
Heuristics for Reversal Distance Between
Genomes with Duplicated Genes

Gabriel Siqueira1 , Klairton Lima Brito1(B) , Ulisses Dias2 ,
and Zanoni Dias1

1 Institute of Computing, University of Campinas, Campinas, Brazil
gabriel.siqueira@students.ic.unicamp.br,

{klairton,zanoni}@ic.unicamp.br
2 School of Technology, University of Campinas, Limeira, Brazil

ulisses@ft.unicamp.br

Abstract. In comparative genomics, one goal is to find similarities
between genomes of different organisms. Comparisons using genome fea-
tures like genes, gene order, and regulatory sequences are carried out
with this purpose in mind.

Genome rearrangements are mutational events that affect large exten-
sions of the genome. They are responsible for creating extant species with
conserved genes in different positions across genomes.

Close species—from an evolutionary point of view—tend to have the
same set of genes or share most of them. When we consider gene order
to compare two genomes, it is possible to use a parsimony criterion to
estimate how close the species are. We are interested in the shortest
sequence of genome rearrangements capable of transforming one genome
into the other, which is named rearrangement distance.

Reversal is one of the most studied genome rearrangements events.
This event acts in a segment of the genome, inverting the position and
possibly the orientation of genes in it.

When the genome has no gene repetition, a common approach is to
map it as a permutation such that each element represents a conserved
block.

When genomes have replicated genes, this mapping is usually per-
formed using strings. The number of replicas depends on the organisms
being compared, but in many scenarios, it tends to be small. In this work,
we study the reversal distance between genomes with duplicated genes
considering that the orientation of genes is unknown. We present three
heuristics that use techniques like genetic algorithms and local search.
We conduct experiments using a database of simulated genomes and
compared our results with other algorithms from the literature.

Keywords: Genome rearrangement · Reversal · Heuristics ·
Duplicated genes

c© Springer Nature Switzerland AG 2020
C. Mart́ın-Vide et al. (Eds.): AlCoB 2020, LNBI 12099, pp. 29–40, 2020.
https://doi.org/10.1007/978-3-030-42266-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42266-0_3&domain=pdf
http://orcid.org/0000-0001-5745-399X
http://orcid.org/0000-0001-5287-2925
http://orcid.org/0000-0002-4763-3046
http://orcid.org/0000-0003-3333-6822
https://doi.org/10.1007/978-3-030-42266-0_3

30 G. Siqueira et al.

1 Introduction

The question that naturally arises when comparing the genomes of two organ-
isms is how to estimate the sequence of mutational events that have occurred
during evolution to transform one genome into another, or at least estimate the
evolutionary distance between these genomes.

A way of estimating the evolutionary distance is to use a parsimony criterion
and to compute a minimum sequence of events that transforms one genome
into another. When large-scale mutational events are considered, the so-called
genome rearrangements, this distance is called rearrangement distance.

A genome can be represented in different ways [6]. When the genome is
treated as an ordered sequence of genes, it is possible to find scenarios where
certain genes have multiple copies. In this case, it is common to adopt a repre-
sentation in the form of a string, such that each character is associated with a
specific gene. If each gene occurs only once, we can associate an integer num-
ber for each one and the representation is given in the form of a permutation.
In both cases (string or permutation), if the orientation of the genes is known,
a positive or negative sign is assigned to each element and the representation
is called signed (signed string and signed permutation). Otherwise, the sign is
omitted and the representation is called unsigned (unsigned string and unsigned
permutation).

Reversal is a rearrangement event that breaks a chromosome at two locations
and reassembles the middle piece in the reversed order. Several rearrangement
problems considering only reversals were investigated over time [1–3,8,11]. When
representing genomes as permutations, the goal is to determine the minimum
number of reversals needed to sort any permutation.

In this case, we have the Sorting Signed Permutations by Reversals and
Sorting Unsigned Permutations by Reversals problems. The former is solvable
in polynomial time [8], whereas the latter is NP-hard [3]. The best algorithm for
the latter has an approximation factor of 1.375 [2].

In genomes with replicated genes, when we have the same number of replicas
of each gene in both genomes, the goal is to determine the minimum number of
reversals needed to transform one genome into another.

The Reversal Distance for Unsigned Strings problem is NP-hard even if we
consider a binary alphabet [5]. A binary alphabet means that all genes are repli-
cas of just two types, so the genome can be mapped using only two values (e.g.
{0,1}).

Unlike Sorting Signed Permutations by Reversals problem which has an exact
polynomial-time algorithm, the Reversal Distance for Signed Strings problem is
NP-hard [15]. Chen et al. [4] proved that Reversal Distance for Signed Strings
is NP-hard even if we consider the simplest case where at most two replicas
are allowed for each gene (duplicated genes). The authors also showed that the
Reversal Distance for Signed Strings and the Minimum Common String Parti-
tion (MCSP) problems are related. The Reversal Distance for Unsigned Strings
and Reverse MCSP [11] problems are also related. Based on this information,
an approximation algorithm for the Reversal Distance in Signed and Unsigned

Heuristics for Reversal Distance Between Genomes with Duplicated Genes 31

Strings problems were presented with a factor of Θ(k), where k represents the
maximum number of copies of a character in the strings given as input to the
algorithms [12].

In this paper, we investigate the Reversal Distance for Unsigned Strings
problem considering duplicated genes. We propose three heuristics based on
different techniques, and to verify the behavior of our heuristics we have created
a database that simulates different scenarios. Our results were compared with
others from the literature [4].

This manuscript is organized as follows. Section 2 provides definitions that
are used throughout the paper. Section 3 describes the heuristics. Section 4 shows
the experimental results, and Sect. 5 concludes the paper.

2 Basic Definitions

A genome G is represented by a string S, where each character in S corresponds
to a gene or block of genes in G. An alphabet ΣS is the set of distinct characters of
S. We denote by Si the i-th character in S, and by |S| the number of characters.

Example 1. A string S and some information we retrieve from it.

S = (5 2 1 3 4 5 4), ΣS = {1, 2, 3, 4, 5}, |S| = 7, S3 = 1 , S5 = 4.

Definition 2. The occurrence of a character α in a given string S, denoted by
occ(α, S), represents the number of copies of α in S. The greatest occurrence of
a character in S is denoted by occ(S) = maxα∈ΣS

(occ(α, S)).

Definition 3. We denote by dup(S) the set of duplicated characters of S, i.e. the
characters that appear exactly twice in S. Therefore, dup(S) = {α : occ(α, S) =
2,∀α ∈ S}.

In Example 1, we have occ(S) = 2, and dup(S) = {4, 5}.

Definition 4. A pair of strings S and P are balanced if they have the same
alphabet (ΣS = ΣP = Σ) and the occurrence of each character is the same for
both strings. Therefore, occ(α, S) = occ(α, P), ∀ α ∈ Σ.

Example 5. Consider three strings S, P , and Q. Observe that S and P are
balanced while S and Q are not, since the occurrences of character 1 in the
strings S and Q are different (occ(1, S) �= occ(1, Q)).

S = (5 2 1 3 4 5 4)
P = (4 4 1 2 5 5 3)
Q = (5 1 1 3 4 5 4 2)
ΣS = ΣP = ΣQ

We represent genome rearrangement events as operations applied to strings.
This way, a rearrangement event ρ applied to a string S is denoted as S ◦ ρ.

32 G. Siqueira et al.

Definition 6. A reversal ρ(i, j), with 1 ≤ i < j ≤ |S|, is an operation that
inverts the order of elements in a segment of the string S.

S = (S1 . . . Si−1 Si . . . Sj Sj+1 . . . S|S|)

S ◦ ρ(i, j) = (S1 . . . Si−1 Sj . . . Si Sj+1 . . . S|S|)

Example 7. A reversal ρ(2, 4) applied on a string S.

S = (1 2 3 3 2 1 4)

S ◦ ρ(2, 4) = (1 3 3 2 2 1 4)

Definition 8. Given two strings S and P , the reversal distance between S and
P , denoted by d(S, P), is the size of a shortest sequence of reversals capable of
transforming S into P .

From now on, we refer to the reversal distance only by distance. This work
deals with balanced strings S such that occ(S) ≤ 2. Every genome with multiple
copies of a gene can be mapped into a string. We step forward and map the
string into a permutation. To do that, we keep the characters without duplicates
untouched and map each replica of duplicated characters into new values.

Assuming two replicas of a character α, there are two possible mappings of
α into new values α′ and α′′. The mapping of all duplicated characters in S is
represented by a vector m with size |dup(S)|. In m we place the value 0 or 1
to indicate for each duplicated character which of the two possible maps will be
used. If the value associated with the character α in m is 0, the first and the
second occurrences will be replaced by α′ and α′′, respectively. Otherwise, the
first and second occurrences will be mapped as α′′ and α′, respectively.

We denote by mα the chosen map of the duplicate character α in m and by
Sm the permutation generated by mapping S according to m.

Example 9. A map m being applied to a string S and the permutation Sm

obtained.

S = (5 2 1 3 4 5 4), dup(S) = {4, 5}
Sm = (5′′ 2 1 3 4′ 5′ 4′′)

4 5

m = 0 1 , m4 = 0, m5 = 1

Definition 10. Given a string S and two maps m and v. We say that m and
v are neighbors if they differ by exactly one duplicated character map. In other
words, ∃α ∈ dup(S) : mα �= vα and mβ = vβ ,∀β �=α.

Heuristics for Reversal Distance Between Genomes with Duplicated Genes 33

Example 11. We obtain Sm, Sv, and Sz from S using maps m, v, and z, respec-
tively. Note that (m,v) and (v, z) are neighbors, but (m, z) are not.

S = (1 2 1 3 3 2), dup(S) = {1, 2, 3}
Sm = (1′ 2′ 1′′ 3′′ 3′ 2′′)
Sv = (1′ 2′ 1′′ 3′ 3′′ 2′′)
Sz = (1′′ 2′ 1′ 3′ 3′′ 2′′)

1 2 3

m = 0 0 1
1 2 3

v = 0 0 0
1 2 3

z = 1 0 0

3 Heuristic Approaches

Although the task that models genomes as permutations does not allow dupli-
cated genes, we can perform a mapping of the strings into permutations by
assigning new values to replicas. We base our heuristics on the fact that if we
obtain two permutations Sm and Pp from two strings S and P using the maps
m and p, respectively, then the sequence of reversals that turns Sm into Pp also
transforms S into P . Therefore, d(S, P) ≤ d(Sm, P p).

Note that, there exist maps such that d(S, P) = d(Sm, P p). Such maps could
be derived from a shortest sequence of reversals transforming S in P.

Example 12. A sequence of reversals transforming Sm into P p and S into P .

Sm = (5′′ 2 1
︸ ︷︷ ︸

ρ(2,3)

3 4′ 5′ 4′′)

(5′′ 1 2 3 4′ 5′ 4′′
︸ ︷︷ ︸

ρ(4,7)

)

(5′′ 1 2 4′′ 5′
︸ ︷︷ ︸

ρ(3,5)

4′ 3)

P p = (5′′ 1 5′ 4′′ 2 4′ 3)

S = (5 2 1
︸ ︷︷ ︸

ρ(2,3)

3 4 5 4)

(5 1 2 3 4 5 4
︸ ︷︷ ︸

ρ(4,7)

)

(5 1 2 4 5
︸ ︷︷ ︸

ρ(3,5)

4 3)

P = (5 1 5 4 2 4 3)

4 5

m = 0 1
4 5

p = 1 1

To find the distance between two strings we must find the map of the strings
in the permutations with the smallest distance. We use as a distance estimator
for the Sorting Unsigned Permutations by Reversals problem an approximation
algorithm with factor 2 developed by Kececioglu and Sankoff [10], which we will
call KS95. We chose this algorithm because its results in practice are good and
its execution time is fast, which serves our purpose of creating simple heuristics
that provide solutions in a fast way. However, another much more complicated
algorithm with a better approximation ratio is known [2].

Our heuristics share a common goal: find a map of strings into permutations
that results in a good solution. Sections 3.1, 3.2, and 3.3 present heuristics using
Random Maps, Local Search, and Genetic Algorithms, respectively.

34 G. Siqueira et al.

3.1 Random Maps (RM)

This heuristic randomly generates several maps of the source string into permu-
tations, and a single random map of the target string. After that, the heuristic
estimates the distance between each source permutation and the target permu-
tation using KS95. In the end, the heuristic selects the solution with smallest
distance. In case of a tie, the heuristic selects one of the best solutions randomly.

The inputs are the strings S and P , and a parameter r ∈ N that define
the total number of random maps for the source string. The random maps are
generated as follows: for each position of the map, the values 0 and 1 are assigned
with same probability. Initially, the target string P is mapped into a permutation
Pp using a random map p. Next, r random maps of the source string S are
generated and stored in a set M. For each map m ∈ M, the distance between
the permutations Sm and Pp is computed using KS95. The result for S and P
is the shortest distance between the permutations.

Figure 1 shows a simulation of the heuristic for S = (3 2 1 2 4 3 4) and
P = (1 3 4 2 2 4 3). The heuristic finds that d(S, P) ≤ d(Sm, P p) ≤ 4.

d(Sm′
, P p) ≤ 5

d(Sm′′
, P p) ≤ 5

d(Sm, P p) ≤ 4

0
4

1
3

0
2

m′′ =0
4

0
3

0
2

m′ =0
4

1
3

1
2

m =0
4

0
3

0
2

p =

P

3422431

P p

3”4”2”2’4’3’1

4”3’4’2”12’3”
Sm′′

4”3”4’2”12’3’
Sm′

4”3’4’2’12”3”
Sm

4342123
S

Fig. 1. Example of random maps heuristic with r = 3.

The random mapping process described in this heuristic will be used as sub-
routines by other heuristics.

3.2 Local Search (LS)

This heuristic enhances the Random Maps by generating maps through local
search technique and not exclusively in a random way. The idea is to create new
maps by selecting some of the current ones to have their neighborhoods explored.

Inputs are strings S and P , and the parameters r, c, l ∈ N. Parameters r, c,
and l determine the total number of maps that will be created, the number of

Heuristics for Reversal Distance Between Genomes with Duplicated Genes 35

maps randomly generated, and the maximum number of neighbors explored in
each local search, respectively.

Initially, the heuristic behaves like the Random Maps heuristic: (i) the target
string P is mapped into a permutation Pp using a random map p, and (ii) a set
M is generated with c random maps of the source string S into permutations.
Note that M is composed of only c randomly generated maps, but this set must
contain r distinct maps. To generate r − c maps the heuristic performs a local
search on the best solutions found so far as follows:

1. In each iteration, the heuristic ranks the maps using the algorithm KS95.
2. The heuristic selects the best map and explores up to l neighbor maps, adding

them to M. This process ends when the set M has r distinct maps.
3. The heuristic keeps a list of the maps that have already been explored. Thus,

it ensures that a map is explored only once. This behavior is important to
explore the neighborhood of other maps that are also good.

Note that a map created through local search in one iteration can have the
neighborhood explored in future iterations.

Similarly to Random Maps heuristic, the result for the distance between the
strings S and P is the shortest distance calculated between the permutations
resulting from maps in M and the permutation Pp.

d(Sn′′′
, P p) ≤ 3

d(So, P p) ≤ 5

d(Sn, P p) ≤ 5

d(Sm, P p) ≤ 7

d(Sn′′
, P p) ≤ 5

0
4

0
3

0
2

0
1

p =

0
4

1
3

1
2

1
1

n′′′ =0
4

1
3

0
2

0
1

n′′ =0
4

0
3

1
2

0
1

n′ =

N

1
4

1
3

1
2

0
1

o =0
4

1
3

1
2

0
1

n =0
4

0
3

0
2

0
1

m =
M

P

34212431

P p

3”4”2”1”2’4’3’1’

1’4”3’4’2’1”2”3”
Sn′′′

1”4’3’4”2’1’2”3”
So

1”4”3’4’2’1’2”3”
Sn

1”4”3’4’2”1’2’3”
Sn′′

1”4”3”4’2”1’2’3’
Sm

14342123
S

Fig. 2. Example of local search heuristic with r = 5, c = 3, and l = 2.

Figure 2 illustrates this heuristic in a pair of strings S = (3 2 1 2 4 3 4 1)
and P = (1 3 4 2 1 2 4 3). The initial set M = {m,n,o} is compose of 3 ran-
domly generated maps. From M, the map n is selected to have the neighborhood

36 G. Siqueira et al.

explored. Set N = {n′,n′′,n′′′} represents all neighboring maps of n that are
not yet in M. Adopting the parameter l = 2, the heuristic chooses the maps n′′

and n′′′ to add into M, filling the set with r = 5 distinct maps. In that case, the
heuristic finds that d(S, P) ≤ d(Sn′′′

, P p) ≤ 3.

3.3 Genetic Algorithm (GA)

This heuristic is modeled using Genetic Algorithm metaheuristic [13] to gener-
ate the maps. This meta-heuristic is widely used on combinatorial optimization
problems [9,14] and has already been used in problems of genome rearrange-
ment [7].

A genetic algorithm is a search heuristic inspired by the theory of evolution. It
uses features like mutations, inheritance of parents characteristics, and selection
of fittest individuals for reproduction, to name a few.

The inputs are the strings S and P , and the parameters c, k, r, tm, tc ∈ N.
The parameter c is the initial population size, k is the number of individuals
selected in a given population, and r is the total number of maps created for
the source string. The parameters tm and tc are used in the mutations and
crossovers, respectively. The population size, in each generation, is 5k

2 . Once r
is reached, the algorithm stops and the best result so far is returned.

We describe our genetic algorithm considering five features: initial popula-
tion, fitness function, selection, crossover, and mutation.

Fig. 3. Flowchart of genetic algorithm phases.

Figure 3 shows a flowchart of the interactions between each phase to obtain a
solution using the genetic algorithm technique. We developed a heuristic where
each individual in the population is represented by the mapping of the source
string S into a permutation. We also used a single random map p of the target
string P into a permutation Pp.

– Initial Population: is generated c random maps of the source string S into
distinct permutations. The process of generating random maps is the same
as that used in the Random Maps heuristic.

Heuristics for Reversal Distance Between Genomes with Duplicated Genes 37

– Fitness Function: each individual receives a score based on a fitness func-
tion. The fitness function assigns a score to an individual m of the population
as follows: mscore = 1

d(Sm,Pp)+1 , such that d(Sm, Pp) is computed using the
KS95 algorithm. Maps that result in solutions with smaller number of rever-
sals receive higher scores and tend to transmit their characteristics to future
generations.

– Selection: at this stage, the top k highest scored individuals are selected to
the next generation, and the others are discarded. In cases of ties, the heuristic
arbitrarily selects the required number of individuals among the tied ones.

– Crossover: at this phase, the population has the k highest scored individuals.
To perform the re-population, individuals are arbitrarily paired for crossovers.
Given two maps m and m′ with x = dup(S) = dup(P) bits, the crossover
generates a new individual with tc bits randomly selected from m and the
remaining x − tc from m′.

Example 13. Maps m and m′ of a string S = (3 3 1 4 2 2 4) adopting tc = 2
and resulting in a new individual n.

S = (3 3 1 4 2 2 4), tc = 2
Sm = (3′′ 3′ 1 4′′ 2′ 2′′ 4′)
Sm′

= (3′ 3′′ 1 4′ 2′′ 2′ 4′′)
Sn = (3′ 3′′ 1 4′′ 2′ 2′′ 4′)

2 3 4

m = 0 1 1
2 3 4

m′ = 1 0 0
2 3 4

n = 0 0 1

– Mutation: after crossover, each of the k individuals selected from the past
generation gives rise to a new individual by inverting the values of tm bits
chosen randomly.

Example 14. A map n generated by a mutation in a map m of a string S =
(3 3 1 4 2 2 4) adopting tm = 2.

S = (3 3 1 4 2 2 4), tm = 2
Sm = (3′′ 3′ 1 4′′ 2′ 2′′ 4′)
Sn = (3′ 3′′ 1 4′ 2′ 2′′ 4′′)

2 3 4

m = 0 1 1
2 3 4

n = 0 0 0

The heuristic repeats this process until r maps are generated. Afterwards, the
individual m with the highest score is selected to obtain a solution computing
the distance between Sm and Pp using the KS95 algorithm.

4 Experimental Results

We present our test methodology and the results obtained by our heuristics. In
the end, we compare our results with others from the literature.

38 G. Siqueira et al.

4.1 Database

Our database comprises 10 sets of 1000 pairs of strings (source and target).
Each set has strings of different sizes ranging from 100 to 1000 in intervals of
100. Strings have 25% of duplicated characters, so |dup(S)| = |S|

4 . Each pair of
source and target strings was created as follows: we randomly distributed the
values {1, 2, . . . , 3|S|

4 , 1, 2, . . . , |S|
4 } to create the source string S, and we applied

a total of |S|
4 random reversals (the parameters i and j being chosen randomly)

to generate the target string P .

4.2 Model Tuning

Random Maps, Local Search, and Genetic Algorithm heuristics share a common
r parameter, which represents the total number of maps that are generated. This
parameter should have the same number set for us to be able to compare the
heuristics. In other words, heuristics must explore the same number of maps, so
we may estimate the gain of each model in choosing good maps to investigate.
We assigned r = 10|S| for each source string S during the experiments.

Other parameters of Local Search and Genetic Algorithm heuristics were
selected using a grid search. For Local Search heuristic parameters c and l, we
swept through the set {10, 20, ..., 100}. For the Genetic Algorithm heuristic, k
was investigated in {10, 20, ..., 100}, c in {10, 20, ..., 100}, tm in {1, 2, ..., 10}, and
tc in {�0.1d	, �0.2d	, ..., d}, where d = |dup(S)| = |dup(P)|. The grid search was
performed in the sets of strings of sizes 400, 500, and 600. We obtained the
following parameters:

– Local Search: c = 90 and l = 30;
– Genetic Algorithm: c = 90, k = 50, tm = 2, and tc = �0.4d	.

4.3 Results

For comparison purposes, we implemented the Kolman and Waleń algorithm [12]
(called HS) and an adaptation of the SOAR algorithm [4]. This adaptation
was performed to consider the Reverse MCSP [11] instead of MCSP problem [4]
in order to address the unsigned version of the Reversal Distance for Strings
problem.

The abbreviations RM, LS, and GA refer to Random Maps, Local Search,
and Genetic Algorithm heuristics, respectively. Table 1 shows the average dis-
tance provided by the heuristics, HS, and SOAR using our database as input.

The OP column shows the number of random reversals used to create each
instance. The line (DEEavg) represents the average distance estimation error.
For an instance (S, P), the distance estimation error is calculated as follows:
|DH−OP|

OP , such that DH is the distance estimation for the instance (S, P) com-
puted by our heuristics and SOAR algorithm. The distance estimation error
shows, as a percentage of the number of reversals applied to create the instance,

Heuristics for Reversal Distance Between Genomes with Duplicated Genes 39

Table 1. Results provided by our heuristics and by SOAR.

String size RM LS GA SOAR HS OP

100 32.62 24.22 24.33 29.65 50.27 25

200 75.31 49.61 49.75 61.42 104.71 50

300 120.94 75.39 75.60 94.16 160.41 75

400 167.30 100.99 101.30 126.34 214.97 100

500 214.36 126.75 126.89 158.97 270.93 125

600 262.34 152.74 152.91 191.21 326.75 150

700 310.99 179.64 179.17 224.11 382.77 175

800 359.60 207.73 205.33 256.41 438.87 200

900 408.31 238.63 231.81 289.04 494.33 225

1000 457.22 274.03 258.54 321.88 549.91 250

DEEavg 67.81% 3.87% 2.88% 26.20% 115.17% –

how far the heuristics and SOAR algorithm have distanced from OP, either for
more or less.

From the results, we can see that although the HS algorithm guarantees an
approximation to the solution by a multiplicative factor Θ(k), in practice, the
results of the other algorithms were better. This result was probably caused by
the fact that the constant associated with function Θ(k) has a high value.

Genetic Algorithm (GA) and Local Search (LS) are better than SOAR and
RM in all sets, which clearly indicates that the more sophisticated rules added
in GA and LS succeed. On average, these strategies provide values very close to
the number of reversals applied to generate the instances. This can be evidenced
by observing the average distance estimation error (DEEavg) which, considering
all instances, shows GA and LS heuristics with a percentage of 2.88% and 3.87%,
respectively. We also can note that GA generates the best distance estimator
(closest to OP) for all sets tested.

The heuristics LS and GA presented a far better performance than the
previous know methods for estimate the evolutionary distance between genomes
with duplicated genes, considering the reversal event.

We also performed tests with different values for the parameter r ranging
from 5|S| up to 50|S|, but the best trade-off between solution quality and run-
time was observed adopting r = 10|S|.

5 Conclusion

We presented three heuristics for the Reversal Distance for Unsigned Strings
with Duplicated Genes problem. We performed experiments with a database
created to simulate genomes with different characteristics. We compared the
results obtained by our heuristics with results from the literature. The com-
parison shows that our heuristic based on local search and genetic algorithms
techniques tend to produce very good solutions.

40 G. Siqueira et al.

As future works, we plan to extend the heuristics by considering other genome
rearrangement events (e.g., transposition, insertion, and deletion), other meta-
heuristics, and by investigating the problem having more than two copies for
each character.

Acknowledgments. This work was supported by the National Council for Scien-
tific and Technological Development - CNPq (grants 400487/2016-0, 425340/2016-
3, 304380/2018-0, and 140466/2018-5), the São Paulo Research Foundation -
FAPESP (grants 2015/11937-9, 2017/12646-3, and 2017/16246-0), the Brazilian Fed-
eral Agency for the Support and Evaluation of Graduate Education - CAPES, and the
CAPES/COFECUB program (grant 831/15).

References

1. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory.
Discrete Appl. Math. 146(2), 134–145 (2005)

2. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-Approximation algorithm for
sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol.
2461, pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45749-6 21

3. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM J. Discrete Math. 12(1), 91–110 (1999)

4. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment
of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2(4), 302–315 (2005)

5. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions.
SIAM J. Discrete Math. 14(2), 193–206 (2001)

6. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of genome
rearrangements. Computational Molecular Biology. The MIT Press, London (2009)

7. Gao, N., Yang, N., Tang, J.: Ancestral genome inference using a genetic algorithm
approach. PLOS ONE 8(5), 1–6 (2013)

8. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

9. Jog, P., Suh, J., Van Gucht, D.: Parallel genetic algorithms applied to the traveling
salesman problem. SIAM J. Optimization 1, 515–529 (1991)

10. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica 13, 180–210
(1995)

11. Kolman, P., Waleń, T.: Approximating reversal distance for strings with bounded
number of duplicates. Discrete Appl. Math. 155(3), 327–336 (2007)

12. Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: linear time
approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA
2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007). https://doi.org/
10.1007/11970125 22

13. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

14. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)

15. Radcliffe, A.J., Scott, A.D., Wilmer, E.L.: Reversals and transpositions over finite
alphabets. SIAM J. Discrete Math. 19(1), 224–244 (2005)

https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/11970125_22
https://doi.org/10.1007/11970125_22

	Heuristics for Reversal Distance Between Genomes with Duplicated Genes
	1 Introduction
	2 Basic Definitions
	3 Heuristic Approaches
	3.1 Random Maps (RM)
	3.2 Local Search (LS)
	3.3 Genetic Algorithm (GA)

	4 Experimental Results
	4.1 Database
	4.2 Model Tuning
	4.3 Results

	5 Conclusion
	References

