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Abstract

Global Circulation Models (GCMs) are used to forecast climate change in
Southern Africa, and the evidence shows that the region is going to warm up
by up to 2° by the year 2050. Namibia is one of the driest countries in Southern
Africa and is at a high risk of becoming much drier than current situation by 57%.
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Very few studies have been carried out in Southern Africa to show actual impacts
of climate change. Practical applicability of GCMs at a local spatial scale remains
limited due to the coarse nature of the models. Hence, improvement of the GCMs
must begin with better understanding of the local microclimates and how they
respond to regional circulation patterns. In many regions of Southern Africa, the
lack of potential tools to access old climatic records precludes the estimation of
climate trends beyond 100 years. In spite of these impediments, there are areas
with excellent tree species such as Dichrostachys cinerea that are able to be used
as climatic archives for specific time periods. In this chapter, the study shows that
the combination of tree ring chronologies and precipitation records is a powerful
methodology in climate modeling in the southern hemisphere and reveals
nuances that show climate change. The evaluation of data from tree rings coupled
with precipitation trends reveals signals that show that climate has indeed been
changing over the past ten decades and will have a negative impact on liveli-
hoods. These data can now be used in predictive models that can be used to
project future scenarios and assist policy makers and planners to see how climate
will evolve in the next 50–60 years.

Introduction

Current scientific, observational, and anecdotal data show that climate change is now
a well-observed phenomenon in most parts of the world (IPCC 2007, 2015;
Shikangalah and Mapani 2019). Traditional livelihoods of subsistence farming,
food security, water security, and cultural organizational patterns are likely to be,
and some are already impacted by effects of Climate change. Thus, climate change
will be a major problem in the near future, impacting water resources, agricultural
and food systems in Southern Africa, particularly Namibia (Adhikari et al. 2015). In
Namibia, there is an increasing trend observed in flooding, droughts, and evapo-
transpiration (Zeidler et al. 2010). The shortening of the crop growing season, rising
average summer and winter temperatures, is among some of the evidence of climate
change impacts in Namibia (Mapaure 2016). Temperature in Namibia has been
increasing at three times the global mean, and the increase in temperature prediction
for 2100 for Namibia ranges from 2 °C to 6 °C, particularly in the central regions
(Reid et al. 2007).

These impacts will with time increasingly limit water supply, development
activities, and consequently will affect all cross-sections of society (Ohlsson and
Turton 1999; Showers 2002; Gumbo 2003; Wang et al. 2009). A number of authors
have predicted that a quarter of the world’s population will experience severe water
scarcity within the first quarter of the next century and approximately a billion
people in arid regions will face absolute water scarcity by 2025 (Seckler et al.
1999; Ruth et al. 2007). Water demand in urban areas is constantly on the upswing
in Africa, Namibia, included (Mapani 2005; Shikangalah and Mapani 2019). The
water demand is anticipated to rise by 50% between 2010 and 2030 (Lafforgue
2016).
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Trees are excellent archives of environmental site conditions that affect their
biological processes (Breitenmoser et al. 2014) and this information is reflected in
their growth ring histories. Growth rings provide information about the history of the
area in which the trees are resident, including other information such as tree age, fire
events, droughts, attacks by pests, logging, and severe storms (Xing et al. 2012;
Feliksik and Wilczyński 2009). Growth rings in trees are influenced by climate
conditions and they show distinct episodes of moist and dry periods for over time
(Novak et al. 2013; Palmer et al. 2018; Shikangalah et al. 2020). Dendrochronology
can be used to reconstruct and draw conclusions about rainfall patterns over regional,
hemispheric, or even global scales (Zhang 2015; NASA 2008). Tree growth rings are
a valuable proxy for climate change studies on both local and regional scales (Nock
et al. 2016; Novak et al. 2013; Steenkamp et al. 2008). Data from growth rings
records is valuable for providing information that may not be available in areas
where climate records never existed in the past. Hence, they aid the understanding of
ecosystem dynamics and to predict changes in the ecological surroundings. This
information is especially important in arid and semi-arid environments such as
Namibia, where sound land management is crucial due to the climate-related vul-
nerability of such environments and the frequent lack of observational data. This
holds particularly true for Namibia as the country is the most arid in Southern Africa
and second only in aridity to the Sahara Desert in North Africa (Food and Agricul-
ture Organization (FAO) 2005; Turpie et al. 2010). More than 90% of Namibia’s
landmass is classified as semi-arid, arid, or hyper-arid, and the country is character-
ized by sporadic rainfall and high evaporation rates (Mendelsohn et al. 2002;
Shanyengana et al. 2004; Barnard 2012). This chapter is aimed at assessing the
responsiveness ofD. cinerea to different climatic environments and thus be used as a
proxy for climate change.

Evidence for Climatic Variation from Dendrochronological
Studies

In this study, we selected sites that had a degree of variation in both precipitation and
temperature. This climatic gradient revealed how the species responded to different
amounts of rainfall and temperatures. The study sites are located at Lake Otjikoto
(19° 110 4100 S; 17° 320 5900E); Farm Onyoka located on the Waterberg Plateau Park
(20° 250 000 S; 17° 130 000 E), and Farm Kuzikus (23° 200 000 S; 18° 210 5900E) located
south of Windhoek (Fig. 1). The annual precipitation for the study sites is 550 mm to
600 mm for Lake Otjikoto, 450–500 mm for Onyoka, and less than 300 mm for
Kuzikus. These sites also vary in temperature as follows: an average annual tem-
perature of 25 °C for Lake Otjikoto, 30 °C for Waterberg Plateau Park, and 31 °C for
Kuzikus (Mendelsohn et al. 2002). Lake Otjikoto has better soils of loamy to clay
with a good water holding capacity as opposed to the deep sandy Kalahari soils
(Kříbek et al. 2018; Mendelsohn et al. 2002; Rodgers et al. 2017).
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Samples and Data Processing

The precipitation data for 1970–2014 were obtained from Namibian official Mete-
orological Service in Windhoek. The growth rings of Dichrostachys cinerea were
used, a native species to Namibia which is a fast-growing species that has become an
undesirable encroacher and is particularly a problem in areas where there has been
overgrazing (Orwa et al. 2009; Chepape et al. 2011; O’Connor et al. 2014). The
population of D. cinerea decreases significantly from Lake Otjikoto site where the
trees are abundant, to Kuzikus where the trees are very few (Fig. 1).

Wood samples of Dichrostachys cinerea were collected from randomly selected
trees from three sites namely Lake Otjikoto, Waterberg, and Kuzikus (Fig. 1), with a
total of 32 samples ofD. cinerea. For each tree, one sample disc was taken at a height
of about 1.0 m and air dried. The rings were identified using a combination of
techniques for correction and validation of ring growth, that is, binocular micro-
scope; WinDENDRO software, which automatically counts and dates each marginal

Fig. 1 The three study sites Lake Otjikoto (LO), Waterberg (WB), and Kuzikus (KZ) are shown
along the rainfall gradient in Namibia
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parenchyma; and COFECHA program (Holmes 1983), which is commonly used in
dendrochronology to ensure quality and measurement accuracy in growth ring
segments (Grissino-Mayer 2001). To make sure that all the rings were correctly
detected and dated by WinDENDRO software, at least four different paths radiating
from the pith were created and analyzed (Grudd 2006; Heinrich et al. 2009;
Shikangalah et al. 2020).

To explore the influence of temporal climatic variability on growth rings, the use
of response and correlation functions from tree-ring chronologies and monthly
climatic data was employed after the methods of Zang and Biondi (2013). Using
the dplR package (Bunn 2008) of R 3.4.4 (R Core Team 2018), the dcc function in
TreeClim Package in R was used. The dcc function builds upon and extends the
functionality of program DENDROCLIM2002 (Biondi and Waikul 2004; Zang and
Biondi 2013, 2015). A total of 32 samples were subject to spline detrending (50%
frequency) and then averaged to a chronology using Tukey’s biweight robust mean.
The timeframe used is only for the wet period (November of previous year–April of
current year) is used between 1977 and 2015.

Precipitation as Reflected in Tree Rings

Rainfall in Namibia is unequally distributed, even in years when the country receives
good rains, not all areas experience the same precipitation levels. Figure 2 shows the
annual rainfall at the three study sites for the years 1970–2014. The rainfall distri-
bution at the three sites follows the national trend where precipitation decreases from
north-east to south west (Fig. 1). Figure 2 shows rainfall variability over four
decades at the three study sites. At Lake Otjikoto, the annual rainfall was above
the average (558 mm) for the years 1972–1974, 1976–1978, 1997, 2001, 2006,
2007–2008, and 2011–2012. At Waterberg, the following seasons had above average
(471 mm) precipitation, 1973–1974, 1983–1984, 1987–1988, 2001–2001, and
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Fig. 2 Annual precipitation variation over the last four decades for Lake Otjikoto, Waterberg, and
Kuzikus
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2013–2014 seasons. Kuzikus has the least number of years with above average
rainfall (281 mm), namely, 1973–1974, 1997, and 2006–2007. In decadal terms, the
decade 1970–1979 had more rainfall than the 1980–1989 at Otjikoto, whereas the
decade 1990–1999 had less rainfall than the 1970–1979 but higher rainfall than the
1980–1989 decade. However, the 1990–1999 decade at Otjikoto had a much higher
variance than the previous two decades. This feature was much more enhanced in the
2000–2009 decade, where the variability was extreme. For Waterberg, the most
variable decade in terms of precipitation was the 1980–1989 decade, followed by the
2000–2009. In the 2000–2009 decade, there was much less rainfall at Waterberg
compared with the three previous decades. Kuzikus lies in a semi-arid zone, and
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Fig. 3 The relationship between ring widths and annual rainfall Dichrostachys cinerea at (a)
Kuzikus (300 mm), (b) Waterberg (450 mm), and (c) Lake Otjikoto (600 mm), based on average
growth ring of 4 trees per site
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precipitation variability is the norm. Kuzikus shows a highly variable precipitation
signature over all the four decades.

In Fig. 3a, the growth ofD. cinerea at Kuzikus (annual rainfall of 250–300 mm/a)
shows a positive correlation with rainfall except in years when flooding occurred. At
Waterberg (Fig. 3b) and Lake Otjikoto (Fig. 3c), the correlation is also positive. In
years when annual rainfall was received over a short period of time, resulting in
runoff, the correlation is weak, for example, 2006 and 2016 at Kuzikus, and 1987
and 1995 at Waterberg. Figure 4 summarizes the comparisons in ring width growth
across the precipitation gradient. Dichrostachys cinerea ring width growth correlates
with the amount of precipitation, though the median ring widths did not significantly
differ among sites.

Growth Ring Responses to Climatic Variation

Using bootstrapped correlation function analysis (R Core Team 2018), the darker
bars in Fig. 5 indicate a coefficient significant at p< 0.05, and the lines represent the
95% confidence interval. Figure 5 shows that the response coefficients of tempera-
ture, precipitation, and aridity at Lake Otjikoto and Kuzikus sites. The results shows
that at Lake Otjikoto, the temperature, moisture availability, and overall aridity have
positive but weak influence on growth rings in some months, mainly November and
December (temperature), February (temperature and rainfall), and all three variables
during March and April months (Fig. 5a). On contrary at Kuzikus, the influence of
moisture availability is still positive but to a lesser extent than at Lake Otjikoto (Fig.

Fig. 4 Summary of all data from Fig. 3 for the three study sites. The median ring width for Otjikoto
is much higher than for both Waterberg and Kuzikus
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5b). The temperature has a significant negative influence in growth rings in Decem-
ber (darker bar, Response Coefficients (r) ¼ � 0.13).

Figure 6 shows the autocorrelation lags of growth ring width with precipitation
soil moisture. For Kuzikus, D. cinerea in the period 2000–2009 shows a negative
correlation, whereas at Waterberg shows an intermediate response to precipitation
soil moisture with growth ring width. The growth ring soil-moisture correlations at
Kuzikus where temperatures are high are much weaker compared to the correlations
at Lake Otjikoto where rainfall is much higher. Lake Otjikoto shows a very strong
positive correlation, way above the normality curve.

Fig. 5 (a) Lake Otjikoto site: D. cinerea growth ring responsiveness to temperature, precipitation,
and aridity (climatic factors affecting tree growth the most). (b) Kuzikus site:D. cinerea growth ring
responsiveness to temperature, precipitation, and aridity (climatic factors affecting tree growth the
most)
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Fig. 6 Auto correlation lags (1–4) of rainfall with tree ring growth data. Kuzikus in (a) is a much
drier and is the opposite of the wetter Otjikoto pattern in (c)

Dichrostachys cinerea Growth Rings as Natural Archives for Climatic. . . 9



Lessons Learnt from Arid and Semi-arid Savannas

Evidence from precipitation (Fig. 2) and tree growth rings has shown that D. cinerea
is sympathetic to precipitation soil moisture (Figs. 3, 4, and 5). This relationship is
cardinal in the use of tree ring chronologies as proxies to climate variability. Trees
are good archives of biomass systematic addition due to their physiological response
to water stress that affects growth rings (McCarrol and Loader 2004). Additionally
the stomatal conductance is controlled by the relative availability of edaphic mois-
ture (precipitation) and external leaf water vapor deficit (humidity) (Woodborne et al.
2015). In Namibia, the wet (rain) season used to start at the beginning of November
four decades ago; and there has been a slow but gradual and systematic shift to mid-
December in the past decade (Shikangalah and Mapani 2019). Such information is
available in precipitation and tree ring growth records (Shikangalah et al. 2020).
Work in Southern Africa has now proven beyond doubt that dendrochronology
works as good as in the northern hemisphere for certain species of trees (Gourlay
1995; February 2000; Fichtler et al. 2004; Trouet et al. 2006; Woodborne et al. 2015;
Shikangalah et al. 2020). Woodborne et al. (2015) reconstructed a 1000 year carbon
isotope rainfall proxy record from the South African Adansonia digitata.

The key significance of soil moisture supply for the tree growth and its apparent
influence is indicated in Fig. 4, where the Lake Otjikoto site with a higher mean
annual precipitation shows a much higher ring width growth than at the other two
sites. The data illustrate that D. cinerea growing in areas with high amounts of
rainfall grows wider rings when all other climatic factors are taken together (Fig. 4).
The patterns observed in rainfall (Fig. 2) are reflected in the autocorrelation diagrams
(Fig. 6) which is a reflection of the microclimate effects on tree growth ring at each
particular location. This suggests that D. cinerea growth rings can be used as a proxy
for climatic variations wherever it is present. This finding is echoed by Kwak et al.
(2016) who showed that soil moisture or groundwater near flowing streams
influenced tree ring width growth and the size of the rings was proportional to the
amount of moisture received.

The results show that in the years when floods occurred (Fig. 3), tree ring width
did not correspond to the amount of rainfall received. This fact was attributed to
runoff effects, where certain species do not add significant biomass under flooded
conditions (e.g., Schulman 1945; Astrade and Bégin 1997; Kwak et al. 2016). Thus,
there is an optimum maximum soil moisture threshold for D. cinerea.

Southern African species have been for a long time considered as not good at
adding biomass systematically on an annual basis. However, tree chronologies forD.
cinerea and S. mellifera were established by Shikangalah et al. (2020). Watkins et al.
(2018) showed that tree ring sensitivity to climatic variables is dominated by
precipitation. It is abundantly clear that for Southern Africa, Namibia, in particular,
tree ring studies are excellent proxies for climate variability studies as they act as
natural archives that record site conditions and precipitation effects.

The responsiveness of D. cinerea to precipitation, air temperature, and the overall
aridity was also examined (Fig. 5). Overall, the response coefficients suggest
contrast response of growth rings to climatic conditions at the two sites, with
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exception of rainfall and aridity in January and February. The low responses are
mostly experienced at Kuzikus, while most of the positive responses are experienced
at Lake Otjikoto. The response function also showed a precipitation response to a
less significant correlation during February to April when the temperatures are cooler
after some rainfall. The response coefficients are indicative periods on which the
growth rings are quite small, suggesting that D. cinerea trees have a very narrow
range of responsiveness in which they can grow, therefore supporting the evidence
that they add the least amount of biomass in areas of less rainfall such as at Farm
Kuzikus (Fig. 4). Due to the lack of darker bars which show a high significant
response, these results demonstrate that growth rings are also influenced by other
variables such as type of soil, groundwater, and vegetation.

Conclusions

Growth rings in D. cinerea correlate to the amount of precipitation uptake by the
species. Dichrostachys cinerea is dependent on rainfall for its survival, it has
colonized wetter sites (Lake Otjikoto and Waterberg) more than it does in drier
sites (e.g., Kuzikus). Therefore, it is much more important for farmers in high rainfall
areas to anticipate more encroachment by D. cinerea and take necessary interven-
tions to control or manage it. With regard to the usefulness of the species as proxy for
modeling climatic conditions, it is concluded that D. cinerea is more responsive to
climatic variables as it has proportionally responded to the amount of rainfall with
ring growth and temperature. At Lake Otjikoto, growth rings are enhanced by both
precipitation and temperature, whereas at Kuzikus, only the precipitation improves
growth rings, the temperature effects the growth rings negatively. The findings from
this chapter suggest that D. cinerea can be used as a proxy for precipitation shifts
with time over relatively short periods, for instance, of 30- to 50-year histories, and
where older trees can be found, it can be used to reconstruct climatic changes over
several hundred years.
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