesomechanical, two-dimensional model for Mg-PSZ with an energetic trans-
formation criterion based on the analytical solution for a rectangular inclusion in an
infinite matrix has been successfully developed. Using this model the influence of
individual parameters such as size, geometry and surface energies on the transforma-
tion initiation and resulting microstructure can be efficiently studied. It predicts that
the stability of the tetragonal inclusions deteriorates as the inclusions grow in size
and aspect-ratio. Further, the tension-compression asymmetry of the transformation
behavior known from experiments is captured correctly. A homogenization approach
based on the Mori-Tanaka method predicts the transformation to be auto-catalytic
within a grain.

A continuum material model for transformation plasticity in partially stabilized
zirconia ceramics has been further developed to account for (i) particle size dependent
phase transformation behavior, (ii) temperature dependent phase transformation, and
(iii) thermoelastic deformation. These more physically based features lead to a non-
linear hardening behavior and smoothly rounded hysteresis curves for the strain and
the generated monoclinic phase fraction during a temperature cycle. The influence of
the tetragonal particle size distribution on phase transformation could be predicted
qualitatively quite well.

Finally, the mechanical properties of a TRIP steel matrix reinforced by ZrO2 par-
ticles are analyzed, taking the phase transformation in both constituents into account.
The influence of the volume content and the interface properties of ZrO2 particles
on the overall response of the composite is investigated. Material variants with three
different zirconia contents and two different interface types, perfectly bonded and
non-cohesive, respectively, are considered. The calculations of thematerial responses
are performed using a finite element analysis of representative volume elements of
the composites under tensile, compressive and biaxial loading. The results indicate
that the enrichment of the TRIP steel with zirconia particles leads to a significant
strengthening effect provided the interface has cohesive properties.
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