
Parallel Generalized Suffix Tree
Construction for Genomic Data

Md Momin Al Aziz(B) , Parimala Thulasiraman, and Noman Mohammed

Computer Science, University of Manitoba, Winnipeg, Canada
{azizmma,thulasir,noman}@cs.umanitoba.ca

Abstract. After a decade of digitization and technological advance-
ments, we have an abundance of usable genomic data, which provide
unique insights into our well-being. However, such datasets are large in
volume, and retrieving meaningful information from them is often chal-
lenging. Hence, different indexing techniques and data structures have
been proposed to handle such a massive scale of data. We utilize one
such technique: Generalized Suffix Tree (GST). In this paper, we intro-
duce an efficient parallel generalized suffix tree construction algorithm
that is scalable for arbitrary genomic datasets. Our construction mech-
anism employs shared and distributed memory architecture collectively
while not posing any fixed, prior memory requirement as it uses exter-
nal memory (disks). Our experimental results show that our proposed
architecture offers around 4-times speedup with respect to the sequential
algorithm with only 16 parallel processors. The experiments on different
datasets and parameters also exhibit the scalability of the execution time.
In addition, we utilize different string queries and demonstrate their exe-
cution time on such tree structure, illustrating the efficacy and usability
of GST for genomic data.

Keywords: Parallel generalized suffix tree · Genomic data indexing ·
Parallel computation on genomic data · GST construction on disks

1 Introduction

The achievements in human genomics have been remarkable during the last
decade. Concepts like genomic or personalized medicine and genetic engineering
are slowly becoming reality which seemed impossible a few years ago. We are
now capable of storing thousands of genome sequences from patients along with
their medical records. Today, medical professionals utilize this large-scale data
to study associations or susceptibility to certain diseases.

The recruitment for different genomic research is also increasing as the
genome sequencing cost is ever-reducing through technological breakthroughs
in the last few years. This growth in genomic data has resulted in consumer
products where companies offer healthcare solutions and ancestry search based
on human genomic data (e.g., Ancestry.com, 23AndMe). Interestingly, all these

c© Springer Nature Switzerland AG 2020
C. Mart́ın-Vide et al. (Eds.): AlCoB 2020, LNBI 12099, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-42266-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42266-0_1&domain=pdf
http://orcid.org/0000-0001-6161-8275
http://orcid.org/0000-0001-8547-9951
https://doi.org/10.1007/978-3-030-42266-0_1

4 Md M. A. Aziz et al.

applications share one major operation: String Search. Informally, the string
search denotes the presence (and locations) of an arbitrary query nucleotide
sequence in a larger dataset. The search results comprise the individuals who
carry the same nucleotides in the corresponding positions. Thus, we can perceive
the relation between an unknown sequence to pre-existing sequences with such
search queries.

On the other hand, suffix tree is proven useful for searching different patterns
or arbitrary queries on genomic data [2]. However, their construction suffers from
the locality of reference as reported in the initial works [7]. This problem refers to
the memory accesses in the same locations within a short period while building
the suffix tree. Moreover, it gets severe as suffix trees perform best when the tree
(vertices and edges) completely fits in the main memory. Unfortunately, this is
quite impossible with off-the-shelf implementations and large scale genomic data.

In this work, we construct generalized suffix trees (GSTs) in parallel. There
has been several attempts in efficient, parallel suffix tree building which con-
siders only one sequence whereas GSTs represent multiple sequences [5]. We
employed two different memory architectures for our parallel GST construction:
(a) distributed and (b) shared memory. In a distributed architecture, we utilized
multiple machines with completely separate main memory system interconnected
within a network. On the contrary, these processors have several cores, which
share the same main memory. These cores are employed in our shared memory
model. Furthermore, we employ a data specific parallelism based on the fixed
nucleotide set in this construction for the shared memory architecture. Finally,
our GSTs are built on file system to remove the dependency for a sizeable mem-
ory requirement. We can summarize our contributions below:

– The primary contribution of this paper is a parallel framework using the dis-
tributed and shared memory models to construct GST for a genomic dataset.

– We also utilize the external memory (or disks) since GSTs for large-scale
genomic data require notable memory size, which is usually not available in
a single machine.

– We test the efficiency of our GST with multiple string search queries. Fur-
thermore, we analyze the parallel speedup in terms of dataset size, number
of processors, and components of the hybrid memory architecture.

– Experimental results show that we can achieve around 4.7 times speedup
compared to the sequential algorithm with 16 processors to construct the
GST for a dataset with n = 1000 sequences and 1000 nucleotides each.

Notably, Ukkonen’s algorithm [14] went out of memory for n,m = 10, 000 dataset
whereas our proposed approach takes 77.3 s with 16 processors.

2 Preliminaries

2.1 Haplotype Data

In this paper, we utilize the bi-allelic genomic data where the ratio of different
nucleotides in a specific position of a chromosome is known beforehand. It is

Parallel Generalized Suffix Tree Construction for Genomic Data 5

also called haplotype data, where each allele (or position) on the chromosome is
inherited from a single parent. In other words, in one specific location, we can
only perceive two variations for such a dataset; therefore, we utilize a binary
representation. However, our proposed method is not limited to such binary
representation and generalizable over any dataset with a fixed character set.

2.2 Generalized Suffix Tree

Suffix Trie and Tree: Trie (from retrieval) is a data structure where each
element of the data are placed in the vertex of a tree. Here, the edges represent
the relation of one data to the other. In our problem scenario, each nucleotide
of the sequences can be seen as the other data points or vertices of a Trie.

0 1 0 1 0 1

1 0 1 0 1 0

S1

S2

$

S2

0 1

1

0

0

1

0

S2:3

S2:4

S2:2

S2:0

$

$

S2:5

1

0

S2:1

$ 1

0

$

$

S1

0 1

1

0 $

1

$

0

1

$

S1:0

S1:2

$

S1:3

S1:1

1

0 $

S1:5

1

0 $

S1:4

Fig. 1. Uncompressed Suffix Tree (Trie)
construction

Fig. 2. GST from Fig. 1 where gray
and white vertices are from S1 and
S2, respectively

Suffix Trees are a compressed version of their Trie counterpart. For example,
if a single vertex has only one child on a suffix trie, they are joined and denoted
as a single vertex on the Suffix Tree. In Fig. 1, we show two suffix tries S1 and S2
from sequences 010101 and 101010 respectively. For any sequence S1= 010101,
we consider all possible suffixes such as {1, 01, 101, 01010, 10101, 010101} and
construct a trie. The simple approach to construct such a tree will require an
iteration over all suffixes and add/merge new vertices if required.

The suffix tree will also represent the end of the sequence with a special end
character ($). For example, the suffix 01 (left Fig. 1-S1) has an end character
with label S1:4 which denotes the sequence number and the start position of
the suffix. Formally, we use vertex label Sx:y s.t. x ∈ {1, n} and y ∈ {0,m − 1}
for n sequences of m length.

Generalized Suffix Tree (GST): Generalized Suffix Tree is a collection of suffix
trees for multiple sequences. Here, we merge two suffix trees S1 and S2 from
Fig. 1 and construct S12 in Fig. 2. Fundamentally, there are no difference in con-
structing GST as we need to build individual suffix tree per sequence and merge

6 Md M. A. Aziz et al.

them afterwards. Thus, the runtime for one GST construction depends on these
suffix tree construction and size. For example, the traditional algorithm (Ukko-
nen) to build the suffix tree has a linear runtime O(m) for m length sequences
[14]. Therefore, n sequences with m characters will be at least O(nm) along with
the additional linear tree merging cost of O(n).

2.3 Utility Measure

We considered different queries to test the utility of a GST. However, for brevity,
we only report three problem instances which are related and incrementally
challenging. The input will be a genomic dataset D consisting n individuals with
m nucleotides. Since we are considering n×m haplotypes, D will have {s1, . . . sn}
records with si ∈ [0, 1]m. The query can be of arbitrary length (1 ≤ |q| ≤ m).

Query 1 (Exact Match-EM). For a genomic dataset D and an arbitrary
query q, an exact match will only return the records xi which observe q[0, |q| −
1] = xi[j1, j2] where q[0, |q|−1] denotes the full query and xi[j1, j2] is a substring
of the record xi given j2 ≥ j1 and j2 − j1 = |q| − 1.

Query 2 (Set Maximal Match-SMM). Similarly, for the same inputs, a set
maximal match will return the record xi which have the following conditions:

1. q[j1, j2] = xi[j1, j2] where j2 > j1 (same length and positions),
2. q[j1 − 1, j2] �= xi[j1 − 1, j2] or q[j1, j2 + 1] �= xi[j1, j2 + 1], and
3. No other records x′

i with substring [j′
1, j

′
2] where j′

2 − j′
1 > j2 − j1.

Query 3 (Position-variant Set Maximal Match-PVSMM). Finally, for a
threshold t, the PVSMM will report all records where which follow:

1. q[j1, j2] = xi[j′
1, j

′
2] where j2 − j1 = j′

2 − j′
1 ≥ t,

2. q[j1 − 1, j2] �= xi[j′
1 − 1, j′

2] or q[j1, j2 + 1] �= xi[j′
1, j

′
2 + 1], and

3. No other records x′′
i with substring [j′′

1 , j
′′
2] where j′′

2 − j′′
1 > j′

2 − j′
1.

3 Methodology

3.1 Architecture and Design Goals

The outline of the parallel generalized suffix tree construction and corresponding
computation is depicted in Fig. 3. Here, the genomic dataset D|n×m|) is operated
by the data owner and the researchers have q queries on D. The researcher does
not have any substantial processing power compared to the data owner since
s/he is only interested in a minuscule portion of D.

The high-level design of our architecture is illustrated in Fig. 3, where the
data is evenly partitioned between different computing nodes (in one/multiple
clusters). Here, we consider and utilize two type of memory environment: dis-
tributed and shared. In the distributed memory, the machines are connected
via network as they have mutli-core processors and their own physical memory
(RAM). The mutli-core processors on these machines collectively use the phys-
ical memory which is called as shared memory. Hence, we have |p| computing
nodes which construct our desired GST jointly.

Parallel Generalized Suffix Tree Construction for Genomic Data 7

Computing Nodes

P1

P2

P|p|

Researcher

Server

Genomic
Dataset, D

Query q

1

0 $

0

$ 1

R

Intra-Node Parallelism
(Shared Memory)

Inter Node Parallelism
(Distributed Memory)

Thread1 Thread2

P
ar

tit
io

ni
ng

Fig. 3. Computational architecture
where data owner has the dataset D
while a researcher submits query q

Our memory dispersion tackles one of
the major disadvantages of the GST con-
struction: the sizeable memory require-
ment for longer sequences. For example,
a thousand length sequence can create a
maximum of a thousand vertices, and n
sequences can lead to an order of nm.
Thus, for an arbitrary genomic dataset,
it often outruns the memory. Hence, this
motivates us to construct our targeted
GST in a distributed memory setting.

This leads to our proposed design
where we distribute the data (partition)
and build the suffix tree separately in different computing nodes. These nodes
can construct each subtree which is later shared to the other nodes. These shared
subtrees are then merged, and the final tree includes all suffix subtrees combin-
ing the outputs from all computing nodes (Sect. 3.2.4). The multiple processors
in each node will also use shared memory model while constructing and merg-
ing their individual GST in parallel (Sects. 3.2.2 and 3.2.3). Therefore our three
design goals can be summarized as follows:

1. Partition the dataset for different nodes in a distributed memory architec-
ture where individual computing nodes receive a part of the data and only
constructs a subtree of the final GST (Inter-node Parallelism)

2. As these nodes are equipped with multiple cores, they will build the individual
GSTs in parallel using shared memory architecture (Intra-node Parallelism)

3. Use external memory to store and share the resulting GSTs to reduce sizeable
main memory requirement.

3.2 Parallel GST Construction

3.2.1 Data Partitioning
We utilize different data partitioning scheme based on the memory locality, avail-
ability and the number of computing nodes:

Horizontal partitioning groups a number of sequences for the existing com-
puting nodes. Each node will receive one such group and construct the corre-
sponding GST afterwards. For example, if we have n = 100 sequences and p = 4
nodes, then we will split the data into 4 groups where each group will contain
|ni| = 25 records or genomic sequences. Each node, pi will build their GST
on |ni| sequences of m length in parallel without any communication. Figure 1
depicts a simple case of this partition scheme for n = p = 2.

Vertical partitioning divides the data across the columns and distributes it
following the aforementioned mechanism. However, this scheme will have some
additional implications while merging the resulting subtrees (Sect. 3.2.2). For
example, if we have genomic data of length m = 100 and p = 4, we will have
n × mi partitions where each dataset will have |mi| = 25 columns.

8 Md M. A. Aziz et al.

0 1 0 1 0 1
P2

$

P2

0

1

0

S2:3$

S2:5

P1

0 1

1

0

%1 0 %2

P1

%1

$

S1:4

1

0

S2:4

S1:5

S1:3

$ 1

$

$

%2 1

%2

%1

%1 = 1 0 1

%2 = 0 1 0Merge Tree

P1

S12=P1+P2

Merge P2 with P1

1

0

1

0

1

$ 0

$

$

S2:2

S1:1

S2:0

0

1

0

1

0

$ 1

$
S2:1

S1:0

S1:0

$

S12

S2:2

0

1

0 $

1

$ S1:0

S1:2

$S2:5

$

S2:3

$

S2:1

1

0 $

S1:4

1

0

1

0

S2:4

S2:0

$ 1

0

$

$

$

S1:5

$

S1:3

$

S1:1

1 0 1 0 1 0

Fig. 4. Vertical partitioning with
path graphs (%1,%2) merging

P2

0 1

1

$

0

S1:4

1

$

$

S1:5

S1:3

P4

0 1

1

0

0

$ S2:3

$

$

S2:1

S2:4

P3

0 1

1

%2

0

1

%2

%2

P1

0 1

1

0

0

%1

%1

%1

Merge Horizontal
& Vertical

S12

S2:2

0

1

0 $

1

$ S1:0

S1:2

$S2:5

$

S2:3

$

S2:1

1

0 $

S1:4

1

0

1

0

S2:4

S2:0

$ 1

0

$

$

$

S1:5

$

S1:3

$

S1:1

0 1 0 1 0 1

1 0 1 0 1 0

P2

P4

P1

P3

Fig. 5. Example of Bi-Directional partition-
ing scheme

Bi-directional data partitioning combines both the horizontal and vertical
approach as it divides the data into both directions. Notably, it can only operate
for p ≥ 4 cases. Given n = 100, m = 100 and p = 4, each node will receive a
ni × mi = 50 × 50 sized data for their computations.

3.2.2 Distributed Memory
We use several machines (or nodes) to build the final GST in parallel (Inter -node
Parallelism), each with their individual global memory and connected via net-
work. After receiving the partitioned data, these computing nodes are required
to build their own GSTs. For example, if there are p0, . . . , p|p| nodes then we
will have GST0, . . . , GST|p| trees. Regardless of the partitioning mechanism, we
use the same linear time method to construct the suffix trees using Ukkonen’s
algorithm [14]. After these individual nodes build their GSTs, they need to share
them for the merging operation described next.

In Fig. 1, we see a horizontally partitioned GST construction. Here, two suffix
trees are merged where the grey and white colored nodes belonged to different
trees. Notably, the merge operation did not duplicate any node at a particular
depth. For example, if there was already a node with the value 0 is present,
then it will not create another node and simply merge onto its branches. This
condition is applied to all merge operations to avoid duplicate branches.

However, for vertical and bi-directional partitioning, the merging requires
an additional step for datasets where mi < m. We illustrate this in Fig. 4
where n = 2, p = 2,m = 6 and we are creating GST for the sequences
S1,S2= {010101, 101010}. Here, p1 operates on {010, 101} partitions whereas
p2 generates the tree for {101, 010}. Here, the GST from p1 needs to have dif-
ferent end characters compared to p2 as each end points in a suffix tree needs
to represent that the suffix has ended there. However, since we are splitting the
data on columns, it needs to address the missing suffices.

Therefore, we perform a simple merge for all cases with mi < m as we add
the Path Graphs with m−mi characters on the resulting GST. For example, in

Parallel Generalized Suffix Tree Construction for Genomic Data 9

Fig. 4, we add the path graph of 101 (represented as %1) in all end characters
of S1 in p1 (after 010). Similarly, we need to add 010 for S2 represented as %2.
During this merge, we also do not create any duplicate nodes. The addition of
these paths will require the merge operation described next.

3.2.3 Shared Memory
In the distributed memory environment, the individual machines get a partition
of the genomic data to build the corresponding GSTs. However, these machines
or nodes also have multiple cores available in their respective processor which
share the fixed global memory. Therefore, we also employ these cores to build
and merge the GST in parallel.

We utilize the fixed alphabet size property of genomic data in our shared
memory model (Intra-node Parallelism). Since there can be only two possi-
ble children of the root (0/1), we can initiate two processes where one process
will handle the 0 leading suffixes whereas the other process will operate on 1’s.
For example, in Fig. 1 two processes p1 and p2 will generate the suffix tree of
{01, 0101, 010101} and {1, 101, 10101} respectively. The output will be two suffix
trees, one from each process which can be joined with the root for the final tree.

It is noteworthy that the GSTs on the partitions can also be build with this
shared environment. Here, we will partition the data into the cores and they will
build, merge the GST in parallel. However, the number of cores and memory is
limited in a non-distributed setting which will restrict larger GSTs.

3.2.4 Merging GSTs
As mentioned earlier, the merge operation takes two different GSTs and adds
all their vertices. Hence, all |p| GSTs are merged into the final GST where
GST = GST0 + . . .+GST|p|. Here, we employed the shared memory parallelism
as the children of the root (0/1) are totally separate and do not have any common
edges. In other words, we can treat the root’s 0 branch separately from child 1.
This allows us to perform the merge operation in parallel and utilize the Intra-
node parallelism in each computing nodes.

Notably, merging one branch of a tree is a serial operation as multiple threads
cannot add/update branches simultaneously. This creates a bottleneck as we
need to perform merge operation in all GSTi’s and add the path graphs men-
tioned in Sect. 3.2.2. However, we can use multiple cores for different branches as
mentioned in Sect. 3.2.3. For example, we can create two processes for handling
the 0 and 1 branch from the root. This can be extended for the suffixes starting
with 00, 01, 10, 11 as well. Notably, this parallel operation can be followed for
any dataset with fixed character set.

The full merge operation is depicted in Fig. 5 where we perform the bi-
directional partition and merge accordingly. Inherently, the bidirectional strategy
employs both vertical and horizontal merging strategies as the end columns do
not include the m − mi characters.

10 Md M. A. Aziz et al.

Table 1. Horizontal and Vertical partition scheme execution time (in minutes) to build
GSTs with number of processors p = {1, 2, 4, 8, 16}

Data Serial Distributed Shared Hybrid

1 2 4 8 16 2 4 8 16 2 4 8 16

Horizontal partitioning

200 0.08 0.23 0.09 0.09 0.10 0.14 0.05 0.04 0.03 0.14 0.07 0.05 0.05

300 0.27 1.04 0.23 0.2 0.23 0.38 0.15 0.11 0.08 0.37 0.16 0.12 0.12

400 0.59 2.03 0.55 0.38 0.38 1.18 0.35 0.21 0.2 1.12 0.31 0.23 0.25

500 1.53 3.14 1.32 1.06 1.01 2.27 0.57 0.36 0.28 2.09 0.52 0.38 0.41

1000 14.55 16.23 8.34 6.31 6.09 17.38 5.56 3.27 2.28 17.14 4.18 3.12 3.08

Vertical partitioning

200 0.08 0.19 0.08 0.05 0.03 0.16 0.07 0.04 0.02 0.14 0.05 0.03 0.02

300 0.27 0.56 0.28 0.17 0.09 0.48 0.22 0.16 0.08 0.39 0.13 0.10 0.06

400 0.59 1.41 1.05 0.36 0.16 1.44 1.01 0.34 0.19 1.21 0.32 0.21 0.13

500 1.53 3.07 1.49 1.08 0.37 3.18 1.49 1.08 0.36 2.35 0.58 0.40 0.24

1000 14.55 25.24 12.25 9.06 5.20 22.56 13.11 7.2 4.37 18.22 6.31 4.49 3.10

3.2.5 Communication and Mapping
We use a sequential distribution of work where incremental computing nodes
receive contiguous segments of the data. For example, with horizontal and ver-
tical partitioning, each node pi will receive �n/p� × m and n × �m/p� records,
respectively.

As pi constructs its GSTi, it stores it in the file system for further processing.
Upon completion, all GSTs are sent via network to the nearest processor based
on latency. For example, in Fig. 5, P3 and P4 will send their GST to P1 and P2
respectively and P1, P2 will merge these trees in parallel. We utilize external
memory as the suffix tree are arbitrarily large for a genomic dataset and can
overflow the main memory of a single computing node.

4 Experimental Results and Analysis

4.1 Evaluation Datasets and Implementation

We evaluate our framework on uniformly distributed synthetic datasets as it
allows us to perturb the dimensions and check the performance of the underlying
methods. Hence, we generate different datasets with n,m ∈ {200, 300, 400, 500,
1000} and name them accordingly. Notably, the sequential algorithm could not
finish for larger dataset (D10,000) due to its memory requirement. We did not
consider n,m in millions due to our computational restrictions as we were only
able to access a small computing cluster [1]. Our implementations along with
the data are available in https://github.com/mominbuet/ParallelGST.

4.2 Performance Analysis

We analyze our proposed approach in terms of n,m, p and all three (distributed,
shared and hybrid) memory models. Here, the distributed memory model will

https://github.com/mominbuet/ParallelGST

Parallel Generalized Suffix Tree Construction for Genomic Data 11

Table 2. Execution time (in seconds) of bi-directional partitioning to build GST on
different datasets with number of processors p = {1, 4, 8, 16}

Data Serial Distributed Shared Hybrid

1 4 8 16 4 8 16 4 8 16 32

200 4.8 94.2 90 87 43.8 42.6 38.4 70.8 73.2 75.6 1.51

300 16.2 121.8 107.4 106.2 72 48.6 43.2 88.8 75 75.6 1.37

400 35.4 168.6 148.2 124.8 102.6 54 57.6 114 87 96 1.36

500 91.8 231.6 151.8 154.8 145.2 76.2 62.4 146.4 103.8 105 1.36

1000 873 1135.2 428.4 291.6 856.8 202.2 154.8 635.4 312 214.2 1.36

10,000 – 3191.7 428.5 79.6 – – – 2878 418 77.3 18.78

not incorporate any intra-node parallelism instructions as discussed in Sect. 3.2.3
whereas the hybrid method will utilize both.

The shared memory architecture distributes the work into different co-located
processors (cores) on one single node. Notably, in this model, we do not require
any communication between two processes whereas the distributed model will
incur communicating the GST s. However, the number of processors and memory
available in shared model is fixed and limited as we can add new machines in
the distributed model. Nevertheless, this comparison will denote the difference
in the two memory architecture.

In Tables 1 and 2 we show the execution time of horizontal, vertical and
bi-directional partitioning, respectively. Each method is executed on p =
{2, 4, 8, 16} processors whereas p = 1 denotes the serial or sequential execution.
The sequential method is plaintext Ukkonen’s algorithm [14]. Furthermore, the
proposed hybrid approach uses both distributed and shared memory model with
two cores on each processor of distributed machines for the 0 and 1 branches of
GSTs.

In Table 1, The GST building time for smaller datasets (n,m ≤ 200) are
almost same for all settings. However, as the dataset size increases, the difference
in execution time starts to diverge. For example, the sequential execution of D200

takes 0.08 min whereas D1000 requires 14.55 min. The same operation takes 3.08
min on the hybrid approach with p = 16. Similarly, the distributed model takes
6.09 min which shows the impact of intra-node parallelism.

However, one interesting outcome is the shared model’s performance. It takes
the minimum time of 2.28 min with p = 16 which is the lowest in all three
experimental settings. However, it is noteworthy that it ran out of memory for
datasets n,m > 1000. This depicts the necessity of the distributed or hybrid
model as shared memory model are more suitable for datasets which only fits
the main memory.

Table 1 also shows the impact of vertical partitioning where we need to add
the path graphs. This addition is the only difference from the horizontal approach
as all the nodes working on data mi < m, needs to merge m − mi characters
to the underlying GSTs. For example, with vertical method it takes 25.24 min

12 Md M. A. Aziz et al.

Table 3. Maximum Execution time (seconds) of Tree Building (TB), Add Path (AP)
and Tree Merge (TM) for D1000

p Horizontal Vertical Bi-directional

TB AP TM TB AP TM TB AP TM

4 113.35 – 70.02 292.97 2.7 66.8 4.01 0.37 3.85

8 47.38 – 85.4 138.87 2.9 61.1 0.62 0.16 1.8

16 15.6 – 98 64.4 3.2 57.6 0.12 0.07 1.2

Table 4. Speedup analysis on D1000 for all methods with p = {2, 4, 8, 16}

Method Distributed Shared Hybrid

2 4 8 16 2 4 8 16 2 4 8 16

Horizontal 0.58 1.19 1.61 2.80 0.64 1.11 2.02 3.33 0.80 2.31 3.24 4.69

Vertical 0.90 1.74 2.31 2.39 0.84 2.62 4.45 6.38 0.85 3.48 4.66 4.72

Bi-directional – 0.77 2.04 2.99 – 1.02 4.32 5.64 – 1.37 2.80 4.08

to process D1000 whereas it took only 16.23 on horizontal approach. The rest of
the execution time also follows the same trend as more processor leads to faster
executions overall. The performance gain with shared model compared to hybrid
is also lost due to the thread synchronization as the threads operate on mi < m
requires more time for sequential path graph addition.

In Table 2, we show our best results where the data is partitioned into both
directions. Here, the tree building cost is reduced compared to the prior two
approaches as it resulted in smaller sub-trees. For example, with n = m = 100
and p = 4, each processor pi will work on 25 × 25 sized matrix whereas it will
lead to 25× 100 and 100× 25 partitions for horizontal and vertical, respectively.

Table 3 demonstrates the granular execution time for tree building, path
graph addition and the merge operation. We took the maximum time from each
run as these functions were executed in parallel. Notably, these values are the
building blocks for Tables 1 and 2. For example, the tree building time decreases
with the increment of processors p. Furthermore, the bi-directional tree build
cost decrements with the increment in processors as it divides the data by half.

In Table 4 we summarize the speedup (= Tpar/Tseq) results for D1000. Here,
the shared model performs well compared to distributed model due to its zero
communication cost. Notably, the distributed one is competitive for all p > 2
cases. Nevertheless, the shared model could not finish the D10,000 as it ran out
of the shared memory. On the contrary, both distributed and our hybrid model
constructed the targeted GST as it did not depend on the limited, fixed main
memory of one machine.

4.3 Utility Measure

We show the execution time of the targeted queries in Table 5. It denotes the
efficiency of GSTs performing arbitrary string search as the time only increases

Parallel Generalized Suffix Tree Construction for Genomic Data 13

Table 5. Query 1, 2 and 3 execution time in seconds

Query length |q| D1000 D500

EM SMM PVSMM EM SMM PVSMM

400 5e4 0.14 0.15 4e4 0.13 0.12

500 6e4 0.21 0.22 5e4 0.19 0.18

1000 1e3 0.68 0.72 1e3 0.63 0.59

Table 6. Design-level comparison of previous works and ours in GST construction

Work Parallelism model Disk-based GST

Distributed Shared

TDD [13] ✗ ✗ ✓ ✗

TRELLIS [10] ✗ ✗ ✓ ✗

Wavefront [6] ✓ ✗ ✓ ✗

ERA [8] ✓ ✗ ✓ ✗

PCF [4] ✓ ✗ ✗ ✗

Shun and Blelloch [11] ✗ ✓ ✗ ✗

DGST [15] ✓ ✗ ✓ ✓

Our work ✓ ✓ ✓ ✓

with the query length |q|. Notably, the execution time varies slightly for different
datasets as we only show the time for D1000 and D500 for space limitations.

5 Related Works

There has been multiple attempts in our targeted problem as shown in Table 6.
Since GST of a large genomic dataset does not fit a sizeable memory, there have
been several works to construct the tree in a file system [5]. These disk-based
suffix trees usually store the individual subtree (s) on file similar to our approach
[12]. For example, Tian et al. [13] showed a different suffix tree merging method
ST-Merge using the Top-Down Disk (TDD) Algorithm.

Wavefront [6] and its successor ERA (Elastic Range) [8] both targeted disk-
based and parallel approach to construct suffix trees. However, these works only
considered a suffix tree and distributed memory model, whereas, in this work,
we propose a hybrid method and GST. Comin and Farreras [4] proposed Parallel
Continuous Flow (PCF) which efficiently distributes the lexical sorting process
into multiple processors. Analogous to this work, Shun and Blelloch [11] also
proposed a parallel construction scheme utilizing cilk (shared memory) in 2014.
However, both works target suffix trees whereas GSTs contain a large number
of sequences which is more complicated and at the same time more useful.

14 Md M. A. Aziz et al.

Finally, in a very recent work in 2019, DGST [15] offered a 3× speed up
with data-parallel platform Spark and performed better than the state-of-the-
art ERA [8]. Nevertheless, it did not employ the shared or hybrid model as we
performed better with 4× speedup. One work in 2016 did report speedup upto
6× utilizing parallelism from Graphics Processing Units [9]. However, we do not
use such H/W and could not benchmark as their implementations is unavailable.

6 Conclusion

In this paper, we constructed GSTs for genomic data in parallel using external
memory. We also analyzed its performance using different datasets and queries.
In future, we would like to investigate parallel and private query execution on the
suffix/prefix tree structure [3]. Moreover, our methods can be utilized for con-
structing suffix arrays and benchmarked accordingly. Nevertheless, the proposed
parallel constructions can be generalized for other tree-based data structures
(e.g., prefix) which can be useful for different genomic data computations.

Acknowledgments. The research is supported in part by the CS UManitoba Com-
puting Clusters, Amazon Research Grant and NSERC Discovery Grants (RGPIN-2015-
04147).

References

1. Computing Resources. www.cs.umanitoba.ca/computing. Accessed 4 Dec 2019
2. Bieganski, P., Riedl, J., Carlis, J.V., Retzel, E.F.: Generalized suffix trees for bio-

logical sequence data: applications and implementation. In: HICSS (5), pp. 35–44
(1994)

3. Chen, L., Aziz, M.M., Mohammed, N., Jiang, X.: Secure large-scale genome data
storage and query. Comput. Methods Programs Biomed. 165, 129–137 (2018)

4. Comin, M., Farreras, M.: Parallel continuous flow: a parallel suffix tree construction
tool for whole genomes. J. Comput. Biol. 21(4), 330–344 (2014)

5. Farach, M., Ferragina, P., Muthukrishnan, S.: Overcoming the memory bottleneck
in suffix tree construction. In: Proceedings 39th FOCS, pp. 174–183. IEEE (1998)

6. Ghoting, A., Makarychev, K.: Serial and parallel methods for i/o efficient suffix tree
construction. In: Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pp. 827–840. ACM (2009)

7. Hariharan, R.: Optimal parallel suffix tree construction. J. Comput. Syst. Sci.
55(1), 44–69 (1997)

8. Mansour, E., Allam, A., Skiadopoulos, S., Kalnis, P.: ERA: efficient serial and
parallel suffix tree construction for very long strings. Proc. VLDB 5(1), 49–60
(2011)

9. Mǐsić, M.J., et al.: Parallelization of GST algorithm for source code similarity
detection. In: 24th TELFOR, pp. 1–4. IEEE (2016)

10. Phoophakdee, B., Zaki, M.J.: Genome-scale disk-based suffix tree indexing. In:
SIGMOD International Conference on Management of Data, pp. 833–844. ACM
(2007)

www.cs.umanitoba.ca/computing

Parallel Generalized Suffix Tree Construction for Genomic Data 15

11. Shun, J., Blelloch, G.E.: A simple parallel cartesian tree algorithm and its appli-
cation to parallel suffix tree construction. ACM TOPC 1(1), 8 (2014)

12. Tata, S., Hankins, R.A., Patel, J.M.: Practical suffix tree construction. In: Pro-
ceedings of the 13th International Conference VLDB, pp. 36–47 (2004)

13. Tian, Y., Tata, S., Hankins, R.A., Patel, J.M.: Practical methods for constructing
suffix trees. VLDB J. 14(3), 281–299 (2005)

14. Ukkonen, E.: Online construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

15. Zhu, G., et al.: DGST: efficient and scalable suffix tree construction on distributed
data-parallel platforms. Parallel Comput. 87, 87–102 (2019)

	Parallel Generalized Suffix Tree Construction for Genomic Data
	1 Introduction
	2 Preliminaries
	2.1 Haplotype Data
	2.2 Generalized Suffix Tree
	2.3 Utility Measure

	3 Methodology
	3.1 Architecture and Design Goals
	3.2 Parallel GST Construction

	4 Experimental Results and Analysis
	4.1 Evaluation Datasets and Implementation
	4.2 Performance Analysis
	4.3 Utility Measure

	5 Related Works
	6 Conclusion
	References

