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Abstract. In this paper we consider the case of planar motion, where a mobile
platform equipped with two cameras moves freely on a planar surface. The cam-
eras are assumed to be directed towards the floor, as well as being connected by a
rigid body motion, which constrains the relative motion of the cameras and intro-
duces new geometric constraints. In the existing literature, there are several algo-
rithms available to obtain planar motion compatible homographies. These meth-
ods, however, do not minimise a physically meaningful quantity, which may lead
to issues when tracking the mobile platform globally. As a remedy, we propose a
bundle adjustment algorithm tailored for the specific problem geometry. Due to
the new constrained model, general bundle adjustment frameworks, compatible
with the standard six degree of freedommodel, are not directly applicable, and we
propose an efficient method to reduce the computational complexity, by utilising
the sparse structure of the problem. We explore the impact of different polyno-
mial solvers on synthetic data, and highlight various trade-offs between speed and
accuracy. Furthermore, on real data, the proposed method shows an improvement
compared to generic methods not enforcing the general planar motion model.
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1 Introduction

The prototypical problem in geometric computer vision is the so called Structure from
Motion (SfM) problem [12,24]; the objective of which is to recover the scene geom-
etry and camera poses from a collection of images of a scene. The SfM problem has,
in some form or other, been studied since the very earliest days of photography, and
many fundamental aspects of SfM were well understood already by the end of the 19th
century [23]. Solving SfM problems of meaningful size and with actual image data,
however, has been made possible only through the computerisation efforts that were
commenced in the late 1970s, and which have since led to increasingly automatic meth-
ods for SfM. Modern SfM systems, e.g. Bundler [22] and other systems under the wider
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BigSFM banner1 [1,8], have managed to produce impressive city-scale reconstructions
from large unordered and unlabelled sets of images.

A major paradigm in SfM, which has proven hugely successful, is Bundle Adjust-
ment (BA) [26], which treats SfM as a large optimisation problem. With a parameterisa-
tion describing the scene geometry and the cameras, BA employs numerical optimisa-
tion techniques to find parameter values which best explain the observed images. Here,
‘best’ is determined by evaluating a cost function which is often—but not always—
chosen as the sum of squared geometric reprojection errors. The BA formulation of the
SfM problem puts it in a unified framework which still has extensive model flexibil-
ity, e.g. with regards to (a) assumptions on the camera calibration, (b) different cost
functions, and (c) different parameterisations of the cameras and the scene geometry—
including implicit and explicit constraints to enforce a particular motion model.

While camera based Simultaneous Localisation and Mapping (SLAM) and Visual
Odometry (VO) can be thought of as special classes of SfM, the computational effort to
approach SLAM and VO via BA has traditionally been inhibiting, and for this reason,
BA has mostly been used in offline batch processing systems such as the BigSFM sys-
tems mentioned earlier. During the last two decades, however, SLAM and VO systems
have started incorporating regular BA steps to improve the consistency of the recon-
struction and the precision of the camera pose estimation. Performance improvements
across the spectrum—the algorithms, their implementation, the hardware—are paving
the way for application specific BA to make its entrance in the area of real-time systems.

Especially in the case of visual SLAM, there are a number of factors which can be
exploited to alleviate the computational burden compared to a more generic SfM sys-
tem. The images are acquired in an ordered sequence, and this can significantly speed up
the search for correspondences by avoiding the expensive ‘all-vs-all’ matching. Addi-
tionally, a suitable motion model may often be incorporated in a SLAM system, which
can be used e.g. (a) to further speed up the search for correspondences by predicting
feature locations in subsequent images [5,6], (b) to facilitate faster and more accurate
local motion estimation via nonholonomic constraints [20,21,39] or other constraints
which reduce the set of parameters [29,33], or (c) to enforce globally a planar motion
assumption on the camera motion [10,18,32].

In this paper, we present a BA approach to visual SLAM for the case of a stereo rig,
where the cameras do not necessarily have an overlapping field of view, and where
each of the two cameras move in parallel to a common ground plane. The present
paper is an extension of the system described earlier in [30], to which a more exten-
sive experimental evaluation has been added. In particular, we have investigated how
initialisation using planar motion compatible homographies based on minimal [33] or
non-minimal [29] polynomial solvers affect the final reconstruction.

2 Related Work

Planar Motion is a frequently occurring constrained camera motion, which arises nat-
urally when cameras are attached to a ground vehicle operating on a planar ground

1 http://www.cs.cornell.edu/projects/bigsfm/.
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surface. As mentioned in the introduction, deliberately enforcing planar motion can
help to improve the quality of the reconstruction.

An early SfM approach to plane constrained visual navigation was proposed by
Wiles and Brady [34,35]. They suggested a hierarchical framework of camera parame-
terisations, and explored in detail the remaining structural ambiguity for each of these.
The lasting contribution of this work lies chiefly in its classification and description of
the different modes of motion. The least ambiguous level in the case of planar motion—
which they called α-structure—contains only an arbitrary global scaling ambiguity and
an arbitrary planar Euclidean transformation parallel to the ground plane, and is pre-
cisely the level aimed at in the present paper.

If the optical axis of the camera is either orthogonal or parallel to the ground plane,
the parameterisation can be much simplified compared to the general case described
by Wiles and Brady. This situation can of course also be achieved if the camera tilt is
known with sufficient precision to allow a transformation to, e.g., an overhead view. An
approach for this case by Ortín and Montiel parameterises the essential matrix explic-
itly in the motion parameters, and then estimates the parameters using either a linear
three-point method or a non-linear two-point method [18]. Scaramuzza used essentially
the same parameterisation of the essential matrix, but combined it with an additional
nonholonomic constraint based on the assumption that the local motion is a circular
motion [20,21]. Because of this additional constraint, the local motion can be com-
puted from only one point correspondence, and this allows for an exceptionally efficient
outlier removal scheme based on histogram voting.

Since the essential matrix is a homogeneous entity, it does not capture the length
of the translation, and the maintaining of a consistent global scale then requires some
additional information. One possibility for this, explored by Chen and Liu, is to add
a second camera [4]. This allows the length of the local translation to be computed
in terms of the distance between the two cameras, and since this remains constant, it
provides a way to prevent scale drift.

If the camera is oriented such that it views a reasonable part of the ground plane,
an alternative to using the essential matrix is to instead use homographies for the local
motion estimation. This has the advantage that the length of the translation between
frames can be expressed in terms of the height above the ground plane, which thus
defines the global scale. The homography based approach by Liang and Pears is based
on an eigendecomposition of the homography matrix, and it is shown that the rota-
tion about the vertical axis can be determined from the eigenvalues, regardless of the
camera tilt [14]. Hajjdiab and Laganière parameterised the homography matrix under
the assumption of only one tilt angle, and then transformed the images into a synthetic
overhead view to compute the residual rigid body motion in the plane [10].

A more recent homography based method by Wadenbäck and Heyden, which also
exploits a decoupling of the camera tilt and the camera motion, uses an alternating
iterative estimation scheme to compute the two tilt angles and the three motion parame-
ters [31,32]. Zienkiewicz and Davison solved the same 5-DoF problem through a joint
non-linear optimisation over all five parameters to achieve a dense matching of suc-
cessive views, with the implementation running on a GPU to reach very high frame
rates [39].
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Valtonen Örnhag and Heyden extended the general 5-DoF situation to handle a
binocular setup, where the two cameras are connected by a fixed (but unknown) rigid
body motion in 3D, and where the fields of view do not necessarily overlap [27,28].

Bundle Adjustment is used to optimise a set of structure and motion parameters,
and is typically performed over several camera views. Triggs et al. give an excellent
overview [26]. Since the number of parameters optimised over is in most cases very
large, naïve implementations will not work, and care must be taken to exploit the prob-
lem structure (e.g. the sparsity pattern of the Jacobian).

Generic software packages for bundle adjustment, which use sparsity of the Jaco-
bian matrix together with Schur complementation to speed up the computations, include
SBA (Sparse Bundle Adjustment) by Lourakis and Argyros, sSBA (Sparse Sparse
Bundle Adjustment) by Konolige, and SSBA (Simple Sparse Bundle Adjustment) by
Zach [13,16,37].

Additional performance gains may sometimes be obtained through parallelisation.
GPU accelerated BA systems using parallelised versions of the Levenberg–Marquardt
algorithm [11] and the conjugate gradients method [36] have been presented e.g. by
Hänsch et al. and by Wu et al.. More recently, distributed approaches by e.g. Eriks-
son et al. and by Zhang et al. have employed splitting methods to make very large SfM
problems tractable [7,38].

The present paper extends the sparse bundle adjustment system for the binocular
planar motion case by Valtonen Örnhag and Wadenbäck. The aim of our approach is to
exploit the particular structure in the Jacobian which arises due to the planar motion
assumption for the two cameras. We demonstrate how this particular situation can
be attacked via the use of nested Schur complementations when solving the normal
equations. In comparison to the earlier paper [30], we have significantly extended the
experimental evaluation of the system. Additionally, we have investigated the effect of
enforcing the planar motion assumption earlier on a local level, by using homographies
estimated such that they are compatible with this assumption [29,33].

3 Theory

3.1 Problem Geometry

The geometrical situation we consider in this paper is that of two cameras which have
been rigidly mounted onto a mobile platform. Due to this setup, which is illustrated in
Fig. 1, the cameras are connected by a rigid body motion which remains constant over
time but which is initially not known. Each camera is assumed to be mounted in such
a way that it can view a portion of the ground plane, but it is not a requirement that
the cameras have any portion of their fields of view in common. The world coordinate
system is chosen such that the ground plane is positioned at z = 0, whereas the cameras
move in the planes z = a and z = b, respectively. We may also, without loss of
generality, assume that the centre of rotation of the mobile platform coincides with
the centre of the first camera.
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Fig. 1. Illustration of the problem geometry considered in this paper. Two cameras are assumed
to be rigidly mounted on a mobile platform, and may be positioned at different heights above,
the ground floor, hence move in the planes z = a and z = b. Due to the rigidity assumption,
the relative orientation between them are constant, and so is the overhead tilt. Figure reproduced
from [30].

3.2 Camera Parameterisation

We shall adopt the camera parameterisation for internally calibrated monocular pla-
nar motion that was introduced in [31]. With this parameterisation, the camera matrix
associated with the image taken at position j will be

P (j) = RψθR
(j)
ϕ [I | − t(j)], (1)

where Rψθ is a rotation θ about the y-axis followed by a rotation of ψ about the
x-axis. The motion of the mobile platform contains for each frame a rotation ϕ(j) about
the z-axis, encoded as R

(j)
ϕ , and a vector t(j) for the translational part. The second

camera, which is related to the first camera through a constant rigid body motion, uses
the parameterisation

P ′(j) = Rψ′θ′RηTτ (b)R(j)
ϕ [I | − t(j)], (2)

introduced in [27]. Here, ψ′ and θ′ are the tilt angles (defined in the same way as for
the first camera), τ is the relative translation between the camera centres and η is the
constant rotation about the z-axis relative to the first camera. We do not assume any
prior knowledge of these constant parameters. Define the translation matrix Tτ (b) as



124 M. Valtonen Örnhag and M. Wadenbäck

Tτ (b) = I − τnᵀ/b, where τ = (τx, τy, 0) ᵀ, n is a floor normal and b is the height
above the ground floor. The global scale ambiguity allows us to set a = 1 without any
loss of generality.

4 Prerequisites

4.1 Geometric Reprojection Error

The particular BA problem considered in this paper concerns the minimisation of the
geometric reprojection error in the two views over the entire motion sequence. In
order to write down this cost function explicitly we need to introduce some additional
notation.

For this purpose, let the two cameras at a particular position j be given by the
expressions in (1) and (2), respectively. We use the homogeneous representation Xi =
(Xi, Yi, 0, 1) ᵀ to parameterise the estimate of the i:th 3D point, corresponding to the
measured image point with inhomogeneous representations x

(j)
i in the first camera and

x
′(j)
i in the second. Let ˆ̄x(j)

i and ˆ̄x′(j)
i be the inhomogeneous representations for the

projections into the two views, i.e.
[
ˆ̄x(j)

i

1

]
∼ P (j)Xi and

[
ˆ̄x′(j)

i

1

]
∼ P ′(j)Xi. (3)

Given N stereo camera locations and M scene points, the geometric reprojection
error that we seek to minimise can now be written concisely as

E(β) =
N∑

i=1

M∑
j=1

‖rij‖22 + ‖r′
ij‖22, (4)

where β is the parameter vector consisting of the camera parameters and the scene point
parameters, and where rij and r′

ij are the residuals

rij = x
(j)
i − ˆ̄x(j)

i and r′
ij = x

′(j)
i − ˆ̄x′(j)

i . (5)

4.2 The Levenberg–Marquardt Algorithm

We will in this approach use the Levenberg–Marquardt algorithm (LM) when minimis-
ing (4). There are of course other alternatives to the LM algorithm, e.g. the dog-leg
solver [15] and preconditioned CG [3]; however, LM is one of the most commonly
used algorithms for BA, and is used in major modern systems such as SBA [16] and
sSBA [13]. Note that these systems do not account for the particular problem geome-
try that we consider in this paper, which forces some extrinsic parameters to be shared
among all camera matrices.

We will not go into details of the LM algorithm here—please refer to more extensive
treatments in e.g. [26] and [16] for a more complete discussion—but for future reference
we simply recall that it works by iteratively solving the augmented normal equations

(JᵀJ + μI) δ = Jᵀε (6)
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until some convergence criteria have been met. Here J is the Jacobian associated with
the cost function (4), ε is the residual vector, and μ ≥ 0 is the iteratively adjusted
damping parameter of the LM algorithm.

4.3 Obtaining an Initial Solution for the Camera Parameters

Homographies can be estimated in a number of different ways; however, the classi-
cal approach is to compute point correspondences from matching robust feature points
in subsequent images. Popular feature extraction algorithms include SIFT [17] and
SURF [2], but many more are available and implemented in various computer vision
software. When the putative point correspondences have been matched a popular choice
is to use RANSAC (or similar frameworks) to robustly estimate a homography. Such
an approach is suitable in order to discard mismatched feature points. A well-known
method is the Direct Linear Transform (DLT); however, it requires four point corre-
spondences, and does not generate a homography compatible with the general planar
motion model. A good rule of thumb is to use a minimal amount of point correspon-
dences, since the probability of finding a set of points containing only inliers decreases
with each additional point that is used. However, as e.g. Pham et al. point out, for very
severely noisy data it may in some cases still be preferable to use a non-minimal set [19].

In [33] a minimal solver compatible with the general planar motion model was
studied. It was shown that a homography compatible with the general planar motion
model must fulfil 11 quartic constraints, and that, a minimal solver only requires 2.5
point correspondences. In a recent paper, a variety of different non-minimal polynomial
solvers are considered, partly because of execution time, but also because of sensitivity
to noise [29]. These non-minimal solvers enforce a subset of the necessary and suffi-
cient conditions for compatibility with the general planar motion model, thus enforcing
a weaker form of it. By accurately making a trade-off between fitting the model con-
straints (i.e. using more model constraints) and tuning to data (i.e. using more point
correspondences), one can increase the performance for noisy data. It is important to
note that the assumption of constant tilt parameters cannot be enforced by only con-
sidering a single homography, and, therefore, pre-optimisation in an early step of the
complete SfM pipeline is not guaranteed to yield better performance.

Once the homographies are obtained, one may enforce the constant tilt constraint
by employing the method proposed by Wadenbäck and Heyden [32], to obtain a good
initial solution for the monocular case. The method starts by computing the overhead
tilt Rψθ from an arbitrary number of homographies, followed by estimating the trans-
lation and orientation about the floor normal.

The method by Valtonen Örnhag and Heyden [27] extended the method to include
the stereo case, and starts off by treating the two stereo trajectories individually, and
estimates the tilt parameters by employing the monocular method described in the pre-
vious paragraph. Once the monocular parameters are known for the individual tracks,
the relative pose can be extracted by minimising an algebraic error in the relative trans-
lation between the cameras, followed by estimating the relative orientation about the
floor normal.
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4.4 Obtaining an Initial Solution for the Scene Points

Linear triangulation of scene points does not guarantee that all points lie in a plane, and
the resulting initial solution would not be compatible with the general planar motion
model. In order to obtain a physically meaningful solution we make use of the fact that
there is a homography relating the measured points and the ground plane positioned at
z = 0.

Given a camera P , an image point x and the corresponding scene point X ∼
(X, Y, 0, 1) ᵀ, they are related by x ∼ PX = HX̃ , where H is the sought homo-
graphy. By denoting the i:th column of P by Pi, it may be expressed as H =
[P1 P2 P4] , where X̃ ∼ (X, Y, 1) ᵀ contains the unknown scene point coordinates. It
follows that the corresponding scene point can be extracted from X̃ ∼ H−1x.

In the presence of noise, using more than one camera results in different scene
points, which all will be projected onto the plane z = 0. In order to triangulate the
points we compute the centre mass; such an approach is computationally inexpensive,
however, it is not robust to outliers, which have to be excluded in order to get a reliable
result.

5 Planar Motion Bundle Adjustment

5.1 Block Structure of the Jacobian

Denote the unknown and constant parameters for the first camera path by γ = (ψ, θ)

and the second camera path by γ′ = (ψ′, θ′, τx, τy, b, η) . Furthermore, let the noncon-
stant parameters for position j be denoted by ξj = (ϕ(j), t(j)x , t(j)y ) . Given N stereo
camera positions and M scene points, the following, highly structured Jacobian J , is
obtained

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 A11 B11

...
. . .

...
Γ1N A1N B1N

...
...

...
...

. . .
ΓM1 AM1 BM1

...
. . .

...
ΓMN AMN BMN

Γ ′
11 A ′

11 B ′
11

...
. . .

...
Γ ′

1N A ′
1N B ′

1N

...
...

...
...

. . .
Γ ′

M1 A ′
M1 B ′

M1

...
. . .

...
Γ ′

MN A ′
MN B ′

MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where we use the following notation for the derivative blocks

Aij =
∂rij

∂ξj
, Bij =

∂rij

∂X̃i

, Γij =
∂rij

∂γ
,

A′
ij =

∂r′
ij

∂ξj
, B′

ij =
∂r′

ij

∂X̃i

, Γ ′
ij =

∂r′
ij

∂γ′ ,
(8)
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where X̃i = (Xi, Yi) are the unknown scene coordinates. This can be written in a more
compact manner as

J =
[
Γ 0 A B
0 Γ ′ A′ B′

]
. (9)

5.2 Utilising the Sparse Structure

In SfM, the number of scene points is often significantly larger than the number of cam-
eras, which makes Schur complementation tractable, and can significantly decrease the
execution time. Standard Schur complementation is, however, not directly applicable
due to the constant parameters giving rise to the blocks Γ and Γ ′. We will, however,
show in this section, that it is indeed possible to use nested Schur complements, i.e. to
recursively apply Schur complements to different parts, and that, in fact, several of the
intermediate computations can be stored, thus drastically decreasing the computational
time. First, note that the approximate Hessian JᵀJ , in compact form, can be written

JᵀJ =
[

C E
Eᵀ D

]
. (10)

Here the contribution from the constant parameters are stored in C, the contribution
from the nonconstant parameters and the scene points are stored in D, and the mixed
contributions are stored in E. Furthermore, the matrix D can be written as

D =
[

U W
W ᵀ V

]
, (11)

with block diagonal matrices U = diag(U1, . . . ,UN ) and V = diag(V1, . . . ,VM ),
where

Uj =
M∑
i=1

Aᵀ
ijAij + A′ᵀ

ijA
′
ij ,

Vi =
N∑

j=1

Bᵀ
ijBij + B′ᵀ

ij B′
ij ,

Wij = Aᵀ
ijBij + A′ᵀ

ijB
′
ij .

(12)

First, note that the system (D+μI)δ = ε, where D is defined as in (11), is not affected
by the constant parameters. Such a system reduces to that of the unconstrained case,
which can be solved using standard SfM frameworks, such as SBA, or other packages
utilising Schur complementation.

We will now show how to efficiently treat the decomposition of (10) as nested Schur
complements, by reducing the problem to a series of subproblems of the form used
in SBA and other computer vision software packages. In order to do so, consider the
augmented normal equations (6) in block form

[
C∗ E
Eᵀ D∗

] [
δc

δd

]
=

[
εc

εd

]
, (13)
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whereC∗ = C+μI andD∗ = D+μI denote the augmented matrices, with the added
contribution from the damping factor μ, as in (6). Now, utilising Schur complementation
yields [

C∗ − ED∗−1Eᵀ 0
Eᵀ D∗

] [
δc

δd

]
=

[
εc − ED∗−1εd

εd

]
. (14)

Let us take a step back and reflect over the consequences of the above equation. First,
note that D∗−1 is present in (14) twice, and is infeasible to compute explicitly. This can
be avoided by introducing the auxiliary variable δaux, defined as

D∗δaux = εd. (15)

Again, such as system is not affected by the constraints of the constant parameters, and
can be solved with standard computer vision software. Furthermore, we may introduce
Δaux and solve the system D∗Δaux = Eᵀ in a similar manner by iterating over the
columns of Eᵀ. Since the number of constant parameters are low, such an approach
is highly feasible, but the performance can be further boosted by storing the Schur
complement and the intermediate matrices not depending on the right-hand side, from
the previous computations of obtaining δaux from (15).

When the auxiliary variables have been obtained, we proceed to compute δc from

(C∗ − EΔaux) δc = εc − Eδaux, (16)

and, lastly, δd by back-substitution

D∗δd = εd − Eᵀδc. (17)

Again, by storing the computation of the Schur complement and intermediate matrices,
these can be reused to solve (17) efficiently.

6 Experiments

6.1 Initial Solution

The inter-image homographies were estimated using the MSAC algorithm [25] from
point correspondences by extracting SURF keypoints and applying a KNN algorithm
to establish the matches. In the first experiment, we use the standard DLT solver, the
minimal 2.5 pt solver [33] and the four different polynomial solvers studied in [29].

In all experiments we use all available homographies, and extract the monocular
parameters using the method proposed in [32]. Similarly, the binocular parameters were
extracted using [27]. When all motion parameter have been estimated the camera path
is reconstructed by aligning the first camera position to the origin, and use the estimated
camera poses to triangulate the scene points as in Sect. 4.4.
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Fig. 2. Errors before applying BA. The angles are measured in degrees, and the translation in
pixels.
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Fig. 3. Errors after applying BA. The angles are measured in degrees, and the translation in pixels.

6.2 Impact of Pre-processing Steps

In this section we work with synthetic data in order to have access to accurate ground
truth data. We generate an image sequence from a high-resolution image, depicting
a floor, which is the typical use case for the algorithm. This is done by constructing
a path compatible with the general planar motion model, and project that part of the
floor through the camera and extract the corresponding image. The resulting image is
400 × 400 pixels, and all cameras are set to a field of view of 90◦, with parameters
ψ = −2◦, θ = −4◦, ψ′ = 6◦, θ′ = 4◦, τ = (0 400) , η = 20◦ and b = 1. In total, the
image sequence consists of 20 images. Lastly, to simulate image noise, we add Gaussian
noise with a standard deviation of five pixels, where the pixel depth allows 256 different
intensities per channel.

In order to study the difference in accuracy for the constant parameters, we pro-
ceed by obtaining homographies as described in Sect. 6.1, using the minimal 2.5 point
solver [33], four non-minimal solvers [29] and the DLT equations (4 point). The accu-
racy, over 50 iterations, is reported before BA, in Fig. 2, and after BA, in Fig. 3. In gen-
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eral, the overall performance of the solvers are almost equal; however, some tendencies
are present. The minimal solver performs worse than the other before BA, but this devi-
ation is smaller after BA, although present. One possible explanation is that the general
planar motion model is enforced too early in the pipeline—in fact, since it is enforced
between two consecutive image pairs only, it does not guarantee that the overhead tilt
is constant throughout the entire sequence, and thus, in the presence of noise, the error
propagates differently, compared to the other methods that partially (non-minimal) or
completely (DLT) tune to the data.

Fig. 4.Mean reprojection error vs execution time (s) over 50 iterations.

Overall, the performance is acceptable after BA, regardless of how the homogra-
phies are obtained. Hence, the differentiating factors come down to convergence rates.
For the same problem instances as in the previous section we also save the convergence
history in terms of the mean reprojection error and the execution time in seconds. The
results are shown in Fig. 4. It is clear that the execution time for reaching convergence
increase with the number of point correspondences required by the polynomial solvers.
This suggests that one can make a trade-off between speed and accuracy when design-
ing a planar motion compatible BA framework by choosing different solvers, in order
to suit ones specific needs. Note, however, that the implementation used in this paper is
a native Matlab implementation, and that the absolute timings can be greatly improved
by careful implementation; however, the relative execution time between the solvers
will be similar.

6.3 Bundle Adjustment Comparison

In this section we compare the qualitative difference between enforcing the general pla-
nar motion model versus the general unconstrained six degree of freedom model on a
real dataset. Currently, there is not a good or well-established dataset compatible with
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the general planar motion model, and as a substitute, we use the KITTI Visual Odom-
etry/SLAM benchmark [9]. Since many sequences or subsequences depict urban envi-
ronments with paved roads, the general planar motion model can roughly be applied. In
case of clear violation of the general planar motion model, we proceed to use only sub-
sequences where the model is applicable. As we are only interested by the road in front
of the vehicle, and not the sky and other objects by the roadside, we proceed to crop a
part of the image prior to estimating the homography. An example of this is shown in
Fig. 5.

Fig. 5. Images from the KITTI Visual Odometry/SLAM benchmark, Sequence 01 (left) and 03
(right). Since the algorithm is homography-based the images are cropped a priori in order to
contain a significant portion of planar or near planar surface. Such an assumption is not valid
on all sequences of the dataset, however, certain cases, such as the highway of Sequence 01
(left) is a good candidate. There are several examples where occlusions occur, such as the car
in Sequence 03 (right). These situations typically occur at crossroads and turns. Image credit:
KITTI dataset [9].

We use SBA [16] to enforce the general 6-DoF model from the initial trajectory
obtained using the traditional 4-point DLT solver, and from the same trajectory our
proposed BA algorithm is used. The same thresholds for absolute and relative errors,
termination control and damping factors are used for both methods. Furthermore, we do
not match features between the stereo views, in order to demonstrate that enforcing the
model is enough to increase the overall performance. The results are shown in Fig. 6.

In most cases it is favourable to impose the proposed method compared to the gen-
eral 6-DoF method, using SBA. Furthermore, note that irregularities that are present
in the initial trajectory is often transferred to the solutions obtained by SBA, thus pro-
ducing physically improbable solutions. These irregularities are rarely seen using the
proposed method, which results in smooth realistic trajectories under general condi-
tions, regardless of whether the initial solution contains irregularities or not.

In fact, it is interesting to see what happens in cases where the general planar motion
model is violated. Such an instance occurs in Fig. 6(b) depicting Sequence 03, and is due
to the car approaching a crossroads, where a passing vehicle enters the field of view.
The observed car, and the surroundings, are highly non-planar; one would, perhaps,
expect such a clear violation to result in completely unreliable output, however, the
only inconsistency in comparison to the ground truth, is that the resulting turn is too
sharp, and the remaining path is consistent with the ground truth. This is not true for
the general 6-DoF model, where several obvious inconsistencies are present.
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(a) Sequence 01 (60 images). (b) Sequence 03 (200 images).

(c) Sequence 04 (40 images). (d) Sequence 06 (330 images).

Fig. 6. Estimated trajectories of subsequences of Sequence 01, 03, 04 and 06. In order to align the
estimated paths with the ground truth, Procrustes analysis has been carried out. N.B. the different
aspect ratio in (c), which is intentionally added in order to clearly visualise the difference. Figure
reproduced from [30].

7 Conclusion

In this paper a novel bundle adjustment method has been devised, which enforces the
general planar motion model. We provide an efficient implementation scheme that
exploits the sparse structure of the Jacobian, and, additionally, avoids recomputing
unnecessary quantities, making it highly attractive for real-time computations.

The performance of different polynomial solvers are studied, in terms of both accu-
racy and speed, taking the entire bundle adjustment framework into account. We dis-
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cuss how enforcing different polynomial constraints, through planar motion compatible
homography solvers, in an early part of the bundle adjustment framework affect the end
results. Furthermore, we discuss which trade-offs between speed and accuracy that can
be made to suit ones specific priorities.

The proposed method has been tested on real data and was compared to state-of-
the-art methods for sparse bundle adjustment, for which it performs well, and gives
physically accurate solutions, despite some model assumptions not being fulfilled.
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