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Abstract. Data minimization has become a paradigm to address pri-
vacy concerns when collecting and storing personal data. In this paper
we present two new approaches, RSTxFM and RRTxFM, to estimate the car-
dinality of a dataset while ensuring differential privacy. We argue that
privacy-preserving cardinality estimators are able to realize strong pri-
vacy requirements. Both approaches are based on a probabilistic count-
ing algorithm which has a logarithmic space complexity. We combine
this with a randomization technique to provide differential privacy. In
our analysis, we detail the privacy and utility guarantees and expose
the impact of the various parameters. Moreover, we discuss workforce
analytics as application area where strong privacy is paramount.

Keywords: Probabilistic counting · Differential privacy · Randomized
response

1 Introduction

For data analytics, one of the fundamental operations is to determine the num-
ber of distinct elements in a data stream. Due to their small memory foot-
print and low computational overhead, probabilistic counting algorithms like
FM sketches [14], Count-Min sketches [7], and Bloom filters [5] are widely used
to estimate the set cardinality efficiently. In fact, they are suitable to record and
derive statistics for any categorical data.

Probabilistic counting algorithms can also be used as privacy-enhancing tech-
nology, for example, to count Tor users [23], to collect browser statistics [11], or
to track users moving from one area to another [3]. In our work, we consider
workforce analytics as running example to illustrate a setting, where privacy is
crucial and where we have to deal with data integration and data collection at
the same time.

Example 1. In recent years, workforce or human resource (HR) analytics is grow-
ing rapidly [1]. Workforce analytics combines data from different HR systems and
collects additional HR data to understand interrelationships, to predict trends,
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and to give advice for future developments. The prime example is to predict
employee turnover and to infer its reasons by using workforce analytics [13].

For simplicity, assume we are interested in determining the number of employ-
ees who work overtime. We use a counting sketch, e.g. , an FM sketch, to record
the IDs of employees who work overtime on a monthly basis. By merging the
corresponding sketches a data analyst should be able to estimate the number of
employees who work overtime over arbitrary time ranges but unable to identify
individual employees in the sketch.

In Europe, processing HR data requires special protection and is allowed
only under certain circumstances, which is even more strictly regulated since
the introduction of the General Data Protection Regulation (GDPR). One way
to mitigate the risk of data misuse is to anonymize the data. However, incidents
in the past have shown that supposedly anonymized data can be deanoymized.
In 2006, Netflix published an anonymous dataset of film reviews for research
purposes. By linking the dataset to auxiliary information, e.g. , the Internet
Movie Database, it was possible to identify the majority of users [18]. This
result shows that pseudonymity is not sufficient to protect privacy.

In this paper, we propose two new approaches, RSTxFM and RRTxFM, for differ-
entially private statistics by using privacy-enhanced FM sketches. To this end,
we collect and aggregate data in sketches at a central point after performing
our algorithms. We generally consider the counted data to be ephemeral and
only RSTxFM and RRTxFM sketches to be persistent. Moreover, we assume that an
(hones-but-curious) adversary knows the probabilistic counting algorithm, the
IDs of all users in the dataset, and has access to the sketches. Even when using
additional means of protection as in [23], the absence of an ID, i.e., the ID has
not been recorded, reveals sensitive information. That is, in our example the
adversary could reveal that an employee does not work overtime, which might
be used to identify “unmotivated” personnel. We tackle this problem by employ-
ing a randomization step before recording IDs in a sketch. We mitigate the risk
of being identified, independently of whether the user is in the dataset or not,
by guaranteeing ε-differential privacy [9].

In the privacy analysis and the empirical evaluation, we expose the impact
of the various system parameters. In particular, we show that our approaches
provide strong differential privacy guarantees (ε < 1), while still being able to
produce accurate estimations (error < 10%). We also discuss the merits of our
two approaches: While RSTxFM is able to provide accurate results for very small
ε, it strictly requires adding additional perturbation. In contrast, RRTxFM also
provides differential privacy without this perturbation, which makes it the pre-
ferred solution when aggregating sketches. Accordingly, the main contributions
of our paper can be summarized as follows:

– We identify probabilistic counting as basis for differentially private cardinality
estimation in Sect. 3.

– We quantify the privacy level and prove that our algorithms satisfy differential
privacy in Sect. 4.
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– We analyse the accuracy of RSTxFM and RRTxFM in Sect. 5. We compare it to
related approaches and show that appropriate parameters can be found to
adjust the trade-off between the privacy and accuracy.

2 Related Work

Privacy-preserving statistics often consider a centralized architecture. The data
is stored at a central place and noise is added to the output according to a
Laplace or exponential distribution to reduce the risk for an individual to be
identified [10,12]. This approach however does not protect from data breaches
performed by external or internal adversaries. Our approach is based on so-called
FM sketches [14], which already aggregate data to some extent and therefore
reduce the risks of a data breach.

Probabilistic data structures are generally suitable for privacy-enhanced data
analytics [4,15] as they reduce the amount of personal data and inherently follow
the privacy principle of data minimization. Obfuscation by hashing IDs and
relying on the probabilistic nature of the data structures alone is not sufficient
to guarantee the privacy of all users [8]. Additional means of protection are
necessary. However, even by adding additional noise [21,23], it may become
evident that an ID is not present in the dataset. While in some scenarios this
might be a reasonable assumption, in our example (see Example 1), we consider
that the absence of an ID also leaks sensitive information.

A multitude of approaches address the issue by combining the randomized
response technique (RRT) [24] with Bloom filters to conceal a user ID’s
absence [2,3,11,17,19,22]. For example, with RAPPOR [11] Google collects data
about the startpage of Chrome users. The response (i.e., the user’s startpage)
is mapped to a Bloom filter. By employing a two-step RRT, RAPPOR flips
each bit with a given probability and provides privacy, even if an attacker links
several reports from a single user. In general, the accuracy of a Bloom filter
depends on the number of utilized hash functions and the size of the Bloom
filter, which increases linearly with the expected number of IDs. On the other
hand, cardinality estimators and FM sketches in particular, require significantly
less space (growing logarithmically with the number of IDs), which makes them
more suitable if the number of distinct IDs is unknown in advance.

Because of the output perturbation, RAPPOR needs a high sample size
for accurate estimations [20]. In contrast, PRIVAPPROX [20] perturbs the
input and therefore requires a smaller sample size when compared to RAP-
POR. Regarding the perturbation technique the approach is very similar to our
approaches. However, PRIVAPPROX is designed for stream analytics and does
not fit well with existing data like in workforce analytics. Therefore we use FM
sketches which can be used to further combine and aggregate individual datasets.

3 Differentially Private Cardinality Estimators

We use Probabilistic Counting with Stochastic Averaging (PCSA) [14] as basis to
estimate the number of distinct user IDs in a dataset. Accordingly, the family of
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h2(IDA) h2(IDB) h2(IDC) h2(IDD)

1 1 0 0 0 0 0 1 0 0

1 1 0 1 0 0 1 1 0 0

With a probability
of r set bits to 1

A 1-bit “far right”
leaks information

All 0-bits leak
information

R1 = 2

Fig. 1. Illustrating PCSA(r) as in [23] and revealing a privacy issue with 0-bits.

probabilistic counting algorithms also became known as cardinality estimators.
To some extent, our findings are applicable to cardinality estimators in general.

PCSA uses m FM sketches (with m ≥ 1) in parallel and two hash functions
h1 and h2. A single FM sketch is a bit array B = b1, ...bL, of length L ≥ 1, which
is initialized to zero. We count a user by hashing the ID and using the result to
determine a bit position in one of the FM sketches that we set 1. More specifically,
hash function h1 is used to determine an FM sketch and h2 to map the IDs to
an index in the bit array. While h1 is a uniformly distributed hash function,
h2 is a geometrically distributed hash function, which yields the probability
P (h2(ID) = i) = 2−i that a specific bit at index i is set. In practice, we also use
a uniformly distributed hash function, inspect the binary representation of the
hash value, and consider the least significant set bit’s index as output. Assume
for example that the binary representation of h2(IDA) = [1001]2. The least
significant set bit is i = 1 and therefore maps A’s ID to the respective bit. We
illustrate counting different IDs in Fig. 1, where four distinct IDs (IDA, IDB,
IDC , and IDD) are mapped on the first FM sketch.

Given the fact that h2 is geometrically distributed, fewer IDs are mapped to
higher indexes (right-hand side). In the worst case, only a single ID maps to a
specific bit and an adversary can be sure that this ID was counted. To guarantee
the privacy for all counted IDs, the authors of [23] introduce a perturbation
technique. Each bit will be set with an additional probability r, which makes 1-
bits “ambiguous” (cf. Fig. 1). In the following, we will call this approach PCSA(r).
Note that if r = 0, the approach is identical to vanilla PCSA.

PCSA(r) also uses the number of consecutive 1-bits Rj to estimate the cardi-
nality, but adapts the correction factor ϕ depending on r. The estimate CPCSA

is calculated with m FM sketches accordingly as

CPCSA =
m · 2

m∑

j=1
Rj/m

ϕ(r)
. (1)

When Rj is small, the estimation leads to inaccuracies. These can be mitigated to
some extent by using a different estimation method based on “hit counting” [16]
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as long as the fraction of set bits (taking false positives into account) is below
30%, we consider the fraction k of 0-bits at the first bit position (i = 1) of each
sketch and calculate the cardinality as:

CPCSA = (−2.0 · m) · log
(

k

m · (1.0 − r)

)
.

While PCSA is generally well suited to estimate the cardinality, PCSA(r)
also protects counted users/IDs. Unfortunately, the approach still leaks infor-
mation: all 0-bits reveal that all respective user IDs have not been counted (cf.
Fig. 1). In our running example, we are interested to estimate the cardinality
of all employees who work overtime. The absence of an employee ID indicates
that this employee has not worked overtime, which reveals sensitive information.
Accordingly, the privacy is not fully guaranteed.

In the following, we will present two approaches which tackle this privacy
issue. Our general solution strategy is to induce “uncertainty” to the count-
ing procedure with the goal to ensure privacy even if an adversary knows all
user IDs in the dataset. To this end, we apply two randomization techniques to
perturb the input. Our first algorithm RSTxFM uses random sampling to count
only a sample of all IDs. Our second algorithm RRTxFM adopts the randomized
response technique (RRT) to scramble the input in such a way that it contains
true and false information. In both approaches, each bit in a sketch (0 and 1)
yields plausible deniability as it remains unclear whether the answer is a result
of randomization or truly corresponds to an ID. Later we will formalize this
property and show that both approaches achieve differential privacy.

3.1 RSTxFM

In this approach, we randomly count a fraction p1 of all IDs only. Let us assume
we want to estimate the number of employees who work overtime as in Example 1.
Moreover, assume that p̂ is the fraction of employees who indeed work overtime,
i.e., the set of IDs we are interested in. As shown in Fig. 2, an employee work-
ing overtime is counted with a probability p1. For counting user IDs, we use
PCSA(r). As a consequence, an adversary does not know which employees have
been selected. A 0-bit can indicate that the corresponding employees did not
work overtime or simply were not selected. We can still estimate the total car-
dinality C by evaluating the sketches according to Eq. (1) and setting the result
in proportion to p1, which yields

C =
CPCSA

p1
. (2)

3.2 RRTxFM

Our second approach follows the general idea of RRT [24], a method used in
surveys to guarantee privacy. The data is perturbed in a way that a data collector
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1 1 0 1 0 0 1 1

Fig. 2. Procedure of RSTxFM.

true

forced

yes

no

yes

no

p1

1 − p1

p̂

1 − p̂

p2

1 − p2

1 1 0 1 0 0 1 0

1 1 0 1 0 0 1 1

Fig. 3. Procedure of RRTxFM.

cannot tell whether the answer contains true or false information. In recent years
this method has been modified. We adopt the Forced Response Model [6]. The
method can be best described by an example: Before answering a question an
employee flips a coin. If the coin comes head the employee answers truthfully
whether he works overtime. If the coin comes tail the employee’s answer is forced
by flipping another coin. For head the answer is “yes” (i.e., working overtime)
and for tails “no” (i.e., not working overtime). In Fig. 3, we sketch the procedure.

In order to control the impact of true and forced answers, we leave the param-
eters flexible and do not use a static coin flipping mechanism. With a probability
p1, we count the true fraction p̂ of IDs we are interested in, e.g. , employees work-
ing overtime. These IDs are mapped to a PCSA(r) sketch. With a probability
1 − p1 we use a forced answer. The forced answer is counted as well (i.e., “yes”)
with probability of p2. With probabilities p1 = p2 = 0.5, RRTxFM is identical to
the example using a coin flip to determine the input data.

With the probability tree in Fig. 3 we can estimate the true fraction p̂. Basi-
cally, there are two ways a bit can be set: by answering truthful and by a forced
answer. The probability of getting a “yes” answer is p1 · p̂ + (1 − p1) · p2. Setting
the total number of “yes” responses CPCSA equal to this probability and solving
for p̂, we can estimate the true cardinality C by calculating

C =
CPCSA

N − p2 + p1 · p2

p1
· N . (3)

4 Privacy Analysis

With our approaches we aim for satisfying the strict concept of ε-differential
privacy introduced by Dwork et al. [9]. It guarantees privacy regardless of the
amount of background knowledge of an adversary. Accordingly, a function f
provides ε-differential privacy if all pairs of answers a1 and a2 and all S ⊆
Range(f) satisfy

P [f(a1) ∈ S] ≤ eεP [f(a2) ∈ S]. (4)

A smaller ε generally yields a stronger privacy. For ε = 0, the output of function
f is the same independent of the input, i.e., it is irrelevant whether a1 or a2 is in
the dataset. While ε = 0 leads to the strongest privacy guarantees, it obviously
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Fig. 4. Privacy level of RSTxFM.
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Fig. 5. Privacy level of RRTxFM.

cannot be used to obtain meaningful results. Finding a balance between the
privacy level ε and the accuracy of results is necessary.

Differential privacy expects the worst case [10]. For this reason we assume
that an adversary knows all IDs and all algorithmic details, particularly the hash
functions to map IDs to a sketch. The worst case is, as elaborated intuitively in
the previous section, a bit where only a single ID is mapped to.

In the following, we show that our approaches are differentially private and
satisfy Eq. (4). Since IDs are mapped to a single bit only, the privacy level ε is
independent of the number of sketches and we only need to derive ε-differential
privacy for one sketch. Therefore, we have to distinguish two possible answers,
1 for a positive and 0 for a negative answer. Accordingly, we have to show

ε0 ≥ ln
(

P [f(0) = 0]
P [f(1) = 0]

)
and ε1 ≥ ln

(
P [f(1) = 1]
P [f(0) = 1]

)
,

where ε0 describes the privacy level for the absence and ε1 for the presence of
an ID. The differential privacy level ε is then given by the maximum of ε0 and
ε1, i.e., ε = max(ε0, ε1).

4.1 Privacy Level of RSTxFM

With RSTxFM, there are two reasons for setting a bit: either an ID has a certain
property and is sampled with a probability p1, or the bit is set by the pertur-
bation technique of PCSA(r) with a probability r. We can use this observation
to calculate the conditional probabilities P [f(0) = 0], P [f(1) = 0], P [f(1) = 1]
and P [f(0) = 1] and derive ε0 and ε1 accordingly. That is,

ε0 = ln

(
1

1 − p1

)
and ε1 = ln

(
p1 + (1 − p1) · r

r

)
.
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First of all, please note that the privacy level depends on p1 and r. Only
for r > 0 and p1 �= 1, RSTxFM satisfies the definition of differential privacy. In
Fig. 4, we plotted ε0 and ε1 with p1 on the x-axis and varying values for r. The
influence of p1 and r is as expected. The probability r has no impact on ε0. For
high values of p1, ε0 increases quickly so that for p1 → 1 : ε0 = ∞. In contrast,
ε1 depends on both probabilities p1 and r. Overall, for a decreasing p1 and an
increasing r, max(ε0, ε1) decreases and provides stronger privacy, respectively.

4.2 Privacy Level of RRTxFM

Proving ε-differential privacy for RRTxFM is equivalent to RSTxFM. First, we have
to calculate the conditional probabilities, which now not only depend on p1 and
r but also on p2, before we can derive ε0 and ε1. We obtain

ε0 = ln
(

p1 + (1 − p1) · (1 − p2)
(1 − p1) · (1 − p2)

)
and

ε1 = ln
(

p1 + (1 − p1) · p2 + (1 − p1) · (1 − p2) · r

p1 · r + (1 − p1) · p2 + (1 − p1) · (1 − p2) · r

)
.

The privacy level depends on p1, p2 and r. For p1 �= 1 and p2 �= 1, RRTxFM
satisfies the definition of differential privacy. That is, r is not strictly required
to guarantee differential privacy.

In Fig. 5, we show ε0 and ε1 (absence and presence of an ID) in relation to p2.
The influence of r and p1 are represented by the different lines. As for RSTxFM,
r has no influence on ε0. For high values of p2, ε0 increases quickly. We observe
that for an increasing p1 (i.e., truthful answers), ε0 and ε1 increase.

With rising p1 the privacy level ε1 becomes flatter. While r is not strictly
required to gain differential privacy, it still has an influence on ε1. The privacy
level decreases with increasing p2. Higher values of r have a positive effect on the
privacy and make the curve’s slope smaller, effectively decreasing ε1 and thus ε.

5 Evaluation

In this section, we examine the accuracy of our approaches with respect to
the privacy level ε. In particular, besides comparing the accuracy of RSTxFM
and RRTxFM, we evaluate the cost of privacy. To this end, we implemented a
simulation and generated synthetic datasets with different cardinalities. Each
dataset consists of N unique random numbers, which serve the purpose of IDs.
Since we know the true cardinalities, we can calculate the error of our cardinality
estimations and directly compare the different approaches.

From PCSA it is known that it has a standard error of 0.78/
√

m [14]. A
higher number of sketches consequentially results in a better accuracy. Since the
number of sketches has no impact on the privacy level, though, we set m = 64
and the length of each sketch to 64 bit, large enough to count ≈ 7 ·1019 elements.
Please note that this is one of the benefits of building upon PCSA instead of
Bloom filters, because we can set these parameters independently of N .
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Fig. 7. Impact of p1, p2, and N .

The perturbation and randomization in our approaches can lead to negative
estimations. As this makes no sense, we set negative estimations to zero. In order
to obtain statistically sound results, we repeat each experiment 50 times with
varying random seeds. For all results, we show the arithmetic mean; error bars
indicate 95% confidence intervals.

5.1 Impact of Parameters

We first investigate the accuracy of estimating the cardinality with varying per-
turbation probability r. In Fig. 6, we show the relative error for RSTxFM and
RRTxFM. For clarity, we set p1 = p2 = 0.5. For an increasing r, the relative error
also increases. In line with the results of [23], the error remains at reasonable
levels for m = 64 and r < 0.4. In the following experiments, we set r = 0.2,
because we believe it provides a good trade-off between accuracy and privacy.

We also analyzed how the randomization parameters p1 and p2 and the car-
dinality size N influence the relative error. Probabilities were chosen to satisfy
ε < 2. Figure 7 generally indicates that the error decreases with higher car-
dinalities and stabilizes at some point. As expected, low cardinalities yield a
high error. Also as expected, increasing p1 decreases the error of both RSTxFM
and RRTxFM. For RRTxFM, the probability p2 (forced answers) also influences the
accuracy. Increasing p2 also increases the relative error. For high cardinalities,
however, we observed that p1 has the strongest impact on the loss of accuracy.

5.2 Cost of Privacy

Privacy comes at a cost. In order to quantify these costs, we compare our algo-
rithms with vanilla PCSA (i.e., r = 0) and PCSA(r) with a perturbation prob-
ability r = 0.2. Please note that both, PCSA and PCSA(r), do not satisfy the
definition of differential privacy. Figure 8 shows that the relative error is less
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than 10%, even for small cardinalities. Figure 9 shows a trade-off between accu-
racy and privacy for RSTxFM and RRTxFM. As expected, more privacy guarantees
(i.e., a smaller ε) yields a higher accuracy loss (particularly when compared to
Fig. 8). For a very small differential privacy level (ε = 0.23), RRTxFM shows a
high accuracy loss (error ≈ 1.6). RSTxFM, in contrast, is able to provide accu-
rate results (error < 0.1) also for very small ε. Notably, the same privacy level
does not lead to the same relative error. In particular, RRTxFM has a higher
error for a higher probability p2, even though the overall privacy guarantees are
the same. This observation can also be made for higher cardinalities, where the
error becomes even smaller. Lower cardinalities result in a higher error even with
optimal parameters.

Table 1 summarizes the cost of privacy for appropriate parameters. As we
mentioned above, stronger privacy comes at the cost of an increased loss of
accuracy. However, the accuracy loss remains at a reasonable level for large
cardinality sizes and an appropriate choice of parameters.

5.3 Discussion

In terms of the privacy level our approaches can be compared to RAPPOR [11]
as it also uses RRT. The basic one-time RAPPOR guarantees differential privacy
with ε ≤ ln(3). With ε < 1, we guarantee stronger privacy and an average error of
less than 10%. According to [8], an error of less than 10% is classified as a precise
cardinality estimator. To identify trends and reasons for employee turnover (as
outlined in Example 1) this accuracy seems reasonable.

For the sake of clarity, we have envisioned our algorithms in a centralized
setting so far only. That is, collecting data at a central point, which manages
the sketches and performs the randomization. RSTxFM and RRTxFM however can
also be used in a local mode and therefore provide local differential privacy. In
this mode, each employee will manage the sketches and perform the described
algorithm locally. The perturbed sketches will then be transmitted to the data
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Table 1. Cost of privacy (N = 104; RSTxFM: p1 = 0.3; RRTxFM: p1 = 0.4, p2 = 0.15).

Relative error

Algorithm r Mean Median SD Privacy

PCSA(r) 0.0 0.0476 0.0476 0.0 –

PCSA(r) 0.2 0.0820 0.0698 0.0624 only 1-bits

RSTxFM 0.2 0.0880 0.0658 0.0695 ε = 0.7885

RRTxFM 0.2 0.0996 0.0659 0.0897 ε = 0.7777

collector. The perturbation r however will lead to a higher loss of accuracy when
aggregating sketches. We therefore suggest to prefer RRTxFM for data collection
and integration as it provides differential privacy even for r = 0.

When collecting data over time, the time series can leak information and
eventually reveal the true value. In case of static already existing data, this is
not relevant. However, it becomes relevant for employee satisfaction surveys, for
example. RAPPOR provides protection against this type of information leakage
by employing so-called memoization [11]. The memoization part “remembers”
the result of RRT instead of recalculating it for a new query. This method is also
applicable to RRTxFM. In the future, we will extend our evaluation and compare
the results to various related approaches, including RAPPOR.

6 Conclusion

In this paper, we have shown that probabilistic counting can be used for dif-
ferentially private statistics. We combined counting sketches with an additional
randomization step to prevent personal data leakage. By comparing our devel-
oped algorithms, RSTxFM and RRTxFM, we exposed various parameter dependen-
cies and found that the same privacy level does not necessarily result in the same
accuracy. We however also showed that appropriate parameters can be found to
gain privacy and accuracy.

In summary, our approaches provide strong differential privacy guarantees
(ε < 1) with a loss of accuracy below 10% and therefore balance the trade-off
between privacy and accuracy.
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