
A Property Graph Data Model
for a Context-Aware Design Assistant

Romain Pinquié1(B), Philippe Véron2, Frédéric Segonds3, and Thomas Zynda4

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, Grenoble, France
romain.pinquie@grenoble-inp.fr

2 LISPEN, Arts et Métiers ParisTech, Aix-en-Provence, France
philippe.veron@ensam.eu

3 LCPI, Arts et Métiers ParisTech, Paris, France
frederic.segonds@ensam.eu

4 Capgemini, Toulouse, France
thomas.zynda@capgemini.com

Abstract. [Context] The design of a product requires to satisfy a large number of
design rules so as to avoid design errors. [Problem] Although there are numerous
technological alternatives for managing knowledge, design departments continue
to store design rules in nearly unusable documents. Indeed, existing propositions
based on basic information retrieval techniques applied to unstructured engineer-
ing documents do not provide good results. Conversely, the development and
management of structured ontologies are too laborious. [Proposition] We propose
a property graph datamodel that paves theway to a context-aware design assistant.
The property graph data model is a graph-oriented data structure that enables us to
formally define a design context as a consolidated set of five sub-contexts: social,
semantic, engineering, operational IT, and traceability. [Future work] Connected
to or embedded in a Computer Aided Design (CAD) environment, our context-
aware design assistant will extend traditional CAD capabilities as it could, for
instance, ease: (1) the retrieval of rules according to a particular design context,
(2) the recommendation of design rules while a design activity is being performed,
(3) the verification of design solutions, (4) the automation of design routines, etc.

Keywords: Design rule · Graph modelling · Knowledge management ·
Context-awareness · Cognitive assistant

1 Introduction

[Context]Designing a product is a knowledge-intensive activity. Thus, to prevent design
errors, that is, choices that make certain designs “not allowed” or inappropriate for their
intended use, design departments prescribe design rules. A design rule is a prescriptive
statement – often an unstructured blend of text and graphical objects (equation, table,
chart, sketch, etc.) – aiming at assisting deployed designers for the achievement of a
valid design, in compliance with best practices, applicable regulations, and Design for X

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
C. Fortin et al. (Eds.): PLM 2019, IFIP AICT 565, pp. 181–190, 2019.
https://doi.org/10.1007/978-3-030-42250-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42250-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-42250-9_17


182 R. Pinquié et al.

constraints. To store the bewildering array of design rules, companies use unstructured
documents – mainly in PDF format – which are over tens or hundreds of pages.

[Problem] Formerly, when companies used to store tens of design rules and share
them among tens of designers in a unique design office, documents remained adequate.
However, today, for various reasons, a document-based approach is not suitable anymore.
First, the large number of experts and the geographically dispersed teams make the
collection of design rules in documents cumbersome. That is all the more true at a time
when design rules are stored in multiple repositories: documents, databases, models,
expert’s head, etc. Once stored in a repository, design rules must be validated “Are we
defining the right design rule?”, verified “Are we defining the design rule right?”, and
managed for decades but change management using documents is laborious. Finally,
when a designer must provide a design free of errors, it has no other alternative than to
go through the “Big Data” and spend a large amount of time to retrieve the subset of
design rules that matches its own design context. Because of the aforementioned reasons
and the recentRenaissance of theModel-Based approach encouraging a fullmodel-based
engineering, we state that unstructured documents can no longer serve as an efficient
solution for storing design rules. There is a need for a context-aware design assistant that
aids designers in the collection, organisation, retrieval, use, and modification of design
rules.

[Proposal] The main contribution of this paper is twofold. First, we will analyse the
operational view of the context-aware design assistant to identify the stakeholders and
the services the assistant shall provide to them. Second, based on the identified services,
we will derive the graph-property data model that will support the context-aware design
assistant.

2 Literature Review

[Information retrieval] The problem of providing the right information to the right per-
son at the right time is one of the fundamental goals that motivated academics and indus-
trialists to work out a new strategic product-centric, lifecycle oriented and information-
driven approach – Product Lifecycle Management (PLM). Numerous PLM and knowl-
edge engineering research studies proposed state-of-the-art solutions to improve the
access and reuse of information stored in engineering documents [1–5]. Although, the
basic information retrieval capabilities – e.g. keyword search, faceted search, etc. – of
search engines facilitate the access to textual content, the lack of a structured represen-
tation degrades the performance for many reasons (technical terms, ambiguities, etc.)
[6]. This is the reason why researchers have reused semantic web techniques including
modelling languages (e.g. RDF, RDFS, OWL), query languages (e.g. SQWRL), and
software (e.g. Protégé) for modelling domain-specific knowledge, such as geometry and
topology [7, 8], feature recognition [9], generative modelling [10], nuclear design rules
[11], configuration management [12] and so on. An ontology, in its broadest sense, that
is, a description providing a shared understating of a given domain, facilitate the reuse
of knowledge, but it is extremely time-consuming to be developed and maintained. It is
therefore interesting to use natural language processing and text mining techniques to
not only automate the acquisition and processing of knowledge, but also to integrate both
rule-based and machine learning-based capabilities to make the assistant “intelligent”.



A Property Graph Data Model for a Context-Aware Design Assistant 183

[Cognitive assistant] Cognitive assistants, which are also known as expert systems
or knowledge-based agents, are “intelligent” computer programs that learn more or less
complex problem-solving expertise from human experts so as to assist human nonexpert
in solving similar problems [13]. One key feature of cognitive assistant is its ability
to adapt itself to a given context that is not limited to linguistic characteristics like
information retrieval systems. It can therefore provide better answers than a search
engine. For instance, a cognitive assistant could process multi-factorial information
including the user role, its social relationships in the company, the operational CAX
environment he is using, etc. to provide personalised answers to questions asked by a
designer.

[Context-aware] Many research studies on knowledge management refer to the
concept of “context”. For instance, Dhuieb et al. [14] propose a framework for managing
manufacturing knowledge with a multiscale and context-aware approach. Although the
application to manufacturing differs to design, the authors provide us with some details
on the definition of the context that includes three viewpoints: operational (activities
and task of the worker), organizational (team and role of the worker), and user-centric
(expertise and skills). Related to our research goal, Rowson et al. [15] investigate the
idea of building reusable expert knowledge using screen monitoring and contextual
similarity. Context similarity is defined as the identification in real time of a resemblance
between the script under elaboration and schemes in the knowledge base, but it seems
to us that too many aspects of the framework are assumed, such as the form and the
content of the knowledge base, the way it is fed with information, the query language
and patterns, the similarity measure, etc. The concept of “context” remains therefore
too fuzzy to be reused for our mission. If we extend our literature review to the theory
of information retrieval in context, Ruthven [16] sums up the different way to explore
context (related searches, keywords query expansion, query suggestion, etc.) based on
various dimensions of the user context: task context, social context, personal context,
spatio-temporal context, environmental context, etc.Wemaywonder,why is it so difficult
to define what “context” means? The reason for this is simply that “context” is one of
those suitcase-like words that we use to conceal the complexity of very large ranges of
different things whose relationships we do not yet comprehend. In this paper, we propose
to use a property graph data model to attempt to define the concept of context in product
design.

[Property graph data model] A property graph data model is a model where data
structures for the schema and/or instances are modeled as graphs for managing graph-
like data and the data manipulation is expressed by graph-oriented operations using a
graph query language [17]. A graph-oriented data structure facilitates the modelling of
entities, relationships and properties that make up the design context. Using NoSQL
graph-oriented database systems such as Neo4J is also flexible as we can create, read,
update, and delete nodes and relationships without impacting the schema. This is a very
important advantage since we will never come up with a complete property graph data
model the first attempt.



184 R. Pinquié et al.

3 A Property Graph Data Model for a Context-Aware Design
Assistant

In this section, first, we detail the operational view, that is, the stakeholders, the ser-
vices the context-aware design assistant shall provide to the stakeholders, and the
inputs/outputs of the assistant. Second, we give the gist of the modelling process that
leaded us to the property graph datamodel underlying the context-aware design assistant.

3.1 Operational Analysis of the Context-Aware Design Assistant

Our context-aware design assistant is a knowledge-based cognitive assistant that shall
help designers to provide solutions satisfying applicable design rules.

Fig. 1. Context diagram of the context-aware design assistant

Figure 1 illustrates the stakeholders interacting with the context-aware design assis-
tant. So far, we have identified two types of intended effects (outputs). First, the context-
aware design assistant shall recommend informal – i.e. not computable – design rules
to the designer. We do not guess how this service will be implemented – e.g. Chat-
bot, recommendation engine, search engine, (un)supervised learning, etc. Second, the
context-aware design assistant shall communicate computable design rules to extend
CAX capabilities (e.g. automating modelling routines, enriching models with semantic
annotations, verifying design solutions, etc).

To provide both services, the context-aware design assistant requires inputs. In the
one hand, there are the design rules that feed the context-aware design assistant. The
design rules, which are recognized and codified knowledge [18], mainly come from
unstructured (e.g. PDF, Word, etc.) documents, semi-structured (e.g. Excel, XML, etc.)
documents, and databases. The secondmain source of design rules, which are recognized
tacit knowledge (e.g. commonsense) or unrecognized knowledge (e.g. expertise and
skill) [18], corresponds to domain experts (e.g. marketing, manufacturing, V&V, sells,
support, maintenance, etc.) who shall systematize [18] Design for X rules in the context-
aware design environment throughout the product lifecycle. Finally, in addition to the
inputs corresponding to design rules, designers shall provide queries to interact with the
context-aware design assistant.



A Property Graph Data Model for a Context-Aware Design Assistant 185

3.2 Modelling of the Property Graph Data Model

To derive the property graph data model that supports the mission of the context-aware
design assistant, that is, “As a designer, I want to knowwhich design rulesmy design shall
satisfy, so that I can provide proof design.”, we follow a systematic 4-step modelling
process:

1. Find what questions the context-aware design assistant shall help designers to
answer;

2. For each question, identify entities (nodes of the property graph) and relationships
(edges of the property graph);

3. Express each question as a graph pattern.
4. Translate the graph pattern into a query path.

The simplest question to answer is a graph pattern corresponding to a predicate, that
is, a triple (Subject – Predicate → Object) as follows:

Question Which (design rules) [has_material] (material X)?

Graph
Pattern

Query Path (:Design_rule) – [:HAS_MATERIAL] → (:Material)

Using such query, we can answer various questions, such as: Which design rule has
manufacturing process X? Which design rule belongs to the engineering domain X? etc.

A graph-oriented data model brings an added-value when queries traverse richly
interconnected data. We can therefore answer more sophisticated questions such as the
one hereafter.

Question Which design rules are favored by person who use the same software as me?

Graph
Patterns

Consolidated
Graph
Pattern

Query Path (:Design_rule) ← [:FAVOR] – (:Person) – [:USE] → (:Software)

It is challenging to enumerate all questions that the context-aware design assistant
shall answer. Another complementary reductionist approach consists in defining the



186 R. Pinquié et al.

parts, which are not questions but pieces of the design context, before reassembling
each component to recreate the whole property graph data model (Fig. 2). In general,
there is a need for zigzagging between both approaches.

Fig. 2. Multi-level design context modelling

So far, we have identified five sub-contexts that make up the overall design context.
Each sub-context is a sub-graph that we illustrate hereafter. To remain synthetic, we do
not provide all properties of entities and relationships. For each context, we also give
clues on how information can be acquired.

• Social context: It is the user profile and its relationships with colleagues. To cap-
ture the information, we ask each designer to fill a user profile form except for
“:FRIEND_OF” relationships which are extracted from the social platforms deployed
within the company (e.g. Slack, Skype, etc.) (Fig. 3).

Fig. 3. Social context sub-property graph model

• Semantic context: It is mainly the result of natural language processing [19] and
machine learning-based text mining [20, 21] techniques applied to a textual design
rule. Keywords are words tagged with a part-of-speech corresponding to a noun, a
verb, an adjective, or an adverb. In addition to the part-of-speech tagging, natural
language processing techniques (sentence splitting, tokenization, lemmatization, and
stemming) enable us to derive the stem and the lemma of each keyword. Removing



A Property Graph Data Model for a Context-Aware Design Assistant 187

the inflected forms of the keywords – lemmatization – enable us to get linguistically-
related terms (synonym, holonym, meronym, hypernym, derived related terms, and
the definition) from the Wordnet thesaurus. In addition to extend keywords with lin-
guistic contextonys, we can use the open multilingual knowledge graph ConceptNet
to find related concepts. For instance, using the conceptual relationship (:Airplane) –
[:USED_FOR]→ (:Travel) we can ease the navigation among design rules containing
both entities (:Airplane) and (:Travel). The self-relationship [:SIMILAR_TO] on the
(:Lemma) entity helps to retrieve similar normalised keywords (lemmas). The simi-
larity score is computed using the Word2vec [22] and GloVe [23] language models
(Fig. 4).

Fig. 4. Semantic context sub-property graph model

• Engineering context: It is a set of interrelated engineering information that is also
derived by processing the text of the design rule statement. By using a rule-based
classifier and taxonomies that enumerate materials, manufacturing process, and bill-
of-materials we can identify keywords corresponding to specific domain knowledge.
Thus, when a designer is looking for design rules related to a rib made of aluminum,
he can explore such graph patterns. The (:Expertise) – e.g. electronics, mechanics, IT,
etc. – entity to which the design rule belongs to can be inferred using a supervised
machine-learning based classifier [20] (Fig. 5).

• Operational IT context: It is the current working IT situation within which the
designer operates. The software (e.g. CATIA), the workbench (e.g. Part Design), and
the operation (e.g. Extrusion) are software processes running on amachine and human-
machine interactions that we can monitor. The data being edited (e.g. Beam.prt) and
the PDM project within which the designer is working can be captured using the API
of the PDM software. The self-relationship [:LINK_TO] represents link between data
in the PDM software (e.g. link between a CAD model, its FEA mesh, and its 2D
drawing) (Fig. 6).

• Traceability context: Finally, the traceability context enables designers to trace the
origin of the design rules and manage their changes. When one or several documents



188 R. Pinquié et al.

Fig. 5. Engineering context sub-property graph model

Fig. 6. Operational IT context sub-property graph model

are uploaded to the context-aware design assistant, a new job is created. Job serves to
trace uploads. To facilitate the retrieval of design rules within the original documents,
we trace the chapter within which it is stated. Most document parsers can retrieve the
structure of documents, but there is a limit for some PDF documents encoded in a
format that does not provide relevant semi-structured HTML or XML tags. The author
of the design rule is either the person that directly prescribes it in the design assistant
or the metadata “author” of the document source. Documents parser such as Apache
Tika enables us to extract metadata. Finally, basic engineering change management
concepts (maturity, revision and iteration) serve to trace the lifecycle of design rules
and result from user manual inputs (Fig. 7).

3.3 Consolidation of Sub-property Graph Data Models

All sub-graphs corresponding to sub-contexts must be consolidated to end up with the
property graph data model. We do not provide an overview of the whole property graph
but we illustrate the concept of consolidation bymerging the sub-graph of the social con-
text and the sub-graph of the engineering context using the relationship [:HAS_TOPIC].
This consolidation enables designers to answer new questions such as “Which design
rules belong to the expertise (X = e.g. Mechanics) that has topic (Y = e.g. mechanical
joints) is liked by a designer who is a friend of mine?” (Fig. 8)



A Property Graph Data Model for a Context-Aware Design Assistant 189

Fig. 7. Traceability context sub-property graph model

Fig. 8. Example of a consolidation of the social and engineering contexts

4 Conclusion

In this paper, we propose a property graph data model to support a context-aware design
assistant. The assistant will use contextual knowledge to retrieve relevant design rules so
that designers can create proof designs. The proposed property graph is the consolidation
of five sub-contexts that can be queried using graph patterns.

As future work, we intend to continue to enrich our property graph data model and
to develop the services that the context-aware design assistant shall provide to designers
(design rules recommendation, design verification, design routines automation, etc.).

References

1. Dong, A., Agogino, A.M.: Text analysis for constructing design representations. In: Gero,
J.S., Sudweeks, F. (eds.)Artificial Intelligence inDesign 1996, pp. 21–38. Springer, Dordrecht
(1996). https://doi.org/10.1007/978-94-009-0279-4_2

2. Marsh, J.R.: The capture and utilization of experience in engineering design. Ph.D. thesis,
Cambridge University, UK (1997)

https://doi.org/10.1007/978-94-009-0279-4_2


190 R. Pinquié et al.

3. Song, S., Dong, A., Agogino, A.: Modeling information needs in engineering databases using
tacit knowledge. J. Comput. Inf. Sci. Eng. 2(3), 199–207 (2003)

4. McMahon, C., Lowe, A., Corderoy, M., Crossland, R., Shah, T., Stewart, D.: Waypoint: an
integrated search and retrieval system for engineering documents. J. Comput. Inf. Sci. Eng.
4(4), 329–338 (2004)

5. Yang, M.C., Wood, W.H., Cutkosky, M.R.: Design information retrieval: a thesauri-based
approach for reuse of informal design information. Eng. Comput. 21(2), 177–192 (2005)

6. Li, Z., Raskin, V., Ramani, K.: Developing engineering ontology for information retrieval.
ASME J. Comput. Inf. Sci. Eng. 8(1), 21–33 (2008)

7. Tessier, S., Wang, Y.: Ontology-based feature mapping and verification between CAD
systems. Adv. Eng. Inform. 27(1), 76–92 (2013)

8. Sanya, I.O., Shehab, E.M.: An ontology framework for developing platform-independent
knowledge-based engineering systems in the aerospace industry. Int. J. Prod. Res. 52(20),
6192–6215 (2014)

9. Wang, Q., Yu, X.: Ontology based automatic feature recognition framework. Comput. Ind.
65(7), 1041–1052 (2014)

10. Sharka, W.: Application of MOKA methodology in generative model creation using CATIA.
Eng. Appl. Artif. Intell. 20(5), 677–690 (2007)

11. Fortineau, V., Fiorentini, X., Paviot, T., Louis-Sidney, L., Lamouri, S.: Expressing formal
rules within ontology-based models using SWRL: an application to the nuclear industry. Int.
J. Prod. Lifecycle Manag. 7(1), 75–93 (2014)

12. Yang, D., Miao, R., Wu, H., Zhou, Y.: Product configuration knowledge modelling using
ontology web language. Expert Syst. Appl. 36(3), 4399–4411 (2009)

13. Tecuci, G., Marcu, D., Boicu, M., Schum, D.A.: Knowledge Engineering: Building Cognitive
Assistants for Evidence-Based Reasoning. Cambridge University Press, Cambridge (2016)

14. Dhuieb, M.A., Laroche, F., Bernard, A.: Context-awareness: a key enabler for ubiquitous
access to manufacturing knowledge. In: 48th CIRP Conference on Manufacturing Systems
– CIRPS CMS 2015 (2016). Procedia CIRP 41, 484–489

15. Rowson, H., Bricogne, M., Roucoules, L., Durupt, A., Eynard, B.: Knowledge capture and
reuse through expert’s activity monitoring in engineering design. In: Chiabert, P., Bouras, A.,
Noël, F., Ríos, J. (eds.) PLM 2018. IAICT, vol. 540, pp. 621–630. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01614-2_57

16. Ruthven, I.: Information retrieval in context. In:Melucci,M., Baeza-Yates, R. (eds.)Advanced
Topics in Information Retrieval. INRE, vol. 33, pp. 187–207. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20946-8_8

17. Angles, R.: The property graph database model. In: 12th Alberto Mondelzon International
Workshop on Foundations of Data Management, Cali, Colombia, 21–25 May (2018)

18. Yoshikawa, H.: Systematization of design knowledge. CIRP Ann. – Manuf. Technol. 42(1),
131–134 (1993)

19. Pinquié, R., Véron, P., Segonds, F., Croué,N.:Natural language processing of requirements for
model-based product design with ENOVIA/CATIA V6. In: Bouras, A., Eynard, B., Foufou,
S., Thoben, K.-D. (eds.) PLM 2015. IAICT, vol. 467, pp. 205–215. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33111-9_19

20. Pinquié, R., Véron, P., Segonds, F., Croué, N.: A requirement mining framework to support
complex sub-systems suppliers. In: CIRP Design 2018, Nantes, France, 23–25 May (2018)

21. Pinquié, R., Véron, P., Segonds, F., Croué, N.: Requirement mining for model-based product
design. Int. J. Prod. Lifecycle Manag. 9(4), 305–332 (2016)

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space (2013)

23. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation
(2014)

https://doi.org/10.1007/978-3-030-01614-2_57
https://doi.org/10.1007/978-3-642-20946-8_8
https://doi.org/10.1007/978-3-319-33111-9_19

	A Property Graph Data Model for a Context-Aware Design Assistant
	1 Introduction
	2 Literature Review
	3 A Property Graph Data Model for a Context-Aware Design Assistant
	3.1 Operational Analysis of the Context-Aware Design Assistant
	3.2 Modelling of the Property Graph Data Model
	3.3 Consolidation of Sub-property Graph Data Models

	4 Conclusion
	References




