
Crossing Paths with Hans Bodlaender:
A Personal View on Cross-Composition

for Sparsification Lower Bounds

Bart M. P. Jansen(B)

Eindhoven University of Technology, Eindhoven, The Netherlands

b.m.p.jansen@tue.nl

Abstract. On the occasion of Hans Bodlaender’s 60th birthday, I give
a personal account of our history and work together on the technique
of cross-composition for kernelization lower bounds. I present several
simple new proofs for polynomial kernelization lower bounds using cross-
composition, interlaced with personal anecdotes about my time as Hans’
PhD student at Utrecht University. Concretely, I will prove that Vertex
Cover, Feedback Vertex Set, and the H-Factor problem for every
graph H that has a connected component of at least three vertices, do
not admit kernels of O(n2−ε) bits when parameterized by the number
of vertices n for any ε > 0, unless NP ⊆ coNP/poly. These lower bounds
are obtained by elementary gadget constructions, in particular avoiding
the use of the Packing Lemma by Dell and van Melkebeek.

Keywords: Cross-composition · Kernelization lower bounds · Graph
problems

1 Getting Acquainted

1.1 Our Meeting

Hans Bodlaender saved me from becoming a computer-game programmer.1 After
having spent my high-school years programming a Star Wars-themed shooter, I
decided to enroll in the Computer Science program at Utrecht University. My
main motivation at the time: it was the only university in the Netherlands to
offer a master’s degree in Game Design.
1 For this special occasion, I will allow myself to write in first person.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 803421, ReduceSearch).

The original version of this chapter was revised: this chapter was previously published
non-open access. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-42071-0 19

c© The Author(s) 2020, corrected publication 2022
F. V. Fomin et al. (Eds.): Bodlaender Festschrift, LNCS 12160, pp. 89–111, 2020.
https://doi.org/10.1007/978-3-030-42071-0 8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42071-0_8&domain=pdf
http://orcid.org/0000-0001-8204-1268
https://doi.org/10.1007/978-3-030-42071-0_19
https://doi.org/10.1007/978-3-030-42071-0_8

90 B. M. P. Jansen

My undergraduate years passed by, during which I had my first encounters
with Hans during his Algorithms course in 2005. I recall a lecture on dynamic pro-
gramming, which dealt with the Pretty Printing problem of dividing words
over lines to minimize the sum of the squares of the unused spaces on each line.
Hans mentioned that a greedy strategy does not work for this problem; you really
need to use dynamic programming. A fellow student asked if one can at least use
a greedy strategy to determine what the optimal number of lines is: can it be
that an optimal layout uses more lines than the greedy minimum? Rather than
immediately giving the answer, Hans gave the question back to us students. It
fascinated me, and the remainder of the first half of the lecture passed me by
as I worked out an example showing the answer to be yes. During the break, I
showed my construction to Hans. I watched proudly as he shared my example
with the rest of the class after the break. This was my first personal interaction
with Hans, and a sample of how he piqued my interest in algorithmic questions.
But at that time, in my second year of study, I had no inkling as to how much
he would later affect my career.

The real epiphany came two years later, when I was already enrolled in the
master’s program on Game Design. I was following Hans’ course Algorithms
and Networks, which covered some basic concepts of parameterized complexity,
when it hit me: I like programming computer games because you have to be
very efficient with your computations: otherwise your game is going to be either
slow or ugly, and in either case people will not enjoy it. The game aspect was
ultimately not so appealing to me. So I decided to change course dramatically.

All the gaming courses I had followed up to that point were moved into
the elective space of my new master’s program Applied Computing Science. I
asked Hans to supervise my master’s thesis project on kernelization, to which he
quickly agreed. He lent me a copy of Downey and Fellows’ first textbook [18] on
parameterized complexity to read up on the relevant background. I remember a
distinct feeling of shock when seeing the title of Section 6.3: “Bodlaender’s The-
orem” in the table of contents. Up to that point, I had no idea that the friendly
and humble algorithms professor at my home university was the internationally
recognized authority on treewidth!

Several months into my final project, Hans told me that he was writing
a grant proposal to acquire funding to study kernelization, and asked me if
I would mind being mentioned in the proposal as a qualified candidate for the
PhD position he was requesting. A couple of months later, nearing the end of my
master thesis project, I had proven my first kernelization results when Hans told
me the good news: his NWO TOP grant “KERNELS: Combinatorial Analysis of
Data Reduction” was funded. That led to my easiest job interview ever, which
consisted of two lines. Hans: “So, do you still want to become a PhD student?”
to which my answer was a resounding “Yes”! I never looked back.

1.2 Our Work on Kernelization Lower Bounds

I started working on my PhD under Hans’ supervision in 2009, investigating the
power and limitations of efficient and provably effective preprocessing. When

Crossing Paths with Hans Bodlaender 91

Stefan Kratsch joined the research group in 2010, we were completed into a trio
that studied kernelization during the day and played boardgames at night.2 Ker-
nelization theorems were discussed at Chez Hans, the nickname that Hans’ office
earned for the clandestine coffee machine that served many of our colleagues.3

Building on a series of papers that had just come out [3,4,22,23], we spent a
lot of time working on hardness proofs showing that small kernels do not exist
under certain complexity-theoretic assumptions. For this contribution to the
festschrift on account of Hans’ 60th birthday, I therefore decided to write about
kernelization lower bounds based on the framework of cross-composition [5,7]
developed by Hans, Stefan, and myself. The purpose of the technical content of
this article is to show a number of new and elegant kernelization lower-bound
proofs based on cross-composition, showing that Vertex Cover, H-Factor,
and Feedback Vertex Set parameterized by the number of vertices n cannot
be efficiently reduced to equivalent instances on O(n2−ε) bits for any ε > 0,
unless NP ⊆ coNP/poly. The first two yield new proofs for existing theorems,
but the third result is new. The proofs are elementary, based on the cross-
composition framework with simple gadgeteering. All lower bounds will follow
from combining a suitable choice of starting problem for the reduction, together
with gadgets to deactivate most parts of the composed instance. In particular,
all these lower bounds can be proven without having to resort to the Packing
Lemma of Dell and van Melkebeek [16].

1.3 Organization

In Sect. 2 I introduce the prerequisite definitions of parameterized complex-
ity and kernelization, together with the framework of cross-composition. The
remainder of the article is organized into three case studies. Each case study
deals with one problem, discussing the relevant related work before presenting a
kernelization lower bound using cross-composition. Section 3 deals with param-
eterized complexity’s fruit fly, Vertex Cover. More general vertex-deletion
problems such as Feedback Vertex Set are considered in Sect. 4. Section 5
focuses on the H-Factor problem. Finally, I give some concluding reflections
in Sect. 6.
2 Kernelization and Lower Bounds

2.1 Kernelization

Kernelization investigates how a complexity parameter contributes to the diffi-
culty of an input to an algorithmic decision problem, and therefore uses notions
2 I have particularly fond memories of Robo Rally, or applied algorithmic game theory

as Hans liked to put it, in which you plan a sequence of actions for your robot in
the hope of it being the first to visit all checkpoints. More often than not, it ends
up pushed into a pit or shot at by competing robots which simultaneously carry out
the instructions that their governing players programmed.

3 Hans did not drink coffee until his fifties, strategically saving the caffeine-filled
theorem-producing beverage until it was needed. I am following in his footsteps
and have never had a single cup of coffee.

92 B. M. P. Jansen

from parameterized complexity [13,19–21]. Fix a finite alphabet Σ used to
encode problem inputs, such as Σ = {0, 1}. A parameterized problem is a sub-
set Q ⊆ Σ∗ ×N, which contains the pairs (x, k) for which x is the encoding of an
input to Q whose parameter value is k, and for which the answer to the encoded
question is yes. Intuitively, a kernelization for a parameterized problem Q is
a polynomial-time preprocessing algorithm that reduces any input (x, k) to an
equivalent one, whose size and parameter are bounded solely in terms of the com-
plexity parameter k, independent of the size |x| of the original input. The lower
bounds I present turn out to work against the more general notion of generalized
kernelization, which essentially investigates whether inputs of one parameterized
problem Q can be efficiently reduced to small instances of another problem Q′.
I therefore need the following formal definition.

Definition 1. Let Q,Q′ ⊆ Σ∗ ×N be parameterized problems and let h : N → N

be a computable function. A generalized kernel for Q into Q′ of size h(k) is an
algorithm that, on input (x, k) ∈ Σ∗ × N, takes time polynomial in |x| + k and
outputs an instance (x′, k′) such that:

1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q′ = Q. It is a polynomial (generalized)
kernel if h(k) is a polynomial.

Much of the initial research on kernelization lower bounds [4,6,8,17] dealt
with the distinction between polynomial and super-polynomial kernel sizes.
Later, a refinement of the tools made it possible to also give lower bounds on
the degree of the polynomial that bounds the kernel size, for problems that do
admit a polynomial-size kernel. In this article, I will focus on the latter kind of
lower bounds. For a historical overview of the development of kernelization lower
bounds, I refer to the introductory sections of the article on cross-composition
by myself, Hans Bodlaender, and Stefan Kratsch [7].

2.2 Intuition for Polynomial Kernelization Lower Bounds

To show the impossibility (under suitable complexity-theoretic conjectures) of a
parameterized problem Q having small kernels, one must prove that the existence
of a small kernel would imply algorithmic consequences that are “too good to be
true” and therefore violate established beliefs such as P �= NP. Before present-
ing the formal details, let me try to convey some intuition behind such proofs,
elaborating on what these consequences are. Consider the NP-hard Vertex
Cover problem, whose inputs consist of a graph G and integer k. The ques-
tion is whether G has a set S of at most k vertices, such that each edge of G
contains at least one vertex from S. Using the Nemhauser-Trotter theorem [31],
an instance (G, k) can efficiently be reduced to an equivalent instance (G′, k′)
where G′ has at most 2k vertices and k′ ≤ k. The kernelized instance can be
encoded in O(k2) bits, by writing down the adjacency matrix of G′ and the

Crossing Paths with Hans Bodlaender 93

integer k′ in unary. How could one prove that it is impossible to always obtain
a kernel of, say, O(k1.9) bits?

Let us consider algorithmic consequences which are “too good to be true”.
First of all, suppose there would be a polynomial-time algorithm A that, given a
sequence of t instances (G1, k1), . . . , (Gt, kt) of Vertex Cover, would be able
to distinguish between the case that all input instances have answer no, and the
case that there is at least one yes-instance among the inputs. Then using A,
we could solve the Vertex Cover decision problem in polynomial time: to
determine the answer to (G, k), just ask A whether a sequence consisting of some
arbitrarily chosen no-instances, together with the instance (G, k), contains at
least one yes-instance. Hence such an algorithm A is too good to be true.

Now suppose that there is an algorithm B that, given a sequence of t ∈ NO(1)

instances of Vertex Cover, each on N bits, outputs a single Vertex Cover
instance (G∗, k∗) on (t−1) ·N bits whose answer is yes if and only if there was a
yes-instance in the input sequence. Even though such an algorithm B does not
directly give a way to solve Vertex Cover in polynomial time, I will argue it is
still too good to be true. To achieve an output size of (t − 1) · N bits, intuitively
it has to omit one of the input instances when building the output (G∗, k∗). But
to ensure that the output (G∗, k∗) accurately represents the logical or of the
input sequence, it seems that B must solve an input instance before it can be
sure that it is safe to omit it. After all, if the omitted instance was the only one
in the sequence whose answer was yes, then omitting it changes the value of
the logical or. Since we believe Vertex Cover cannot be solved in polynomial
time, it becomes intuitively clear that algorithm B is also too good to be true.

We can therefore prove the impossibility of having kernels of bitsize O(k1.9)
by developing a so-called cross-composition algorithm C which, together with
such a kernel, would yield algorithm B. Suppose C can take any sequence of t
instances of Vertex Cover, each on n vertices and therefore N ∈ O(n2) bits,
and composes these into a single instance (G′, k′) whose answer is the logical or
of the answers to the inputs, on O(

√
t · n) vertices such that k′ ∈ O(

√
t · n).

Suppose further that D is a kernelization for Vertex Cover of bitsize O(k1.9).
Then by pipe-lining algorithms C and D, we obtain an algorithm such as B,
thereby showing that D should not exist. Indeed, if we take a sequence of t = n50

instances of Vertex Cover, each on n vertices, then the composition C merges
these into a single instance with parameter value k′ ∈ O(

√
t·n) = O(n26). Apply-

ing the kernelization D to this composed instance, reduces it to size O((n26)1.9) ≤
O(n49.4) < (t − 1) · N ≈ n52, therefore forming an algorithm of type B that is
too good to be true; hence if we can find such a cross-composition C, then such a
kernel D should not exist. By increasing the number of input instances from n50

to larger powers of n, the same intuitive reasoning rules out the existence of a
kernel of bitsize O(k2−ε) for any ε > 0.

Note that the key property of C that makes this work, is that it manages
to compress the information of t instances on n vertices each, into a single
instance on O(

√
t ·n) vertices. While this may seem far-fetched at first, there are

elementary reductions achieving this. They exploit the fact that t instances on n

94 B. M. P. Jansen

vertices carry t · n2 bits of information (for each of the t graphs, which of the n2

potential edges exist?) while a single instance on O(
√

t · n) vertices has O(t · n2)
potential edges, and can therefore encode the same amount of information if it
is packed efficiently. Now let me make this intuition precise.

2.3 The Formal Cross-Composition Framework

The fact that algorithms such as B are too good to be true4 was proven by Dell
and van Melkebeek [16, §6], building on work by Fortnow and Santhanam [23],
which in turn was triggered by the seminal work on kernelization lower bounds
by Hans with Downey, Fellows, and Hermelin [4]. The existence of algorithms
like B does not directly lead to the consequence that P = NP, but implies the
complexity-theoretic containment NP ⊆ coNP/poly, which is still considered very
unlikely. To prove kernelization lower bounds, we therefore formalize what the
composition algorithm, referred to above as C, has to achieve.

In many cases, it turns out to be easier to build composition algorithms for
sequences of “similarly-sized” input instances (G1, k1), . . . , (Gt, kt), for example
when the input graphs all have the same number of vertices, edges, and target
vertex cover size k. Since there are exponentially many different instances of a
given number of vertices, edges, and target cover size, such a restriction does
not make the algorithmic task much easier. Indeed, even if the composition
algorithm C described above is only applied to sequences of similarly-sized inputs,
the combination of C and D still leads to algorithms that are too good to be true.
For that reason, the cross-composition framework [7] allows one to choose an
equivalence relation on inputs, efficiently grouping inputs of bitsize N into NO(1)

different classes, and only requires a composition algorithm to be able to merge
inputs coming from the same class.

Definition 2 (Polynomial equivalence relation). An equivalence rela-
tion R on Σ∗ is called a polynomial equivalence relation if the following condi-
tions hold.

1. There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x
and y belong to the same equivalence class in time polynomial in |x| + |y|.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Definition 2 allows one to circumvent padding arguments that were frequently
used in earlier proofs. Using this notion, we can now formalize cross-composition
for proving polynomial lower bounds on kernelization. For this overview article,
rather than defining bounded-cost cross-composition in general (cf. [7, §3.2]),
I restrict myself to the less technical degree-2 cross-compositions like the ones
described above, which are used to rule out kernels of subquadratic size. In the
following definition, I use the shorthand [n] = {1, . . . , n} for n ∈ N.

4 The formal details differ slightly from my intuitive interpretation above.

Crossing Paths with Hans Bodlaender 95

Definition 3 (Degree-2 cross-composition). Let L ⊆ Σ∗ be a language,
let R be a polynomial equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a
parameterized problem. A degree-2 or-cross-composition of L into Q with respect
to R is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging to
the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi| and outputs

an instance (x∗, k∗) ∈ Σ∗ × N such that:

1. the parameter k∗ is bounded by O(
√

t · (maxi |xi|)c), where c is some constant
independent of t, and

2. (x∗, k∗) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

The adjective cross in the name cross-composition comes from the fact that
the reduction crosses over from inputs of problem L, into an input of param-
eterized problem Q. This contrasts the earlier plain composition framework of
Bodlaender, Downey, Fellows, and Hermelin [4] which required problems to be
composed into themselves. As we will see, crossing over from one problem to
another makes it easier to prove lower bounds in several settings.

When building a degree-2 or-cross-composition, it will be convenient if the
number of input instances t is a square: then

√
t ∈ N, which allows the input

instances to be enumerated as xi,j for i, j ∈ [
√

t]. This assumption can be made
without loss of generality. Suppose we have a cross-composition C that works if t
is a square, and we want to obtain a cross-composition C′ for an arbitrary number
of inputs. Then C′ can be obtained as follows. Given an input sequence x1, . . . , xt

to C′, let t′ ≥ t be the smallest square that is larger than t. Note that t′ ≤ 2t
because the nearest power of two suffices. Then build a new sequence of t′ inputs
by appending t′−t copies of x1 to x1, . . . , xt, and apply C to this sequence. Clearly
the logical or of the old and new sequences have the same value, and it is easy
to verify that C′ satisfies all conditions of Definition 3. We will therefore assume
without loss of generality that t is a square.

The following theorem shows that degree-2 or-cross-compositions indeed rule
out subquadratic kernels, under the assumption that NP � coNP/poly.

Theorem 1 ([7, Thm. 3.8, Prop. 2.3]). Let L ⊆ Σ∗ be a language that is
NP-hard under Karp reductions, let Q ⊆ Σ∗ × N be a parameterized problem,
and let ε > 0 be a real number. If L is NP-hard under Karp reductions and
has a degree-2 or-cross-composition into Q, and Q parameterized by k has a
polynomial (generalized) kernelization of bitsize O(k2−ε), then NP ⊆ coNP/poly.

In the upcoming case studies, I will consider a number of graph problems
parameterized by the number of vertices n. Hence the parameter value, denoted
by k in the definitions of the framework, will be the number of vertices of the
input graph that is commonly denoted as n. Any pair (G, k) consisting of an n-
vertex graph, together with a target value k in the range {0, . . . , n}, can trivially
be encoded in O(n2) bits. Graph problems whose input is of the form (G, k)
therefore have trivial polynomial kernels of bitsize O(n2) when parameterized
by the number of vertices n. The lower bounds will prove that this cannot be
significantly improved. So intuitively, the lower bounds will rule out that there

96 B. M. P. Jansen

is an efficient sparsification algorithm that reduces a dense n-vertex instance
to an equivalent one with a subquadratic number of edges. Note that such a
sparsification bound directly implies that, for any problem parameter � whose
value on n-vertex graphs is O(n), there cannot be a kernel of bitsize O(�2−ε).

3 Vertex Cover

The first case study concerns the Vertex Cover problem. The problem
admits a simple degree-based kernelization due to Sam Buss [11] that reduces
inputs (G, k) to O(k2) vertices and edges. The same bounds can be obtained
via the sunflower lemma [20, §9.1]. The linear-programming based kernelization
based on the Nemhauser-Trotter theorem [31] achieves a better bound of 2k
vertices, but may still have Ω(k2) edges. In a breakthrough paper [15,16], Dell
and van Melkebeek proved that this is optimal up to ko(1) factors: they proved
that Vertex Cover has no kernel of bitsize O(k2−ε) for any ε > 0, unless
NP ⊆ coNP/poly. Their proof is based on a nontrivial number-theoretic construc-
tion called the Packing Lemma [16, Lemma 2], which shows how to construct
graphs whose edges partition into many large cliques, in such a way that no large
cliques exist other than in the packing. Later, Dell and Marx [14, Thm. C.1]
showed how to obtain the same lower bound using an elementary gadget con-
struction, by composing instances of Multicolored Biclique based on a table
layout (cf. [21, §20.2]).

To illustrate the technique of degree-2 or-cross-composition, I will present
an alternative elementary lower-bound construction for Vertex Cover, which
avoids the intermediate problem of Multicolored Biclique. It will be use-
ful to use a restricted version of Vertex Cover as a starting point for the
composition, though, which is formalized in the following way.

Vertex Cover on Subdivided Graphs
Input: A graph G, an integer k, and a partition of V (G) into A ∪ B such
that G[A] is an independent set and each connected component of G[B] con-
sists of a single edge.
Question: Does G contain a set S ⊆ V (G) of size at most k, such
that S ∩ {u, v} �= ∅ for each edge {u, v} ∈ E(G)?

The partition of V (G) into sets A and B that induce subgraphs of a specific
form will be useful when merging a series of inputs into one. Intuitively, it will
allow us to merge the sets A of various distinct inputs into a single set, while
preserving the adjacency information of the original inputs.

Lemma 1. Vertex Cover on Subdivided Graphs is NP-hard under Karp
reductions.

Proof. Consider an instance (G, k) of Vertex Cover, and pick an arbitrary
edge {x, y}. Let G′ be the graph obtained from G by removing the edge {x, y},

Crossing Paths with Hans Bodlaender 97

Fig. 1. Left: A 5-vertex graph at the top; below it, the graph obtained by subdividing
every edge twice, which is used as input G1,1 to the cross-composition. In the subdivided
instance, the set A of original vertices is in black, the set B of subdividers is in white.
Middle: Another 5-vertex graph with its double-subdivision, used as instance G2,3.
Right: Illustration of the cross-composition of Theorem 2 for t = 3 · 3 inputs of the
subdivided problem with 5 vertices in A and 8 vertices in B. Edges between different
sets A′

i, A
′
i′ are visualized schematically, similarly for B′

j , B
′
j′ . Only the edges inserted

on account of instances G1,1 and G2,3 are shown.

inserting two new vertices x′, y′ and the edges {x, x′}, {x′, y′}, {y′, y}. Intu-
itively, G′ is obtained by subdividing the edge {x, y} twice. It is easy to ver-
ify that G has a vertex cover of size k if and only if G′ has a vertex cover of
size k+1, which was first observed by Poljak [32] for the complementary problem
Independent Set (cf. [9, Lemma 7]).

To prove the lemma, we use the following reduction from the NP-complete
Vertex Cover problem. Given an instance (G, k) on m = |E(G)| edges, let G′

be obtained by replacing each edge of G by a three-edge path as above, and
let k′ := k+m. By the observation above, G has a vertex cover of size k if and only
if G′ has a vertex cover of size k′. Letting A = V (G) denote the original vertices
in G′, and letting B denote the inserted subdivider vertices, we have that G′[A]
is an independent set and G′[B] consists of isolated edges. Hence (G′, k′, A,B)
is a valid equivalent instance of Vertex Cover on Subdivided Graphs. �

Using this starting problem, I now present the degree-2 or-cross-composition
that rules out subquadratic kernels for Vertex Cover. Refer to Fig. 1 for an
illustration.

Theorem 2. For any ε > 0, Vertex Cover parameterized by the number of
vertices n does not admit a generalized kernelization of bitsize O(n2−ε) unless
NP ⊆ coNP/poly.

Proof. By Theorem 1 and Lemma 1 it suffices to give a cross-composition of
Vertex Cover on Subdivided Graphs into Vertex Cover, such that
any sequence of t inputs of bitsize at most N each, is composed into a single
instance (G′, k′) on n ∈ O(

√
t · NO(1)) vertices.

98 B. M. P. Jansen

Assume without loss of generality that t is a square. We define a polynomial
equivalence relation R so that two well-formed instances are equivalent if they
agree on the number of vertices in A, the number of vertices in B, and on the
target value k. Enumerate the inputs as (Gi,j , k, Ai,j , Bi,j) for i, j ∈ [

√
t], such

that all inputs have |Ai,j | = nA and |Bi,j | = nB . Build a graph G′ as follows.

1. For each i ∈ [
√

t], add a vertex set A′
i of nA independent vertices to G′.

2. For each i ∈ [
√

t], add a vertex set B′
i of nB vertices to G′. Insert edges to

ensure G′[B′
i] consists of nB/2 isolated edges.

3. For each i �= i′ ∈ [
√

t], add all possible edges between A′
i and A′

i′ .
4. For each j �= j′ ∈ [

√
t], add all possible edges between B′

j and B′
j′ .

5. For each i, j ∈ [
√

t], insert edges between A′
i and B′

j so that G′[A′
i ∪ B′

j] is
isomorphic to Gi,j .

To complete the cross-composition, we set k′ := (
√

t − 1)(nA + nB) + k.
Observe that G′ has

√
t · (nA + nB) vertices, which is suitably bounded for a

degree-2 or-cross-composition since input instances have N ≥ nA+nB bits. The
construction can easily be performed in polynomial time. It remains to verify
that G′ has a vertex cover of size k′ if and only if some input instance Gi,j has
a vertex cover of size k.

Suppose first that there is a yes-instance Gi∗,j∗ among the inputs that has a
vertex cover of size at most k. Since G′[A′

i∗ , B′
j∗] is isomorphic to Gi∗,j∗ by

construction, it has a vertex cover S′
i∗,j∗ of size at most k. Combined with

all (
√

t − 1)(nA + nB) remaining vertices of G′, this yields a vertex cover of size
at most k′ of G′, proving that the result of the composition is a yes-instance.

For the other direction, suppose S′ is a vertex cover of size at most k′ in G′.
Since all possible edges are present between distinct sets A′

i and A′
i′ , there is at

most one set A′
i∗ from which S′ does not contain all vertices. Similarly, there is

at most one set B′
j∗ from which S′ does not contain all vertices. Since |S′| ≤

k′ = (
√

t − 1)(nA + nB) + k, while S′ contains all (
√

t − 1)(nA + nB) vertices
of (

⋃
i�=i∗ A′

i) ∪ (
⋃

j �=j∗ B′
j), it follows that S′ ∩ (A′

i∗ ∪ B′
j∗) ≤ k. Since G′[A′

i∗ ∪
B′

j∗] is isomorphic to Gi∗,j∗ , this proves that Gi∗,j∗ has a vertex cover of size at
most k, so that there is a yes-instance among the inputs. �

Let me point out two crucial features of the cross-composition above. First,
note that in Step 5 of the construction we heavily exploit the fact that all
graphs Gi,j [Ai,j] are isomorphic, and similarly that all graphs Gi,j [Bi,j] are iso-
morphic. The fact that the vertex sets of the input graphs can be partitioned into
two parts that induce very uniformly structured subgraphs, will also be exploited
in the upcoming lower bounds. Second, we used some problem-specific gadgeteer-
ing to ensure that solutions to G′ must contain all but one of the groups A′

i in
their entirety, and similarly for the groups B′

j . The step of inserting all possible
edges between the groups ensures that effectively, a good solution in a single
instance Gi∗,j∗ = G′[A′

i∗ ∪ B′
j∗] is sufficient to guarantee the existence of a good

solution in G′. More involved gadgeteering will be needed to achieve a similar
or behavior in future constructions.

Crossing Paths with Hans Bodlaender 99

4 Feedback Vertex Set

We move on to another classic vertex-deletion problem, Feedback Vertex
Set. We consider the problem on undirected graphs; in fact, I will consider only
undirected graphs throughout this article. An instance (G, k) therefore consists
of an undirected graph G and integer k, and asks whether G has a subset S
of at most k vertices, whose removal from G leaves an acyclic graph. Several
polynomial kernels were developed for the problem [2,10,25,33], one of which is
famously due to Hans [1]. The current-best kernel [25] has O(k2) vertices and
edges, and can be encoded in O(k2 log k) bits. Dell and van Melkebeek [16] show
that Feedback Vertex Set does not have kernels of bitsize O(k2−ε) unless
NP ⊆ coNP/poly. However, their proof does not say anything about the pos-
sibility of sparsifying n-vertex instances to O(n2−ε) bits. I will show that the
latter is also impossible, assuming NP � coNP/poly, by adapting the construc-
tion of Theorem 2. We will again need a version of the problem whose vertex
set partitions into two parts that induce uniformly structured subgraphs. Since
Feedback Vertex Set remains NP-complete [27] on bipartite graphs (subdi-
viding every edge preserves the answer to the problem, and yields a bipartite
graph), the following NP-complete problem will be used as the source problem
for the cross-composition.

Feedback Vertex Set on Bipartite Graphs
Input: An undirected graph G, an integer k, and a partition of V (G) into A∪
B such that G[A] and G[B] are both independent sets.
Question: Does G contain a vertex set S ⊆ V (G) of size at most k, such
that G − S is acyclic?

Theorem 3. For any ε > 0, Feedback Vertex Set parameterized by the
number of vertices n does not admit a generalized kernelization of bitsize O(n2−ε)
unless NP ⊆ coNP/poly.

Proof. I present a degree-2 or-cross-composition. Let (Gi,j , k, Ai,j , Bi,j)
for i, j ∈ [

√
t] be a sequence of t input instances of Feedback Vertex Set on

Bipartite Graphs that all share the same target value k, the same number nA

of vertices in the A-set, and the same number nB of vertices in the B-set, which
may be assumed by a suitable choice of R. Build an instance (G′, k′) as follows.

1. For each i ∈ [
√

t], add a set A′
i of nA independent vertices to G′ and number

these from 1 to nA.
2. For each i ∈ [

√
t], add a set B′

i of nB independent vertices to G′ and number
these from 1 to nB .

3. For each i, j ∈ [
√

t], insert edges between A′
i and B′

j so that G′[A′
i ∪ B′

j] is
isomorphic to Gi,j .

4. For each i ∈ [
√

t], add a vertex set A∗
i = {a∗

i,x,y,c | x, y ∈ [nA], c ∈ [2]} to G′.
For each i < i′ ≤ √

t, for each x, y ∈ [nA], for each c ∈ [2], make a∗
i,x,y,c

adjacent to the xth vertex of A′
i and the yth vertex of A′

i′ .

100 B. M. P. Jansen

5. For each j ∈ [
√

t], add a vertex set B∗
j = {b∗

j,x,y,c | x, y ∈ [nB], c ∈ [2]} to G′.
For each j < j′ ≤ √

t, for each x, y ∈ [nB], for each c ∈ [2], make b∗
j,x,y,c

adjacent to the xth vertex of B′
j and the yth vertex of B′

j′ .

Define A∗ :=
⋃

i A∗
i and B∗ :=

⋃
j B∗

j . By the last two steps, for each i ∈ [
√

t],
each vertex of A∗ is adjacent to at most one vertex in A′

i, and symmetrically for
adjacencies of B∗ into sets B′

j . For every pair of vertices x ∈ A′
i, y ∈ A′

i′ for i < i′,
there are two vertices a∗

i,x,y,1 and a∗
i,x,y,2 adjacent to both x and y. Effectively,

these form a cycle with x and y, prompting the following observation.

Observation 1. If S′ is a feedback vertex set in G′, and i < i′ ∈ [
√

t] such
that there exist x ∈ A′

i \ S′ and y ∈ A′
i′ \ S′, then S′ contains a vertex

of {a∗
i,x,y,1, a

∗
i,x,y,2}. The analogous statement for B′ also holds.

To complete the cross-composition, we set k′ := (
√

t − 1)(nA + nB) + k.
Observe that G′ has O(

√
t · (nA +nB)2) vertices, suitably bounded for a degree-

2 or-cross-composition. It remains to verify that G′ has a feedback vertex set
of size k′ if and only if some input instance Gi,j has one of size k.

Suppose first that Gi∗,j∗ has a feedback vertex set of size k. Since G′[A′
i∗ ∪

B′
j∗] is isomorphic to Gi∗,j∗ , it has a feedback vertex set Si∗,j∗ of size k. Con-

sider S′ := Si∗,j∗ ∪ (
⋃

i�=i∗ A′
i) ∪ (

⋃
j �=j∗ B′

j), which has size at most k′. Now
observe that G′−S′ can be obtained from the acyclic graph G′[A′

i∗ ∪ B′
j∗]−Si∗,j∗

by inserting the vertices A∗ ∪B∗ along with their edges into (A′
i∗ ∪ B′

j∗)\Si∗,j∗ .
As each vertex of A∗ is adjacent to at most one vertex of A′

i∗ , and each vertex
of B∗ is adjacent to at most one vertex of B′

j∗ , the graph G′ − S′ is obtained
from an acyclic graph by inserting vertices of degree at most one, which does not
introduce any cycles. Hence S′ is a feedback vertex set of size at most k′ in G′.

For the reverse direction, suppose that G′ has a feedback vertex set S′ of
size at most k′. If there are distinct indices i < i′ ∈ [

√
t] for which A′

i \ S′

and A′
i′ \S′ are both nonempty, then normalize S′ as follows. Let i∗ be the largest

index for which A′
i∗ \ S′ �= ∅, and define S′′ := (S′ \ A∗) ∪ (

⋃
i�=i∗ A′

i). Since all
vertices of A∗ have at most one neighbor in A′

i∗ , they have degree at most one
in G′ − S′′ and therefore G′ − S′′ is also acyclic. Let me show that |S′′| ≤ |S′|.
For each i < i∗, for each vertex x ∈ A′

i \ S′, vertex x belongs to S′′ but not
to S′. To show S′′ is not larger than S′, we charge each such x to a unique
vertex that is contained in S′ but not in S′′. Fix an arbitrary y ∈ A′

i∗ \ S′. By
Observation 1 the solution S′ contains a vertex of {a∗

i,x,y,1, a
∗
i,x,y,2} to which we

can charge x ∈ A′
i\S′. In this way we can charge each x ∈ S′′\S′ to a unique pair,

implying that |S′′| ≤ |S′|. Hence this normalization process yields a feedback
vertex set S∗ of size at most k′ that contains all vertices of

⋃
i�=i∗ A′

i, for a suitable
choice of i∗ ∈ [

√
t]. By a second analogous and independent normalization step

for B′, we may assume there is an index j∗ such that S∗ contains all vertices
of

⋃
j �=j∗ B′

j . Since |S∗| ≤ k′ = (
√

t − 1)(nA + nB) + k, the set S∗ contains at
most k vertices from G′[A′

i∗ ∪B′
j∗], which is isomorphic to Gi∗,j∗ by construction.

Hence Gi∗,j∗ has a feedback vertex set of size at most k. �

Crossing Paths with Hans Bodlaender 101

The type of construction of Theorem 3 can be used to prove analogous lower
bounds for many other vertex-deletion problems to nontrivial hereditary graph
classes: all one has to do is change the source problem of the composition, and
change the gadgets in the sets A∗, B∗ which ensure that there is an optimal
solution that avoids vertices from at most one set A′

i∗ and at most one set B′
j∗ .

Such gadgets have been developed by Lewis and Yannakakis in their generic
NP-completeness proof [30]. As their description is somewhat technical, I will
not treat them here.

5 H-Factor

I devote the last case study of this article to generalizations of the Matching
problem in graphs. For (undirected, simple) graphs G and H, an H-packing in G
is a collection H1, . . . , Hk of vertex-disjoint subgraphs of G, each of which is iso-
morphic to H. An H-factor in G is an H-packing H1, . . . , Hk whose vertex sets
partition V (G). The corresponding decision problem H-Factor asks if an input
graph G has an H-factor. Kirkpatrick and Hell proved [28] that H-Factor is
NP-complete when H contains a connected component of three or more ver-
tices, and is polynomial-time solvable otherwise by a reduction to Maximum
Matching. Dell and Marx proved [14, Thm. 1.4] under the standard assump-
tion NP � coNP/poly that for connected graphs H on at least three vertices, the
H-Factor problem parameterized by the number of vertices n does not admit
a generalized kernel of bitsize O(n2−ε) for any ε > 0. Their proof relies on the
Packing Lemma. In this section, I will give an elementary proof of the same
theorem. The proof uses the following gadgets by Kirkpatrick and Hell.

Lemma 2 ([28, Lemma 3.5], cf. [14, Lemma 4.2]). For each connected graph H
on at least three vertices, there is a graph H ′ called the local H-coordinator gadget,
which contains |V (H)| distinct connector vertices C ⊆ V (H ′) as an independent
set, and has V (H ′) \ C as its interior vertices, such that:

– There is an H-factor of H ′ and there is an H-factor of H ′ − C.
– For each ∅ � C ′

� C there is no H-factor of H ′ − C ′.
– The graph H ′ − C is connected.
– If a graph G contains H ′ as an induced subgraph, such that no interior vertex

of H ′ is adjacent to a vertex outside of H ′, then in any H-factor H1, . . . , Hk

of G, the following holds: for every interior vertex v ∈ V (H ′)\C, if v ∈ V (Hi)
then V (Hi) ⊆ V (H ′).

See Fig. 2 for an example. The last coherence property of the gadget effec-
tively ensures that the H-subgraphs covering interior vertices of H ′, cannot cover
any vertices not belonging to H ′.

Consider a fixed graph H on h vertices. Given a graph G, the operation of
attaching a local H-coordination gadget onto a set S = {v1, . . . , vh} of h vertices
in G is defined as follows: insert a new disjoint copy of the local coordination
gadget H ′, and denote its connector vertices by c1, . . . , ch. For each j ∈ [h],
identify vj with cj , and use vj as the identity of the merged vertex. I will use
this operation in several constructions.

102 B. M. P. Jansen

Fig. 2. Left: Local coordination gadget H ′ for H = K3, whose connector vertices C
are visualized by squares. Middle: a K3-factor of H ′. Right: a K3-factor of H ′ − C.

Lemma 2 yields the following useful property. If a graph G is obtained by
attaching a local H-coordination gadget H ′ onto an independent set S in an
existing graph, and possibly inserting other vertices and edges that are not inci-
dent to the interior vertices of H ′ in such a way that S remains an independent
set, then in any H-factor of G the following holds: either all connector vertices
are covered by copies of H contained entirely within H ′, or no connector vertex
is covered by a copy of H that contains other vertices of H ′. In the former case,
I say that the gadget H ′ absorbs all its connector vertices; in the latter, that the
gadget absorbs none of its connector vertices.

As in the earlier sections, a more structured NP-hard version of H-Packing
is needed as the source problem for the cross-composition. For fixed connected
graphs H and F , it is defined as follows.

H-Factor with F -Partition
Input: A graph G and a partition of V (G) into A ∪ B such that G[A] is
an independent set, each connected component of G[B] is isomorphic to F ,
and |A| and |B| are both multiples of |V (H)|.
Question: Does G have an H-factor?

For each connected graph H for which H-Factor is NP-hard, there is a
connected graph F for which the above problem is NP-hard; F can be chosen
as the local H-coordination gadget without its connector vertices. This follows
from the construction of Kirkpatrick and Hell [28, Lemma 4.1]. I sketch a proof
below, to highlight how the local coordination gadget can be exploited.

Lemma 3. Let H be a connected graph on at least three vertices, let H ′ be
the local H-coordination gadget with connector vertices C as in Lemma 2, and
let F := H ′ − C. Then H-Factor with F -Partition is NP-hard under Karp
reductions.

Proof (sketch). Recall that for every integer d ≥ 3, the Perfect d-Set Packing
problem is defined as follows: given a collection of S1, . . . , Sm of subsets of size d
of a universe U , decide whether there exist |U |/d pairwise disjoint sets in the
collection (whose union therefore contains every element of U). The Perfect
d-Set Packing problem is NP-complete for each d ≥ 3 [24, SP1]. To prove the
lemma, I show that for h := |V (H)| there is a Karp reduction from Perfect
h-Set Packing to H-Factor with F -Partition.

Consider an input S1, . . . , Sm over a universe U for Perfect h-Set Pack-
ing. If |U | is not a multiple of h, then clearly the answer is no and we may output

Crossing Paths with Hans Bodlaender 103

a fixed no instance. In the remainder, assume |U | is a multiple of h. Construct
a graph G as follows. Initialize G as the edgeless graph on vertex set U , and
attach a local H-coordination gadget onto the vertices of Si for each i ∈ [m].
Since Lemma 2 guarantees that the connector vertices form an independent set
in H ′, this preserves the fact that G[U] is edgeless. As G − U consists of copies
of the connected graph H ′ − C = F , each connected component of G′ − U is
isomorphic to F . Hence (G,A := U,B := V (G) \ U) is a valid instance of H-
Factor with F -Partition. Since |A| = |U |, it is a multiple of h = |V (H)|. To
see that |B| is a multiple of h, it suffices to note that G[B] consists of disjoint
copies of H ′ − C, each of which has an H-factor by Lemma 2 and therefore has
an integer multiple of h many vertices. As Lemma 2 guarantees that, for each
gadget attached onto a set Si, the gadget either absorbs all attached vertices or
none, while the interior vertices of gadgets attached for unused sets can be also
covered by an H-factor, it is easy to verify that (G,A,B) is equivalent to the
set packing instance we started from. �

Lemma 3 provides us with a starting problem for the cross-composition.
Before presenting that composition, some more gadgeteering is required. While
the local gadget of Lemma 2 synchronizes the behavior of |V (H)| vertices at
a time, in the construction we will need to synchronize the behavior of arbi-
trarily large vertex sets. For that reason we need a global coordination gadget,
which will be described in Lemma 4. The following proposition is needed for its
construction.

Proposition 1. There is a polynomial-time algorithm that, given an integer h ≥
3 and an integer m ≥ 1, outputs a connected bipartite multigraph F with partite
sets A and B. Set A has m·h vertices, each of degree h−1, and set B has m·(h−1)
vertices, each of degree h.

Proof. Initialize F as a cycle on 2m(h − 1) vertices, half of which belong to A
and the other half to B. Then insert m additional vertices into A, each of which
is connected by an edge to a distinct vertex of B. Clearly, F is a connected
bipartite graph with partite sets of the right size. No vertex exceeds its intended
degree bound since h ≥ 3. Greedily extend F to the desired regular bipartite
multigraph: as long as there is a vertex in one partite set whose degree is still
too small, there is an accompanying vertex in the other partite set whose degree
is also too small: insert an edge between them into the multigraph. �

Now I present the global coordination gadget.

Lemma 4. For each fixed connected graph H on h ≥ 3 vertices, there is a
polynomial-time algorithm that, given an integer n that is a multiple of h, con-
structs a graph H∗ on O(n) vertices together with an independent set C∗ of n
connector vertices in H∗, such that:

1. There is an H-factor of H∗ and there is an H-factor of H∗ − C∗.
2. For each ∅ � C ′

� C∗ there is no H-factor of H∗ − C ′.

104 B. M. P. Jansen

c1,3 c2,3 c4,3 c9,3c1,1

Fig. 3. Bottom: A global coordination gadget H∗ for H = K3, whose n = 3 · 3 =
9 connector vertices C∗ = {c1,3, c2,3, . . . , c9,3} are visualized as squares. Top: The
connected bipartite multigraph F whose use in Step 3 of Lemma 4 leads to the bottom
gadget H∗. Observe that F can be obtained from H∗ by taking one vertex for every
local coordination gadget that was inserted, and adding an edge for every pair of
gadgets that share a vertex.

3. If a graph G contains H∗ as an induced subgraph, such that none of the
interior vertices V (H∗) \ C∗ are adjacent to vertices outside of H∗, then for
every H-factor H1, . . . , Hk of G, the following holds: if v is an interior vertex
of H∗ and v ∈ Hi, then V (Hi) ⊆ V (H∗).

Proof. Let n = m · h. We build H∗ as follows. (See Fig. 3 for an illustration.)

1. Initialize H∗ as an independent set on vertex set C = {ci,j | i ∈ [n], j ∈ [h]}.
Define C∗ := {ci,h | i ∈ [n]} to be the n connector vertices.

2. For each i ∈ [n], insert a local H-coordinator gadget Ai into H∗ and attach Ai

onto {ci,j | j ∈ [h]}. The gadgets A1, . . . ,An added in this step are referred
to as the top gadgets, reflecting their visualization in Fig. 3.

3. Invoke Proposition 1 to construct a connected bipartite multigraph F with
one (h − 1)-regular partite set A = {a1, . . . , am·h}, and one h-regular partite
set B = {b1, . . . , bm·(h−1)}. Order the edges incident on each vertex ai arbi-
trarily from 1 to h − 1. Associate to each vertex bk a private set of h vertices
from C: for each edge e connecting bk to a neighbor ai, if e is the �-th incident
edge of ai in the ordering, then associate ci,� to bk. For each bk ∈ B, insert
a local H-coordination gadget Bk into H∗ and attach it onto the h vertices
associated to bk. This leads to the bottom row of coordinator gadgets in Fig. 3.
The regularity conditions of F ensure that we attach exactly one bottom-row
gadget onto each vertex of {ci,j | i ∈ [n], 1 ≤ j ≤ h − 1}. Moreover, for
vertices bk, bk′ with a common neighbor ai in F , the vertex sets onto which
gadgets Bk and Bk′ are attached both include a vertex of {ci,j | 1 ≤ j ≤ h−1}.

It is easy to see that the construction can be carried out in polynomial time
and results in a graph on O(n) vertices. Note that since H is fixed, the size of a
local coordinator gadget is constant. Let us verify the claimed properties.

(1) To get an H-factor of H∗, we combine the H-factors of the local coordi-
nator gadgets whose existence is guaranteed by Lemma 2, as follows. For each

Crossing Paths with Hans Bodlaender 105

top-row gadget inserted in Step 2, use an H-factor of the gadget that absorbs
all connector vertices. For each bottom-row gadget inserted in Step 3, use an
H-factor that absorbs no connector vertices.

To get an H-factor of H∗ −C∗, we do the opposite: top-row gadgets inserted
in Step 2 absorb no connector vertices, but bottom-row gadgets inserted in Step 3
absorb all connector vertices.

(2) Consider an H-factor of H∗ − C ′ for some nonempty C ′ ⊆ C∗; I will
show that C ′ = C∗. Consider a connector vertex ci,h ∈ C ′ that is not used in
the H-factor of the subgraph. Then the vertices X = {ci,j | 1 ≤ j ≤ h − 1}
are not absorbed by the corresponding top-row gadget Ai that was attached
to X ∪ {ci,h}, since Lemma 2 guarantees that Ai absorbs either all or none of
its local connector vertices. Since graph H∗ − C ′ contains X and C ⊇ X is
an independent set in H∗, the vertices from X must therefore be absorbed by
bottom-row gadgets in the H-factor. Let Bk be a bottom-row gadget that was
attached onto a vertex of X. Since Ai does not absorb its local connector vertices,
the vertex shared between Ai and Bk must be absorbed by Bk, which therefore
absorbs all its connector vertices. This means that no top-row gadget that shares
a vertex with Bk can absorb any of its connector vertices. If vertices bk, bk′ have
a common neighbor ai′ in F , this implies that Ai′ absorbs no connector vertices,
so that Bk′ absorbs all its connector vertices. Since F is connected, repeating
this argument shows that all bottom-row gadgets absorb all their local connector
vertices, while no top-row gadgets absorb any of their local connector vertices.
Consequently, the H-factor of H∗ − C ′ does not contain any vertex of C∗ and
therefore C ′ = C∗.

(3) Suppose that H∗ is contained as an induced subgraph in a larger graph G,
such that no interior vertex is adjacent to a vertex outside H∗. Consider an H-
factor H1, . . . , Hk of G, and fix an interior vertex v of H∗. If v is an interior
vertex of some local coordination gadget, then Lemma 2 ensures that the H-
subgraph Hi containing v is contained within the local coordination gadget,
and therefore V (Hi) ⊆ V (H∗). Otherwise, v is of the form ci,j for i ∈ [n]
and j ∈ [h − 1]. But then the only neighbors of v in G are interior vertices of
local coordination gadgets inserted into H∗. Since H is connected and has at
least three vertices, vertex v is contained in some H-subgraph Hi together with
an internal vertex of a local coordination gadget, ensuring V (Hi) ⊆ V (H∗) by
the previous argument. This concludes the proof. �

Using the properties of Lemma 4, the terminology of attaching coordination
gadgets and absorbing connector vertices extends to global coordination gadgets
in the natural way. The sparsification lower bound for H-Factor now follows
cleanly by combining the two ingredients developed so far: the “bipartite” NP-
hard source problem of Lemma 3 and the global coordination gadget of Lemma 4.

Theorem 4. For any ε > 0, for any connected graph H on at least three ver-
tices, H-Factor parameterized by the number of vertices n does not admit a
generalized kernelization of bitsize O(n2−ε) unless NP ⊆ coNP/poly.

106 B. M. P. Jansen

A′
1 A′

2 A′
3

B′
1 B′

2 B′
3

A∗
1 A∗

2 A∗
3

B∗
1 B∗

2 B∗
3

Â

B̂

Fig. 4. Schematic visualization of the result of the cross-composition of Theorem 4
for H = K3, applied to t = 9 inputs of H-Factor with F -Partition. Of the edges
between different sets A′

i and B′
j , only those corresponding to the yes-instance induced

by A′
3 and B′

3 have been drawn. Vertices of inserted global coordination gadgets are
not drawn. For some global coordination gadgets, the vertices they have been attached
onto have been highlighted by a dotted curve.

Proof. I present a degree-2 or-cross-composition. Fix a graph F such that the
source problem H-Factor with F -Partition is NP-hard. Let (Gi,j , Ai,j , Bi,j)
for i, j ∈ [

√
t] be a sequence of t input instances that all share the same num-

ber nA of vertices in the A-set and the same number nB of vertices in the B-set,
which may be assumed by a suitable choice of R. By definition of the source
problem, both nA and nB are multiples of h = |V (H)|. Build an instance G′ of
H-Factor; refer to Fig. 4 for an illustration.

1. For each i ∈ [
√

t], add a set A′
i of nA independent vertices to G′.

2. For each i ∈ [
√

t], add a set B′
i of nB vertices to G′. Insert edges so that G′[B′

i]
forms nB/|V (F)| vertex-disjoint copies of F .

3. For each i, j ∈ [
√

t], insert edges between A′
i and B′

j so that G′[A′
i ∪ B′

j]
is isomorphic to Gi,j . This is simultaneously possible for all i, j since all
graphs (Gi,j [Ai,j])i,j∈[

√
t] are isomorphic to each other, and similarly all

graphs (Gi,j [Bi,j])i,j∈[
√

t] are isomorphic to each other. Since each connected
component of Gi,j [Bi,j] is isomorphic to the fixed graph F , this step can be
performed in polynomial time.

4. For each i ∈ [
√

t], add a vertex set A∗
i of size h to G′, and attach a new global

coordination gadget Ai with nA + h connector vertices onto A′
i ∪ A∗

i .
5. For each j ∈ [

√
t], add a vertex set B∗

j of size h to G′, and attach a new global
coordination gadget Bj with nB + h connector vertices onto B′

j ∪ B∗
j .

6. Add a vertex set Â of size h to G′. For each i ∈ [
√

t], insert a global coordi-
nation gadget Âi with 2h connector vertices, and attach it onto Â ∪ A∗

i .

Crossing Paths with Hans Bodlaender 107

7. Add a vertex set B̂ of size h to G′. For each j ∈ [
√

t], insert a global coordi-
nation gadget B̂j with 2h connector vertices, and attach it onto B̂ ∪ B∗

j .

This concludes the description of graph G′. It is easy to see that the
construction can be performed in polynomial time. Let us analyze the num-
ber of vertices in G′. It is easy to verify that, apart from the vertices of
the inserted global coordination gadgets, the graph has O(

√
t(nA + nB)) ver-

tices, treating |V (H)| as a constant. In Steps 4–5 we insert O(
√

t) global
coordination gadgets for O(nA + nB) connector vertices each, which therefore
contribute O(

√
t(nA + nB)) vertices to G′. Finally, the last two steps con-

tribute O(
√

t) additional vertices. It follows that |V (G)′| ∈ O(
√

t(nA + nB)),
which is suitably bounded.

To complete the cross-composition, we verify that G′ has an H-factor if and
only if some input instance Gi,j has an H-factor.

Suppose first that Gi∗,j∗ has an H-factor. Since G′[A′
i∗ ∪ B′

j∗] is isomorphic
to Gi∗,j∗ , it has an H-factor. To extend it to an H-factor of all of G′, we do the
following. For each i ∈ [

√
t]\{i∗}, use an H-factor of the gadget Ai together with

its connector vertices, absorbing A′
i ∪ A∗

i . Similarly, for each j ∈ [
√

t] \ {j∗}, use
an H-factor of Bj together with its connector vertices, absorbing B′

j ∪B∗
j . Use an

H-factor of gadget Âi∗ with its connector vertices, absorbing A∗
i∗ ∪ Â. Similarly,

use an H-factor of gadget B̂j∗ with its connector vertices, absorbing B∗
j∗ ∪B̂. For

the remaining global coordination gadgets, use H-factors of only the interior of
the gadget without absorbing connector vertices. This yields an H-factor of G′.

For the other direction, suppose that G′ has an H-factor. Since the vertices
of Â and B̂ form independent sets, whose only interaction with the rest of the
graph is through the attachment of coordination gadgets, using Lemma4 it fol-
lows there is a global coordination gadget Âi∗ that absorbs all its connection
vertices A∗

i∗ ∪ Â, and analogously a gadget B̂j∗ absorbing B∗
j∗ ∪ B̂. Consequently,

for each i �= i∗ the vertices of A∗
i are absorbed by the global coordination gad-

get Ai, which therefore also absorbs A′
i. Similarly, for each j �= j∗ the vertices

of B∗
j are absorbed by Bj , thereby also absorbing B′

j . This implies that in the
H-factor of G′, vertices of A′

i∗ ∪ B′
j∗ are not contained in H-subgraphs together

with vertices outside of A′
i∗ ∪ B′

j∗ . Consequently, the H-factor of G′ restricted
to A′

i∗ ∪ B′
j∗ is an H-factor of G′[A′

i∗ ∪ B′
j∗], which is isomorphic to Gi∗,j∗ .

Hence Gi∗,j∗ is a yes-instance. This concludes the proof of Theorem 4. �
Theorem 4 shows that for connected graphs H on at least three vertices, the

H-Factor problem admits no nontrivial polynomial-time sparsification unless
NP ⊆ coNP/poly. It is not difficult to extend this to disconnected graphs H that
have a connected component of at least three vertices, thereby extending the
lower bound to all graphs H for which H-Factor is NP-hard.

Corollary 1. For any ε > 0, for any graph H that contains a connected com-
ponent on at least three vertices, H-Factor parameterized by the number of
vertices n does not admit a generalized kernelization of bitsize O(n2−ε) unless
NP ⊆ coNP/poly.

108 B. M. P. Jansen

Proof. Consider such a graph H, and let H ′ be a connected component of H on
at least three vertices that maximizes the number of edges. Using a reduction of
Kirkpatrick and Hell [28, Lemma 2.1], I give a polynomial-time reduction from
H ′-Factor instances on n vertices to H-Factor instances on O(n) vertices.
This reduction, together with a subquadratic generalized kernelization for H-
Factor, would yield a subquadratic generalized kernelization for H ′-Factor,
which is ruled out by Theorem 4. Hence it suffices to give the reduction.

Given a graph G′ for which we want to determine the existence of an H ′-
factor, we may assume without loss of generality that |V (G′)| is a multiple
of |V (H ′)| (otherwise the answer is trivially no). If |V (G′)| = d · |V (H ′)|, then
for the graph G obtained as the disjoint union of G together with d copies
of H − H ′, it is easy to verify (cf. [28, Lemma 2.1]) that G′ has an H ′-factor if
and only if G′ has an H ′-factor. Since H is fixed, |V (G′)| ∈ O(|V (G)|), which
concludes the proof. �

6 Conclusion

In this article, I showed how the technique of cross-composition [7] that was
developed together with Hans Bodlaender and Stefan Kratsch can be used to
give elementary proofs that Vertex Cover, Feedback Vertex Set, and H-
Packing do not admit generalized kernels of bitsize O(n2−ε). The constructions
all boil down to the appropriate combination of two key ingredients: a suitable
NP-hard starting problem whose inputs can be partitioned into two regularly
structured induced subgraphs, and a gadget that allows some parts of the input
to be disabled in order to achieve the desired logical or.

Following the case-by-case investigation of sparsification lower bounds in this
article, one is naturally led to ask whether it is possible to prove sparsification
lower bounds on a larger scale, capturing entire classes of problems at the same
time. In recent years, I have pursued this direction together with my PhD student
Astrid Pieterse (Hans’ academic granddaughter!) by investigating the sparsifia-
bility of Constraint Satisfaction problems. A key challenge for the future
consist of the following: for which constraint languages (defining the types of
constraints that one is allowed to use in the problem) do CSPs over the Boolean
domain allow for a linear sparsification? I refer the interested reader to recent
papers [12,29] for further information.

An entirely different, but equally exciting, direction is the study of the posi-
tive toolkit: sparsification algorithms. While nontrivial sparsification algorithms
exist for several satisfiability problems, such as 3-Not All Equal Satisfia-
bility parameterized by the number of variables n, which can be sparsified [26]
to instances with O(n2) clauses, to this day we do not have any good examples of
NP-hard graph problems that admit nontrivial polynomial-time sparsification.
Have we not been looking in the right places, or could there be a reason for their
nonexistence?

I conclude this article by thanking Hans; for saving me from becoming
a computer-game programmer; for inspiring me to do research; and for his

Crossing Paths with Hans Bodlaender 109

good-humored companionship, discussions, and boardgames spanning over a
decade and multiple continents. Happy 60th birthday, Hans!

References

1. Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil,
P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70918-3 28

2. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop
cutset. Theory Comput. Syst. 46(3), 566–597 (2010). https://doi.org/10.1007/
s00224-009-9234-2

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008.
LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70575-8 46

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009). https://doi.
org/10.1016/j.jcss.2009.04.001

5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: a new technique
for kernelization lower bounds. In: Schwentick, T., Dürr, C. (eds.) Proceedings of
the 28th STACS. LIPIcs, vol. 9, pp. 165–176. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2011). https://doi.org/10.4230/LIPIcs.STACS.2011.165

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle
problems. Theor. Comput. Sci. 511, 117–136 (2013). https://doi.org/10.1016/j.tcs.
2012.09.006

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.
org/10.1137/120880240

8. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011). https://doi.org/
10.1016/j.tcs.2011.04.039

9. Brandt, S.: Computing the independence number of dense triangle-free graphs. In:
Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 100–108. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0024491

10. Burrage, K., Estivill-Castro, V., Fellows, M., Langston, M., Mac, S., Rosamond, F.:
The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender,
H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer,
Heidelberg (2006). https://doi.org/10.1007/11847250 18

11. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3),
560–572 (1993). https://doi.org/10.1137/0222038

12. Chen, H., Jansen, B.M.P., Pieterse, A.: Best-case and worst-case sparsifiability
of Boolean CSPs. In: Paul, C., Pilipczuk, M. (eds.) Proceedings of 13th IPEC.
LIPIcs, vol. 115, pp. 15:1–15:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.15

13. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

14. Dell, H., Marx, D.: Kernelization of packing problems. In: Rabani, Y. (ed.) Pro-
ceedings of the 23rd SODA, pp. 68–81. SIAM (2012). https://doi.org/10.1137/1.
9781611973099.6

https://doi.org/10.1007/978-3-540-70918-3_28
https://doi.org/10.1007/s00224-009-9234-2
https://doi.org/10.1007/s00224-009-9234-2
https://doi.org/10.1007/978-3-540-70575-8_46
https://doi.org/10.1007/978-3-540-70575-8_46
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.4230/LIPIcs.STACS.2011.165
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1007/BFb0024491
https://doi.org/10.1007/11847250_18
https://doi.org/10.1137/0222038
https://doi.org/10.4230/LIPIcs.IPEC.2018.15
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611973099.6
https://doi.org/10.1137/1.9781611973099.6

110 B. M. P. Jansen

15. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: Schulman, L.J. (ed.) Proceedings of the
42nd STOC, pp. 251–260. ACM (2010). https://doi.org/10.1145/1806689.1806725

16. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014). https://
doi.org/10.1145/2629620

17. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through col-
ors and IDs. ACM Trans. Algorithms 11(2), 13 (2014). https://doi.org/10.1145/
2650261

18. Downey, R., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

19. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

20. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

21. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019).
https://doi.org/10.1017/9781107415157

22. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Dwork, C. (ed.) Proceedings of the 40th STOC, pp. 133–142.
ACM (2008). https://doi.org/10.1145/1374376.1374398

23. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011). https://doi.org/10.1016/
j.jcss.2010.06.007

24. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

25. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) Proceedings of the 44th ICALP. LIPIcs,
vol. 80, pp. 68:1–68:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).
https://doi.org/10.4230/LIPIcs.ICALP.2017.68

26. Jansen, B.M.P., Pieterse, A.: Optimal sparsification for some binary CSPs using
low-degree polynomials. TOCT 11(4), 28:1–28:26 (2019). https://doi.org/10.1145/
3349618

27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2 9

28. Kirkpatrick, D.G., Hell, P.: On the complexity of general graph factor problems.
SIAM J. Comput. 12(3), 601–609 (1983). https://doi.org/10.1137/0212040

29. Lagerkvist, V., Wahlström, M.: Kernelization of constraint satisfaction problems:
a study through universal algebra. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416,
pp. 157–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-
2 11

30. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). https://doi.org/10.
1016/0022-0000(80)90060-4

31. Nemhauser, G., Trotter, L.: Vertex packings: structural properties and algorithms.
Math. Program. 8, 232–248 (1975). https://doi.org/10.1007/BF01580444

https://doi.org/10.1145/1806689.1806725
https://doi.org/10.1145/2629620
https://doi.org/10.1145/2629620
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2650261
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1017/9781107415157
https://doi.org/10.1145/1374376.1374398
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1145/3349618
https://doi.org/10.1145/3349618
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0212040
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/BF01580444

Crossing Paths with Hans Bodlaender 111

32. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Math-
ematicae Universitatis Carolinae 015(2), 307–309 (1974). http://eudml.org/doc/
16622

33. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2)
(2010). https://doi.org/10.1145/1721837.1721848

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://eudml.org/doc/16622
http://eudml.org/doc/16622
https://doi.org/10.1145/1721837.1721848
http://creativecommons.org/licenses/by/4.0/

	Crossing Paths with Hans Bodlaender: A Personal View on Cross-Composition for Sparsification Lower Bounds
	1 Getting Acquainted
	1.1 Our Meeting
	1.2 Our Work on Kernelization Lower Bounds
	1.3 Organization

	2 Kernelization and Lower Bounds
	2.1 Kernelization
	2.2 Intuition for Polynomial Kernelization Lower Bounds
	2.3 The Formal Cross-Composition Framework

	3 Vertex Cover
	4 Feedback Vertex Set
	5 H-Factor
	6 Conclusion
	References

