
Chapter 5
Construction of Fréchet Means and
Multicouplings

When given measures μ1, . . . ,μN are supported on the real line, computing their
Fréchet mean μ̄ is straightforward (Sect. 3.1.4). This is in contrast to the multivari-
ate case, where, apart from the important yet special case of compatible measures,
closed-form formulae are not available. This chapter presents an iterative procedure
that provably approximates at least a Karcher mean with mild restrictions on the
measures μ1, . . . ,μN . The algorithm is based on the differentiability properties of
the Fréchet functional developed in Sect. 3.1.6 and can be interpreted as classical
steepest descent in the Wasserstein space W2(R

d). It reduces the problem of finding
the Fréchet mean to a succession of pairwise transport problems, involving only the
Monge–Kantorovich problem between two measures. In the Gaussian case (or any
location-scatter family), the latter can be done explicitly, rendering the algorithm
particularly appealing (see Sect. 5.4.1).

This chapter can be seen as a complementary to Chap. 4. On the one hand, one
can use the proposed algorithm to construct the regularised Fréchet–Wasserstein
estimator ̂λn that approximates a population version (see Sect. 4.3). On the other
hand, it could be that the object of interest is the sample μ1, . . . ,μN itself, but that
the latter is observed with some amount of noise. If one only has access to proxies
̂μ1, . . . ,̂μN , then it is natural to use their Fréchet mean ̂μ̄ as an estimator of μ̄ .
The proposed algorithm can then be used, in principle, in order to construct μ̄ , and
the consistency framework of Sect. 4.4 then allows to conclude that if each ̂μ i is
consistent, then so is ̂μ̄ .

After presenting the algorithm in Sect. 5.1, we make some connections to Pro-
crustes analysis in Sect. 5.2. A convergence analysis of the algorithm is carried out
in Sect. 5.3, after which examples are given in Sect. 5.4. An extension to infinitely
many measures is sketched in Sect. 5.5.
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5.1 A Steepest Descent Algorithm for the Computation
of Fréchet Means

Throughout this section, we assume that N is a fixed integer and consider a fixed
collection

μ1, . . . ,μN ∈ W2(R
d) with μ1 absolutely continuous with bounded density,

(5.1)
whose unique (Proposition 3.1.8) Fréchet mean μ̄ is sought. It has been established
that if γ is absolutely continuous then the associated Fréchet functional

F(γ) =
1

2N

n

∑
i=1

W 2
2 (μ i,γ), γ ∈ W2(R

d),

has Fréchet derivative (Theorem 3.1.14)

F ′(γ) =− 1
N

N

∑
i=1

logγ(μ
i) =− 1

N

N

∑
i=1

(

tμi
γ − i

) ∈ Tanγ (5.2)

at γ . Let γ j ∈W2(R
d) be an absolutely continuous measure, representing our current

estimate of the Fréchet mean at step j. Then it makes sense to introduce a step size
τ j > 0, and to follow the steepest descent of F given by the negative of the gradient:

γ j+1 = expγ j

(−τ jF
′(γ j)

)

=

[

i+ τ j
1
N

N

∑
i=1

logγ(μ
i)

]

#γ j =

[

i+ τ j
1
N

N

∑
i=1

(tμ i

γ j − i)

]

#γ j.

In order to employ further descent at γ j+1, it needs to be verified that F is differen-
tiable at γ j+1, which amounts to showing that the latter stays absolutely continuous.
This will happen for all but countably many values of the step size τ j, but necessarily
if the latter is contained in [0,1]:

Lemma 5.1.1 (Regularity of the Iterates) If γ0 is absolutely continuous and τ =
τ0 ∈ [0,1], then γ1 = expγ0

(−τ0F ′(γ0)) is also absolutely continuous.

The idea is that push-forwards of γ0 under monotone maps are absolutely continuous
if and only if the monotonicity is strict, a property preserved by averaging. See page
118 in the supplement for the details.

Lemma 5.1.1 suggests that the step size should be restricted to [0,1]. The next re-
sult suggests that the objective function essentially tells us that the optimal step size,
achieving the maximal reduction of the objective function (thus corresponding to an
approximate line search), is exactly equal to 1. It does not rely on finite-dimensional
arguments and holds when replacing R

d by a separable Hilbert space.
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Lemma 5.1.2 (Optimal Stepsize) If γ0 ∈ W2(R
d) is absolutely continuous, then

F(γ1)−F(γ0)≤−‖F ′(γ0)‖2
[

τ − τ2

2

]

and the bound on the right-hand side of the last display is minimised when τ = 1.

Proof. Let Si = tμ i

γ0 be the optimal map from γ0 to μ i, and set Wi = Si − i. Then

2NF(γ0) =
N

∑
i=1

W 2
2 (γ0,μ i) =

N

∑
i=1

∫

Rd
‖Si − i‖2 dγ0 =

N

∑
i=1

‖Wi‖2
L 2(γ0)

, (5.3)

Both γ1 and μ i can be written as push-forwards of γ0 and (2.3) gives the bound

W 2
2 (γ1,μ i)≤

∫

Rd

∥

∥

∥

∥

∥

[

(1− τ)i+
τ
N

N

∑
j=1

S j

]

−Si

∥

∥

∥

∥

∥

2

Rd

dγ0 =

∥

∥

∥

∥

∥

−Wi +
τ
N

N

∑
j=1

Wj

∥

∥

∥

∥

∥

2

L 2(γ0)

.

For brevity, we omit the subscript L 2(γ0) from the norms and inner products. De-
veloping the squares, summing over i = 1, . . . ,N and using (5.3) gives

2NF(γ1)≤
N

∑
i=1

‖Wi‖2 −2
τ
N

N

∑
i, j=1

〈

Wi,Wj
〉

+Nτ2

∥

∥

∥

∥

∥

N

∑
j=1

1
N

Wj

∥

∥

∥

∥

∥

2

= 2NF(γ0)−2Nτ

∥

∥

∥

∥

∥

N

∑
i=1

1
N

Wi

∥

∥

∥

∥

∥

2

+Nτ2

∥

∥

∥

∥

∥

N

∑
i=1

1
N

Wi

∥

∥

∥

∥

∥

2

,

and recalling that Wi = Si − i yields

F(γ1)−F(γ0)≤ τ2 −2τ
2

∥

∥

∥

∥

∥

1
N

N

∑
i=1

Wi

∥

∥

∥

∥

∥

2

=−‖F ′(γ0)‖2
[

τ − τ2

2

]

.

To conclude, observe that τ − τ2/2 is maximised at τ = 1.

In light of Lemmata 5.1.1 and 5.1.2, we will always take τ j = 1. The resulting
iteration is summarised as Algorithm 1. A first step in the convergence analysis is
that the sequence (F(γ j)) is nonincreasing and that for any integer k,

1
2

k

∑
j=0

‖F ′(γ j)‖2 ≤
k

∑
j=0

F(γ j)−F(γ j+1) = F(γ0)−F(γk+1)≤ F(γ0).

As k →∞, the infinite sum on the left-hand side converges, so ‖F ′(γ j)‖2 must vanish
as j → ∞.
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Remark 5.1.3 The proof of Proposition 3.1.2 suggests a generalisation of Algo-
rithm 1 to arbitrary measures in W2(R

d) even if none are absolutely continuous.
One can verify that Lemmata 5.1.2 and 5.3.5 (below) also hold in this setup, so it
may be that convergence results also apply in this setup. The iteration no longer has
the interpretation as steepest descent, however.

Algorithm 1 Steepest descent via Procrustes analysis

(A) Set a tolerance threshold ε > 0.
(B) For j = 0, let γ j be an arbitrary absolutely continuous measure.

(C) For i = 1, . . . ,N solve the (pairwise) Monge problem and find the optimal transport map tμ i

γ j

from γ j to μ i.

(D) Define the map Tj = N−1 ∑N
i=1 tμ i

γ j .
(E) Set γ j+1 = Tj#γ j , i.e. push-forward γ j via Tj to obtain γ j+1.

(F) If ‖F ′(γ j+1)‖ < ε , stop, and output γ j+1 as the approximation of μ̄ and tμ i

γ j+1 as the approxi-

mation of tμ i

μ̄ , i = 1, . . . ,N. Otherwise, return to step (C).

5.2 Analogy with Procrustes Analysis

Algorithm 1 is similar in spirit to another procedure, generalised Procrustes anal-
ysis, that is used in shape theory. Given a subset B ⊆ R

d , most commonly a finite
collection of labelled points called landmarks, an interesting question is how to
mathematically define the shape of B. One way to reach such a definition is to dis-
regard those properties of B that are deemed irrelevant for what one considers this
shape should be; typically, these would include its location, its orientation, and/or its
scale. Accordingly, the shape of B can be defined as the equivalence class consist-
ing of all sets obtained as gB, where g belongs to a collection G of transformations
of Rd containing all combinations of rotations, translations, dilations, and/or reflec-
tions (Dryden and Mardia [45, Chapter 4]).

If B1 and B2 are two collections of k landmarks, one may define the distance
between their shapes as the infimum of ‖B1 − gB2‖2 over the group G . In other
words, one seeks to register B2 as close as possible to B1 by using elements of the
group G , with distance being measured as the sum of squared Euclidean distances
between the transformed points of B2 and those of B1. In a sense, one can think about
the shape problem and the Monge problem as dual to each other. In the former, one
is given constraints on how to optimally carry out the registration of the points with
the cost being judged by how successful the registration procedure is. In the latter,
one imposes that the registration be done exactly, and evaluates the cost by how
much the space must be deformed in order to achieve this.

The optimal g and the resulting distance can be found in closed-form by means
of ordinary Procrustes analysis [45, Section 5.2]. Suppose now that we are given
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N > 2 collections of points, B1, . . . ,BN , with the goal of minimising the sum of
squares ‖giBi − g jB j‖2 over gi ∈ G .1 As in the case of Fréchet means in W2(R

d)
(Sect. 3.1.2), there is a formulation in terms of sum of squares from the average
N−1 ∑g jB j. Unfortunately, there is no explicit solution for this problem when d ≥ 3.
Like Algorithm 1, generalised Procrustes analysis (Gower [66]; Dryden and Mardia
[45, p. 90]) tackles this “multimatching” setting by iteratively solving the pairwise
problem as follows. Choose one of the configurations as an initial estimate/template,
then register every other configuration to the template, employing ordinary Pro-
crustes analysis. The new template is then given by the linear average of the regis-
tered configurations, and the process is iterated subsequently.

Paralleling this framework, Algorithm 1 iterates the two steps of registration and
linear averaging given the current template γ j, but in a different manner:

(1) Registration: by finding the optimal transportation maps tμ i

γ j , we identify each

μ i with the element tμ i

γ j − i= logγ j
(μ i). In this sense, the collection (μ1, . . . ,μN)

is viewed in the common coordinate system given by the tangent space at the
template γ j and is registered to it.

(2) Averaging: the registered measures are averaged linearly, using the common
coordinate system of the registration step (1), as elements in the linear space
Tanγ j . The linear average is then retracted back onto the Wasserstein space via
the exponential map to yield the estimate at the ( j+1)-th step, γ j+1.

Notice that in the Procrustes sense, the maps that register each μ i to the template

γ j are t
γ j

μ i , the inverses of tμ i

γ j . We will not use the term “registration maps” in the
sequel, to avoid possible confusion.

5.3 Convergence of Algorithm 1

In order to tackle the issue of convergence, we will use an approach that is specific
to the nature of optimal transport. This is because the Hessian-type arguments that
are used to prove similar convergence results for steepest descent on Riemannian
manifolds (Afsari et al. [1]) or Procrustes algorithms (Le [86]; Groisser [67]) do not
apply here, since the Fréchet functional may very well fail to be twice differentiable.

In fact, even in Euclidean spaces, convergence of steepest descent usually re-
quires a Lipschitz bound on the derivative of F (Bertsekas [19, Subsection 1.2.2]).
Unfortunately, F is not known to be differentiable at discrete measures, and these
constitute a dense set in W2; consequently, this Lipschitz condition is very unlikely
to hold. Still, this specific geometry of the Wasserstein space affords some advan-
tages; for instance, we will place no restriction on the starting point for the iteration,
except that it be absolutely continuous; and no assumption on how “spread out” the
collection μ1, . . . ,μN is will be necessary as in, for example, [1, 67, 86].

1 One needs to add an additional constraint to prevent registering all the collections to the origin.
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Theorem 5.3.1 (Limit Points are Karcher Means) Let μ1, . . . ,μN ∈ W2(R
d) be

probability measures and suppose that one of them is absolutely continuous with
a bounded density. Then, the sequence generated by Algorithm 1 stays in a com-
pact set of the Wasserstein space W2(R

d), and any limit point of the sequence is a
Karcher mean of (μ1, . . . ,μN).

Since the Fréchet mean μ̄ is a Karcher mean (Proposition 3.1.8), we obtain imme-
diately:

Corollary 5.3.2 (Wasserstein Convergence of Steepest Descent) Under the con-
ditions of Theorem 5.3.1, if F has a unique stationary point, then the sequence {γ j}
generated by Algorithm 1 converges to the Fréchet mean of {μ1, . . . ,μN} in the
Wasserstein metric,

W2(γ j, μ̄)−→0, j → ∞.

Alternatively, combining Theorem 5.3.1 with the optimality criterion Theorem
3.1.15 shows that the algorithm converges to μ̄ when the appropriate assumptions
on {μ i} and the Karcher mean μ = limγ j are satisfied. This allows to conclude that
Algorithm 1 converges to the unique Fréchet mean when μ i are Gaussian measures
(see Theorem 5.4.1).

The proof of Theorem 5.3.1 is rather elaborate, since we need to use specific
methods that are tailored to the Wasserstein space. Before giving the proof, we state
two important consequences. The first is the uniform convergence of the optimal

maps tμ i

γ j to tμ i

μ̄ on compacta. This convergence does not immediately follow from
the Wasserstein convergence of γ j to μ̄ , and is also established for the inverses. Both
the formulation and the proof of this result are similar to those of Theorem 4.4.3.

Theorem 5.3.3 (Uniform Convergence of Optimal Maps) Under the conditions
of Corollary 5.3.2, there exist sets A,B1, . . . ,BN ⊆R

d such that μ̄(A)= 1= μ1(B1)=
· · ·= μN(BN) and

sup
Ω1

∥

∥

∥tμ i

γ j − tμ i

μ̄

∥

∥

∥

j→∞−→ 0, sup
Ω i

2

∥

∥

∥t
γ j

μ i − tμ̄
μ i

∥

∥

∥

j→∞−→ 0, i = 1, . . . ,N,

for any pair of compacta Ω1 ⊆A, Ω i
2 ⊆Bi. If in addition all the measures μ1, . . . ,μN

have the same support, then one can choose all the sets Bi to be the same.

The other consequence is convergence of the optimal multicouplings.

Corollary 5.3.4 (Convergence of Multicouplings) Under the conditions of Corol-
lary 5.3.2, the sequence of multicouplings

(

tμ1

γ j , . . . t
μn

γ j

)

#γ j

of {μ1, . . . ,μN} converges (in Wasserstein distance on (Rd)N) to the optimal multi-

coupling (tμ1

μ , . . . tμn

μ )#μ .

The proofs of Theorem 5.3.3 and Corollary 5.3.4 are given at the end of the present
section.
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The proof of Theorem 5.3.1 is achieved by establishing the following facts:

1. The sequence (γ j) stays in a compact subset of W2(R
d) (Lemma 5.3.5).

2. Any limit of (γ j) is absolutely continuous (Proposition 5.3.6 and the paragraph
preceding it).

3. Algorithm 1 acts continuously on its argument (Corollary 5.3.8).

Since it has already been established that ‖F ′(γ j)‖ → 0, these three facts indeed
suffice.

Lemma 5.3.5 The sequence generated by Algorithm 1 stays in a compact subset of
the Wasserstein space W2(R

d).

Proof. For all j ≥ 1, γ j takes the form Mn#π , where MN(x1, . . . ,xN) = x and π is
a multicoupling of μ1, . . . ,μN . The compactness of this set has been established in
Step 2 of the proof of Theorem 3.1.5; see page 63 in the supplement, where this is
done in a more complicated setup.

A closer look at the proof reveals that a more general result holds true. Let A
denote the steepest descent iteration, that is, A (γ j) = γ j+1. Then the image of A ,
{A μ : μ ∈ W2(R

d) absolutely continuous} has a compact closure in W2(R
d). This

is also true if Rd is replaced by a separable Hilbert space.
In order to show that a weakly convergent sequence (γ j) of absolutely continuous

measures has an absolutely continuous limit γ , it suffices to show that the densities
of γ j are uniformly bounded. Indeed, if C is such a bound, then for any open O⊆R

d ,
liminfγk(O) ≤CLeb(O), so γ(O) ≤CLeb(O) by the portmanteau Lemma 1.7.1. It
follows that γ is absolutely continuous with density bounded by C. We now show
that such C can be found that applies to all measures in the image of A , hence to all
sequences resulting from iterations of Algorithm 1.

Proposition 5.3.6 (Uniform Density Bound) For each i = 1, . . . ,N denote by gi

the density of μ i (if it exists) and ‖gi‖∞ its supremum, taken to be infinite if gi does
not exist (or if gi is unbounded). Let γ0 be any absolutely continuous probability
measure. Then the density of γ1 = A (γ0) is bounded by the 1/d-th harmonic mean
of ‖gi‖∞,

Cμ =

[

1
N

N

∑
i=1

1

‖gi‖1/d
∞

]−d

.

The constant Cμ depends only on the measures (μ1, . . . ,μN), and is finite as long as
one μ i has a bounded density, since Cμ ≤ Nd‖gi‖∞ for any i.

Proof. Let hi be the density of γi. By the change of variables formula, for γ0-almost
any x

h1(t
γ1
γ0(x)) =

h0(x)

det∇tγ1
γ0(x)

; gi(tμ i

γ0 (x)) =
h0(x)

det∇tμ i

γ0 (x)
, when gi exists.
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(Convex functions are twice differentiable almost surely (Villani [125, Theorem
14.25]), hence these gradients are well-defined γ0-almost surely.) We seek a lower
bound on the determinant of ∇tγ1

γ0(x), which by definition equals

N−d det
N

∑
i=1

∇tμ i

γ0 (x).

Such a bound is provided by the Brunn–Minkowski inequality (Stein and Shakarchi
[121, Section 1.5]) for symmetric positive semidefinite matrices

[det(A+B)]1/d ≥ [detA]1/d +[detB]1/d ,

which, applied inductively, yields

[

det∇tγ1
γ0(x)

]1/d ≥ 1
N

N

∑
i=1

[

det∇tμ i

γ0 (x)
]1/d

.

From this, we obtain an upper bound for h1:

1

h1/d
1 (tγ1

γ0(x))
=

det1/d ∑N
i=1 ∇tμ i

γ0 (x)

Nh1/d
0 (x)

≥ 1
N

N

∑
i=1

1

[gi(tμ i

γ0 (x))]
1/d

≥ 1
N

N

∑
i=1

1

‖gi‖1/d
∞

=C−1/d
μ .

Let Σ be the set of points where this inequality holds, then γ0(Σ) = 1. Hence

γ1(t
γ1
γ0(Σ)) = γ0[(t

γ1
γ0)

−1(tγ1
γ0(Σ))]≥ γ0(Σ) = 1.

Thus, γ1-almost surely and for all i,

h1(y)≤Cμ .

The third statement (continuity of A ) is much more subtle to establish, and its rather
lengthy proof is given next. In view of Proposition 5.3.6, the uniform bound on the
densities is not a hindrance for the proof of convergence of Algorithm 1.

Proposition 5.3.7 Let (γn) be a sequence of absolutely continuous measures with
uniformly bounded densities, suppose that W2(γn,γ)→ 0, and let

η j =
(

tμ1

γ j , . . . t
μn

γ j , i
)

#γ j, η =
(

tμ1

γ , . . . tμn

γ , i
)

#γ .

Then η j → η in W2([R
d ]N+1).

Proof. As has been established in the discussion before Proposition 5.3.6, the limit
γ must be absolutely continuous, so η is well-defined.

In view of Theorem 2.2.1, it suffices to show that if h : (Rd)N+1 → R is any
continuous nonnegative function such that
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|h(t1, . . . , tN ,y)| ≤ 2
N

N

∑
i=1

‖ti‖2 +2‖y‖2,

then
∫

Rd
gn dγn =

∫

(Rd)N+1
hdηn →

∫

(Rd)N+1
hdη =

∫

Rd
gdγ , gn(x)=h(tμ1

γ j (x), . . . t
μn

γ j (x),x),

and g defined analogously. The proof, given in full detail on page 124 of the supple-
ment, is sketched here.

Step 1: Truncation. Since γn converge in the Wasserstein space, they satisfy the
uniform integrability (2.4) and absolute continuity (2.7) by Theorem 2.2.1. Conse-
quently, gn,R = min(gn,4R) is uniformly close to gn:

sup
n

∫

[gn(x)−gn,R(x)]dγn(x)→ 0, R → ∞.

We may thus replace gn by a bounded version gn,R.

Step 2: Convergence of gn to g. By Proposition 1.7.11, the optimal maps tμ i

γn

converge to tμ i

γ and (since h is continuous), gn → g uniformly on “nice” sets Ω ⊆
E = suppγ . Write
∫

gn,R dγn −
∫

gR dγ =
∫

gR d(γn − γ)+
∫

Ω
(gn,R −gR)dγn +

∫

Rd\Ω
(gn,R −gR)dγn.

Step 3: Bounding the first two integrals. The first integral vanishes as n → ∞,
by the portmanteau Lemma 1.7.1, and the second by uniform convergence.

Step 4: Bounding the third integral. The integrand is bounded by 8R, so it suf-
fices to bound the measures of Rd \Ω . This is a bit technical, and uses the uniform
density bound on (γn) and the portmanteau lemma.

Corollary 5.3.8 (Continuity of A ) If W2(γn,γ)→ 0 and γn have uniformly bounded
densities, then A (γn)→ A (γ).

Proof. Choose h in the proof of Proposition 5.3.7 to depend only on y.

Proof (Proof of Corollary 5.3.4). Choose h in the proof of Proposition 5.3.7 to de-
pend only on t1, . . . , tn.

Proof (Proof of Theorem 5.3.3). Let E = suppμ̄ and set Ai = Eden ∩{x : tμ i

μ̄ (x) is

univalued}. As μ̄ is absolutely continuous, μ̄(Ai) = 1, and the same is true for A =
∩N

i=1Ai. The first assertion then follows from Proposition 1.7.11.
The second statement is proven similarly. Let Ei = suppμ i and notice that by

absolute continuity the Bi = (Ei)den ∩{x : tμ̄
μ i(x) is univalued} has measure 1 with

respect to μ i. Apply Proposition 1.7.11. If in addition E1 = · · ·=EN , then μ i(B) = 1
for B = ∩Bi.



126 5 Construction of Fréchet Means and Multicouplings

5.4 Illustrative Examples

As an illustration, we implement Algorithm 1 in several scenarios for which pair-
wise optimal maps can be calculated explicitly at every iteration, allowing for fast
computation without error propagation. In each case, we give some theory first, de-
scribing how the optimal maps are calculated, and then implement Algorithm 1 on
simulated examples.

5.4.1 Gaussian Measures

No example illustrates the use of Algorithm 1 better than the Gaussian case. This is
so because optimal maps between centred nondegenerate Gaussian measures with
covariances A and B have the explicit form (see Sect. 1.6.3)

tB
A(x) = A−1/2[A1/2BA1/2]1/2A−1/2x, x ∈ R

d ,

with the obvious slight abuse of notation. In contrast, the Fréchet mean of a collec-
tion of Gaussian measures (one of which nonsingular) does not admit a closed-form
formula and is only known to be a Gaussian measure whose covariance matrix Γ is
the unique invertible root of the matrix equation

Γ =
1
N

N

∑
i=1

[

Γ 1/2SiΓ 1/2
]1/2

, (5.4)

where Si is the covariance matrix of μ i.
Given the formula for tB

A, application of Algorithm 1 to Gaussian measures is
straightforward. The next result shows that, in the Gaussian case, the iterates must
converge to the unique Fréchet mean, and that (5.4) can be derived from the charac-
terisation of Karcher means.

Theorem 5.4.1 (Convergence in Gaussian Case) Let μ1, . . . ,μN be Gaussian mea-
sures with zero means and covariance matrices Si with S1 nonsingular, and let the
initial point γ0 be N (0,Γ0) with Γ0 nonsingular. Then the sequence of iterates gen-
erated by Algorithm 1 converges to the unique Fréchet mean of (μ1, . . . ,μN).

Proof. Since the optimal maps are linear, so is their mean and therefore γk is a
Gaussian measure for all k, say N (0,Γk) with Γk nonsingular. Any limit point of γ
is a Karcher mean by Theorem 5.3.1. If we knew that γ itself were Gaussian, then it

actually must be the Fréchet mean because N−1 ∑ tμ i

γ equals the identity everywhere
on R

d (see the discussion before Theorem 3.1.15).



5.4 Illustrative Examples 127

Let us show that every limit point γ is indeed Gaussian. It suffices to prove that
(Γk) is a bounded sequence, because if Γk → Γ , then N (0,Γk)→ N (0,Γ ) weakly,
as can be seen from either Lehmann–Scheffé’s theorem (the densities converge) or
Lévy’s continuity theorem (the characteristic functions converge).

To see that (Γk) is bounded, observe first that for any centred (Gaussian or not)
measure μ with covariance matrix S,

W 2
2 (μ ,δ0) = tr[S],

where δ0 is a Dirac mass at the origin. (This follows from the spectral decomposition
of S.) Therefore

0 ≤ tr[Γk] =W 2
2 (γk,δ0)

is bounded uniformly, because {γk} stays in a Wasserstein-compact set by Lemma
5.3.5. If we define C = supk tr[Γk] < ∞, then all the diagonal elements of Γk are
bounded uniformly. When A is symmetric and positive semidefinite, 2|Ai j| ≤ Aii +
Ai j. Consequently, all the entries of Γk are bounded uniformly by C, which means
that (Γk) is a bounded sequence.

From the formula for the optimal maps, we see that if Γ is the covariance of the
Fréchet mean, then

I =
1
N

N

∑
i=1

Γ −1/2
[

Γ 1/2SiΓ 1/2
]1/2

Γ −1/2

and we recover the fixed point equation (5.4).
If the means are nonzero, then the optimal maps are affine and the same result

applies; the Fréchet mean is still a Gaussian measure with covariance matrix Γ and
mean that equals the average of the means of μ i, i = 1, . . . ,N.

Figure 5.1 shows density plots of N = 4 centred Gaussian measures on R
2

with covariances Si ∼ Wishart(I2,2), and Fig. 5.2 shows the density of the result-
ing Fréchet mean. In this particular example, the algorithm needed 11 iterations
starting from the identity matrix. The corresponding optimal maps are displayed
in Fig. 5.3. It is apparent from the figure that these maps are linear, and after a
more careful reflection one can be convinced that their average is the identity. The
four plots in the figure are remarkably different, in accordance with the measures
themselves having widely varying condition numbers and orientations; μ3 and more
so μ4 are very concentrated, so the optimal maps “sweep” the mass towards zero.
In contrast, the optimal maps to μ1 and μ2 spread the mass out away from the
origin.
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Fig. 5.1: Density plot of four Gaussian measures in R
2.
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Fig. 5.2: Density plot of the Fréchet mean of the measures in Fig. 5.1
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Fig. 5.3: Gaussian example: vector fields depicting the optimal maps x �→ tμ i

μ̄ (x)

from the Fréchet mean μ̄ of Fig. 5.2 to the four measures {μ i} of Fig. 5.1. The order
corresponds to that of Fig. 5.1

5.4.2 Compatible Measures

We next discuss the behaviour of the algorithm when the measures are compatible.
Recall that a collection C ⊆W2(X ) is compatible if for all γ ,ρ ,μ ∈C , tν

μ ◦ tμ
γ = tν

γ
in L2(γ) (Definition 2.3.1). Boissard et al. [28] showed that when this condition
holds, the Fréchet mean of (μ1, . . . ,μN) can be found by simple computations in-
volving the iterated barycentre. We again denote by γ0 the initial point of Algo-
rithm 1, which can be any absolutely continuous measure.

Lemma 5.4.2 (Compatibility and Convergence) If γ0 ∪{μ i} is compatible, then
Algorithm 1 converges to the Fréchet mean of (μ i) after a single step.

Proof. By definition, the next iterate is
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γ1 =

[

1
N

N

∑
i=1

tμ i

γ0

]

#γ0,

which is the Fréchet mean by Theorem 3.1.9.

In this case, Algorithm 1 requires the calculation of N pairwise optimal maps, and
this can be reduced to N −1 if the initial point is chosen to be μ1. This is the same
computational complexity as the calculation of the iterated barycentre proposed in
[28].

When the measures have a common copula, finding the optimal maps reduces to
finding the optimal maps between the one-dimensional marginals (see Lemma 2.3.3)
and this can be done using quantile functions as described in Sect. 1.5. The marginal
Fréchet means are then plugged into the common copula to yield the joint Fréchet
mean. We next illustrate Algorithm 1 in three such scenarios.

5.4.2.1 The One-Dimensional Case

When the measures are supported on the real line, there is no need to use the al-
gorithm since the Fréchet mean admits a closed-form expression in terms of quan-
tile functions (see Sect. 3.1.4). We nevertheless discuss this case briefly because we
build upon this construction in subsequent examples. Given that tν

μ = F−1
ν ◦Fμ , we

may apply Algorithm 1 starting from one of these measures (or any other measure).
Figure 5.4 plots N = 4 univariate densities and the Fréchet mean yielded by the
algorithm in two different scenarios. At the left, the densities were generated as

f i(x) =
1
2

φ
(

x−mi
1

σ i
1

)

+
1
2

φ
(

x−mi
2

σ i
2

)

, (5.5)

with φ the standard normal density, and the parameters generated independently as

mi
1 ∼U [−13,−3], mi

2 ∼U [3,13], σ i
1,σ

i
2 ∼ Gamma(4,4).

At the right of Fig. 5.4, we used a mixture of a shifted gamma and a Gaussian:

f i(x) =
3
5

β 3
i

Γ (3)
(x−mi

3)
2e−βi(x−mi

3) +
2
5

φ(x−mi
4), (5.6)

with
β i ∼ Gamma(4,1), mi

3 ∼U [1,4], mi
4 ∼U [−4,−1].

The resulting Fréchet mean density for both settings is shown in thick light blue,
and can be seen to capture the bimodal nature of the data. Even though the Fréchet
mean of Gaussian mixtures is not a Gaussian mixture itself, it is approximately so,
provided that the peaks are separated enough. Figure 5.5 shows the optimal maps
pushing the Fréchet mean μ̄ to the measures μ1, . . . ,μN in each case. If one ignores
the “middle part” of the x axis, the maps appear (approximately) affine for small
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values of x and for large values of x, indicating how the peaks are shifted. In the
middle region, the maps need to “bridge the gap” between the different slopes and
intercepts of these affine maps.
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Fig. 5.4: Densities of a bimodal Gaussian mixture (left) and a mixture of a Gaussian
with a gamma (right), with the Fréchet mean density in light blue
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Fig. 5.5: Optimal maps tμ i

μ̄ from the Fréchet mean μ̄ to the four measures {μ i} in
Fig. 5.4. The left plot corresponds to the bimodal Gaussian mixture, and the right
plot to the Gaussian/gamma mixture

5.4.2.2 Independence

We next take measures μ i on R
2, having independent marginal densities f i

X as in
(5.5), and f i

Y as in (5.6). Figure 5.6 shows the density plot of N = 4 such measures,
constructed as the product of the measures from Fig. 5.4. One can distinguish the
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independence by the “parallel” structure of the figures: for every pair (y1,y2), the
ratio g(x,y1)/g(x,y2) does not depend on x (and vice versa, interchanging x and
y). Figure 5.7 plots the density of the resulting Fréchet mean. We observe that the
Fréchet mean captures the four peaks and their location. Furthermore, the parallel
nature of the figure is preserved in the Fréchet mean. Indeed, by Lemma 3.1.11 the
Fréchet mean is a product measure. The optimal maps, in Fig. 5.10, are the same as
in the next example, and will be discussed there.
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Fig. 5.6: Density plots of the four product measures of the measures in Fig. 5.4
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Fig. 5.7: Density plot of the Fréchet mean of the measures in Fig. 5.6
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5.4.2.3 Common Copula

Let μ i be a measure on R
2 with density

gi(x,y) = c(Fi
X (x),F

i
Y (y)) f i

X (x) f i
Y (y),

where f i
X and f i

Y are random densities on the real line with distribution functions Fi
X

and Fi
Y , and c is a copula density. Figure 5.8 shows the density plot of N = 4 such

measures, with f i
X generated as in (5.5), f i

Y as in (5.6), and c is the Frank(−8) copula
density, while Fig. 5.9 plots the density of the Fréchet mean obtained. (For ease of
comparison we use the same realisations of the densities that appear in Fig. 5.4.) The
Fréchet mean can be seen to preserve the shape of the density, having four clearly
distinguished peaks. Figure 5.10, depicting the resulting optimal maps, allows for a
clearer interpretation: for instance, the leftmost plot (in black) shows more clearly
that the map splits the mass around x =−2 to a much wider interval; and conversely
a very large amount mass is sent to x ≈ 2. This rather extreme behaviour matches
the peak of the density of μ1 located at x = 2.
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Fig. 5.8: Density plots of four measures in R
2 with Frank copula of parameter −8
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Fig. 5.9: Density plot of the Fréchet mean of the measures in Fig. 5.8
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Fréchet mean μ̄ of Fig. 5.9 to the four measures {μ i} of Fig. 5.8. The colours match
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5.4.3 Partially Gaussian Trivariate Measures

We now apply Algorithm 1 in a situation that entangles two of the previous settings.
Let U be a fixed 3× 3 real orthogonal matrix with columns U1, U2, U3 and let μ i

have density

gi(y1,y2,y3) = gi(y) = f i(Ut
3y)

1

2π
√

detSi
exp

⎡

⎣−
(Ut

1y,Ut
2y)(Si)−1

(Ut
1y

Ut
2y

)

2

⎤

⎦ ,

with f i bounded density on the real line and Si ∈ R
2×2 positive definite. We sim-

ulated N = 4 such densities with f i as in (5.5) and Si ∼ Wishart(I2,2). We apply
Algorithm 1 to this collection of measures and find their Fréchet mean (see the end
of this subsection for precise details on how the optimal maps were calculated).
Figure 5.11 shows level set of the resulting densities for some specific values. The
bimodal nature of f i implies that for most values of a, {x : f i(x) = a} has four el-
ements. Hence, the level sets in the figures are unions of four separate parts, with
each peak of f i contributing two parts that form together the boundary of an ellip-
soid in R

3 (see Fig. 5.12). The principal axes of these ellipsoids and their position in
R

3 differ between the measures, but the Fréchet mean can be viewed as an average
of those in some sense.

In terms of orientation (principal axes) of the ellipsoids, the Fréchet mean is most
similar to μ1 and μ2, whose orientations are similar to one another.
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Fig. 5.11: The set {v ∈ R
3 : gi(v) = 0.0003} for i = 1 (black), the Fréchet mean

(light blue), i = 2,3,4 in red, green, and dark blue, respectively
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Let us now see how the optimal maps are calculated. If Y = (y1,y2,y3)∼ μ i, then
the random vector (x1,x2,x3) = X =U−1Y has joint density

f i(x3)exp

[

−
(x1,x2)(Σ i)−1

(x1
x2

)

2

]

1

2π
√

detΣ i
,

so the probability law of X is ρ i ⊗ ν i with ρ i centred Gaussian with covariance
matrix Σ i and ν i having density f i on R. By Lemma 3.1.11, the Fréchet mean of
(U−1#μ i) is the product measure of that of (ρ i) and that of (ν i); by Lemma 3.1.12,
the Fréchet mean of (μ i) is therefore

U#(N (0,Σ)⊗ f ), f = F ′, F−1(q) =
1
N

N

∑
i=1

F−1
i (q), Fi(x) =

∫ x

−∞
f i(s)ds,

where Σ is the Fréchet–Wasserstein mean of Σ1, . . . ,ΣN .
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Fig. 5.12: The set {v ∈ R
3 : gi(v) = 0.0003} for i = 3 (left) and i = 4 (right), with

each of the four different inverses of the bimodal density f i corresponding to a
colour

Starting at an initial point γ0 = U#(N (0,Σ0)⊗ ν0), with ν0 having continuous
distribution Fν0 , the optimal maps are U ◦ ti

0 ◦U−1 = ∇(ϕ i
0 ◦U−1) with

ti
0(x1,x2,x3) =

(

tΣ j

Σ0
(x1,x2)

F−1
j ◦Fν0(x3)

)

the gradients of the convex function

ϕ i
0(x1,x2,x3) = (x1,x2)tΣ i

γ0

(

x1

x2

)

+
∫ x3

0
F−1

j (Fν0(s))ds,

where we identify tΣ i

γ0
with the positive definite matrix (Σ i)1/2[(Σ i)1/2Σ0(Σ i)1/2]−1/2

(Σ i)1/2 that pushes forward N (0,Σ0) to N (0,Σ i). Due to the one-dimensionality,
the algorithm finds the third component of the rotated measures after one step, but
the convergence of the Gaussian component requires further iterations.
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5.5 Population Version of Algorithm 1

Let Λ ∈W2(R
d) be a random measure with finite Fréchet functional. The population

version of (5.1) is

q=P(Λ absolutely continuous with density bounded by M)> 0 for some M <∞,
(5.7)

which we assume henceforth. This condition is satisfied if and only if

P(Λ absolutely continuous with bounded density)> 0.

These probabilities are well-defined because the set

W2(R
d ;M) = {μ ∈ W2(R

d) : μ absolutely continuous with density bounded by M}

is weakly closed (see the paragraph before Proposition 5.3.6), hence a Borel set of
W2(R

d).
In light of Theorem 3.2.13, we can define a population version of Algorithm 1

with the iteration function

A (γ) = EtΛ
γ , γ ∈ W2(R

d) absolutely continuous.

The (Bochner) expectation is well-defined in L2(γ) because the random map tΛ
γ is

measurable (Lemma 2.4.6). Since L2(γ) is a Hilbert space, the law of large num-
bers applies there, and results for the empirical version carry over to the population
version by means of approximations. In particular:

Lemma 5.5.1 Any descent iterate γ has density bounded by q−dM, where q and M
are as in (5.7).

Proof. The result is true in the empirical case, by Proposition 5.3.6. The key point
(observed by Pass [102, Subsection 3.3]) is that the number of measures does not
appear in the bound q−dM.

Let Λ1, . . . be a sample from Λ and let qn be the proportion of measures in
(Λ1, . . . ,Λn) that have density bounded by M. Then both n−1 ∑n

i=1 tΛi
γ → EtΛ

γ and
qn → q almost surely by the law of large numbers. Pick any ω in the probability
space for which this happens and notice that (invoking Lemma 2.4.5)

A (γ) =

[

lim
n→∞

1
n

n

∑
i=1

tΛi
γ

]

#γ = lim
n→∞

[

1
n

n

∑
i=1

tΛi
γ

]

#γ .

Let λn denote the measure in the last limit. By Proposition 5.3.6, its density is
bounded by q−d

n M → q−dM almost surely, so for any C > q−dM and n large, λn has
density bounded by C. By the portmanteau Lemma 1.7.1, so does limλn = [EtΛ

γ ]#γ .
Now let C ↘ q−dM.
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Though it follows that every Karcher mean of Λ has a bounded density, we cannot
yet conclude that the same bound holds for the Fréchet mean, because we need an a-
priori knowledge that the latter is absolutely continuous. This again can be achieved
by approximations:

Theorem 5.5.2 (Bounded Density for Population Fréchet Mean) Let Λ ∈W2(R
d)

be a random measure with finite Fréchet functional. If Λ has a bounded density
with positive probability, then the Fréchet mean of Λ is absolutely continuous with
a bounded density.

Proof. Let q and M be as in (5.7), Λ1, . . . be a sample from Λ , and qn the proportion
of (Λi)i≤n with density bounded by M. The empirical Fréchet mean λn of the sample
(Λ1, . . . ,Λn) has a density bounded by q−d

n M. The Fréchet mean λ of Λ is unique by
Proposition 3.2.7, and consequently λn → λ in W2(R

d) by the law of large numbers
(Corollary 3.2.10). For any C > limsupq−d

n M, the density of λ is bounded by C
by the portmanteau Lemma 1.7.1, and the limsup is q−dM almost surely. Thus, the
density is bounded by q−dM.

In the same way, one shows the population version of Theorem 3.1.9:

Theorem 5.5.3 (Fréchet Mean of Compatible Measures) Let Λ : (Ω ,F ,P) →
W2(R

d) be a random measure with finite Fréchet functional, and suppose that with
positive probability Λ is absolutely continuous and has bounded density. If the col-
lection {γ}∪Λ(Ω) is compatible and γ is absolutely continuous, then [EtΛ

γ ]#γ is
the Fréchet mean of Λ .

It is of course sufficient that {γ} ∪Λ(Ω \N ) be compatible for some null set
N ⊂ Ω .

5.6 Bibliographical Notes

The algorithm outlined in this chapter was suggested independently in this steepest
descent form by Zemel and Panaretos [134] and in the form a fixed point equation it-
eration by Álvarez-Esteban et al. [9]. These two papers provide different alternative
proofs of Theorem 5.3.1. The exposition here is based on [134]. Although longer and
more technical than the one in [9], the formalism in [134] is amenable to directly
treating the optimal maps (Theorem 5.3.3) and the multicouplings (Corollary 5.3.4).
On the flip side, it is noteworthy that the proof of the Gaussian case (Theorem 5.4.1)
given in [9] is more explicit and quantitative; for instance, it shows the additional
property that the traces of the matrix iterates are monotonically increasing.

Developing numerical schemes for computing Fréchet means in W2(R
d) is a very

active area of research, and readers are referred to the recent monograph of Peyré
and Cuturi [103, Section 9.2] for a survey.
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In recent work, Backhoff-Varaguas et al. [15] propose a stochastic steepest de-
scent for finding Karcher means of a population Fréchet functional associated with
a random measure Λ . At iterate j, one replaces γ j by

[t jt
μ j
γ j +(1− t j)i]#γ j, μ j ∼ Λ .

The analogue of Theorem 5.3.1 holds under further conditions.
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