
Chapter 5

Boundary Triplets and Boundary
Pairs for Semibounded Relations

Semibounded relations in a Hilbert space automatically have equal defect numbers,
so that there are always self-adjoint extensions. In this chapter the semibounded
self-adjoint extensions of a semibounded relation will be investigated. Special at-
tention will be paid to the Friedrichs extension, which is introduced with the
help of closed semibounded forms. Section 5.1 provides a self-contained intro-
duction to closed semibounded forms and their representations via semibounded
self-adjoint relations. Closely related is the discussion of the ordering for closed
semibounded forms and for semibounded self-adjoint relations in Section 5.2; this
section also contains a general monotonicity principle about monotone sequences
of semibounded relations. The Friedrichs extension of a semibounded relation is
defined and its central properties are studied in Section 5.3. Particular attention is
paid to semibounded self-adjoint extensions which are transversal to the Friedrichs
extension. Section 5.4 is devoted to special semibounded extensions, namely the
Krĕın type extensions. In the nonnegative case these extensions include the well-
known Krĕın–von Neumann extension. The Friedrichs extension and the Krĕın
type extensions act as extremal elements to describe the semibounded self-adjoint
extensions with a given lower bound. In Section 5.5 there is a return to boundary
triplets and Weyl functions for symmetric relations which are semibounded. Of
special interest is the case where the self-adjoint extensions determined by the
boundary triplet are semibounded and one of them coincides with the Friedrichs
extension. In particular, this leads to a useful abstract version of the first Green
formula. The notion of a boundary pair for semibounded relations is developed in
Section 5.6. In conjunction with the above first Green formula, this notion serves
as a link between boundary triplet methods and form methods when semibounded
self-adjoint extensions are described; in a wider sense it establishes the connection
with the Birman–Krĕın–Vishik method.
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5.1 Closed semibounded forms and
their representations

A sesquilinear form t[·, ·] in a Hilbert space H with inner product (·, ·) is a mapping
from D × D to C, where D is a linear subspace of H, such that t[·, ·] is linear in
the first entry and anti-linear in the second entry. The domain dom t is defined by
dom t = D. The form is said to be symmetric if t[ϕ,ψ] = t[ψ,ϕ] for all ϕ,ψ ∈ dom t.
The corresponding quadratic form t[·] is defined by t[ϕ] = t[ϕ,ϕ], ϕ ∈ dom t. The
polarization formula

t[ϕ,ψ] =
1

4

(
t[ϕ+ ψ]− t[ϕ− ψ]

)
+

i

4

(
t[ϕ+ iψ]− t[ϕ− iψ]

)
(5.1.1)

for ϕ,ψ ∈ dom t is easily checked. In the following the term sesquilinear will be
dropped; whenever a form t[·, ·] is mentioned it is assumed to be sesquilinear and
it will be denoted by t. For instance, the inner product (·, ·) is a form defined on
all of H.

Definition 5.1.1. Let t1 and t2 be forms in H. Then the inclusion t2 ⊂ t1 means
that

dom t2 ⊂ dom t1, t2[ϕ] = t1[ϕ], ϕ ∈ dom t2. (5.1.2)

If t2 ⊂ t1, then t2 is said to be a restriction of t1 and t1 is said to be an extension
of t2. The sum t1 + t2 is defined by

(t1 + t2)[ϕ,ψ] = t1[ϕ,ψ] + t2[ϕ,ψ], ϕ, ψ ∈ dom (t1 + t2),

where dom (t1 + t2) = dom t1 ∩ dom t2.

If α ∈ C the sum t[·, ·] + α(·, ·) is given by

t[ϕ,ψ] + α(ϕ,ψ), ϕ, ψ ∈ dom t.

This sum will be denoted by t+α. It is symmetric when t is symmetric and α ∈ R.

Definition 5.1.2. A symmetric form t in H is bounded from below if there exists a
constant c ∈ R such that

t[ϕ] ≥ c‖ϕ‖2, ϕ ∈ dom t.

This inequality will be denoted by t ≥ c. The lower bound m(t) is the largest of
such numbers c ∈ R:

m(t) = inf

{
t[ϕ]

‖ϕ‖2 : ϕ ∈ dom t, ϕ 	= 0

}
.

If m(t) ≥ 0, then t is called nonnegative.
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In the following the terminology semibounded form is used for a symmetric
form which is bounded from below. Note that t is a semibounded form if and
only if for some, and hence for all α ∈ R the form t + α is semibounded. For a
semibounded form t the lower bound m(t) will often be denoted by γ. Note that
the form t − γ, γ = m(t), is nonnegative with lower bound 0. Therefore, one has
the Cauchy–Schwarz inequality

|(t− γ)[ϕ,ψ]| ≤ (t− γ)[ϕ]
1
2 (t− γ)[ψ]

1
2 , ϕ, ψ ∈ dom t, (5.1.3)

and, hence the triangle inequality

(t− γ)[ϕ+ ψ]
1
2 ≤ (t− γ)[ϕ]

1
2 + (t− γ)[ψ]

1
2 , ϕ, ψ ∈ dom t. (5.1.4)

It follows from (5.1.4) that∣∣(t− γ)[ϕ]
1
2 − (t− γ)[ψ]

1
2

∣∣ ≤ (t− γ)[ϕ− ψ]
1
2 , ϕ, ψ ∈ dom t. (5.1.5)

The following continuity property is a simple consequence of (5.1.5). For a sequence
(ϕn) in dom t and ϕ ∈ dom t one has

(t− γ)[ϕ− ϕn] → 0 ⇒ (t− γ)[ϕn] → (t− γ)[ϕ]. (5.1.6)

Let t be a semibounded form in H with lower bound γ and let a < γ. Equip
the space dom t ⊂ H with the form

(ϕ,ψ)t−a = t[ϕ,ψ]− a(ϕ,ψ), ϕ, ψ ∈ dom t. (5.1.7)

By rewriting this definition as

(ϕ,ψ)t−a = (t− γ)[ϕ,ψ] + (γ − a)(ϕ,ψ), ϕ, ψ ∈ dom t, (5.1.8)

one sees that (·, ·)t−a is the sum of the semidefinite inner product t − γ and the
inner product (γ − a)(·, ·). Hence, (·, ·)t−a is an inner product on dom t and the
corresponding norm ‖ · ‖t−a satisfies the inequality

‖ϕ‖2t−a ≥ (γ − a)‖ϕ‖2, ϕ ∈ dom t. (5.1.9)

When dom t is equipped with the inner product (·, ·)t−a, the resulting inner prod-
uct space will be denoted by Ht−a. Note that if γ > 0, then obviously a = 0 is a
natural choice in the above and the following arguments.

Lemma 5.1.3. Let t be a semibounded form in H with lower bound γ and let a < γ.
Let (ϕn) be a sequence in dom t. Then (ϕn) is a Cauchy sequence in Ht−a if and
only if

t[ϕn − ϕm] → 0 and ‖ϕn − ϕm‖ → 0. (5.1.10)
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Proof. According to (5.1.8), (ϕn) is a Cauchy sequence in Ht−a if and only if

(t− γ)[ϕn − ϕm] → 0 and ‖ϕn − ϕm‖2 → 0. (5.1.11)

Now assume that (ϕn) is a Cauchy sequence in Ht−a. Then it follows from (5.1.11)
that (ϕn) is a Cauchy sequence in H and that

t[ϕn − ϕm] = (t− γ)[ϕn − ϕm] + γ‖ϕn − ϕm‖2 → 0,

which shows (5.1.10). Conversely, if the sequence (ϕn) satisfies (5.1.10), then it
follows from (5.1.7) that (ϕn) is a Cauchy sequence in Ht−a. �

Let (ϕn) be a Cauchy sequence in Ht−a. Since H is a Hilbert space, it follows
from Lemma 5.1.3 that there is an element ϕ ∈ H such that ϕn → ϕ in H.

Definition 5.1.4. Let t be a semibounded form in H. A sequence (ϕn) in dom t is
said to be t-convergent to an element ϕ ∈ H, not necessarily belonging to dom t, if

ϕn → ϕ in H and t[ϕn − ϕm] → 0, n,m → ∞.

This type of convergence will be denoted by ϕn →t ϕ.

The following result is a direct consequence of Lemma 5.1.3 and the com-
pleteness of H.

Corollary 5.1.5. Let t be a semibounded form in H with lower bound γ and let
a < γ. Then any Cauchy sequence in Ht−a is t-convergent. Conversely, any t-
convergent sequence in dom t is a Cauchy sequence in Ht−a.

If the sequence (ϕn) in dom t is t-convergent, then by Definition 5.1.4

(t− γ)[ϕn − ϕm] → 0 and ‖ϕn − ϕm‖ → 0.

Thus, one has the following result.

Corollary 5.1.6. Let t be a semibounded form in H with lower bound γ and let the
sequence (ϕn) in dom t be t-convergent. Then the sequences ((t− γ)[ϕn]), (t[ϕn]),
and (‖ϕn‖) converge and, consequently, they are bounded.

Proof. Since γ is the lower bound of t, one has (t − γ)[ϕn − ϕm] → 0. Hence,
(5.1.5) shows that ((t − γ)[ϕn]) is a Cauchy sequence. Then the same is true for
the sequence (t[ϕn]) and it is also clear that (‖ϕn‖) is a Cauchy sequence. In
particular, the sequences ((t− γ)[ϕn]), (t[ϕn]), and (‖ϕn‖) are bounded. �

The t-convergence is preserved when one takes a sum of sequences. To see
this, let (ϕn) and (ψn) be sequences in dom t such that

ϕn →t ϕ and ψn →t ψ
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for some ϕ,ψ ∈ H. Then clearly ϕn + ψn → ϕ+ ψ in H and

(t− γ)[ϕn + ψn − (ϕm + ψm)]
1
2

≤ (t− γ)[ϕn − ϕm]
1
2 + (t− γ)[ψn − ψm]

1
2 ,

by the triangle inequality in (5.1.4). Therefore,

ϕn →t ϕ and ψn →t ψ ⇒ ϕn + ψn →t ϕ+ ψ. (5.1.12)

As a consequence, one sees that

ϕn →t ϕ and ψn →t ψ ⇒ lim
n→∞ t[ϕn, ψn] exists. (5.1.13)

This last implication follows easily from Corollary 5.1.6 and (5.1.12) by the polar-
ization formula in (5.1.1).

Assume that ϕn ∈ dom t and that ϕn →t ϕ for some ϕ ∈ H. Now the question
is when ϕ ∈ dom t and, if this is the case, when t[ϕn − ϕ] → 0 ? This question
gives rise to the notions of closed form and closable form in Definition 5.1.7 and
Definition 5.1.11.

Definition 5.1.7. A semibounded form t in H is said to be closed if

ϕn →t ϕ ⇒ ϕ ∈ dom t and t[ϕn − ϕ] → 0.

The statement in (5.1.13) can now be made more precise when the form is
closed.

Lemma 5.1.8. Let t be a closed semibounded form in H. Then

ϕn →t ϕ ⇒ ϕ ∈ dom t and t[ϕn] → t[ϕ], (5.1.14)

and, consequently,

ϕn →t ϕ, ψn →t ψ ⇒ ϕ,ψ ∈ dom t and t[ϕn, ψn] → t[ϕ,ψ]. (5.1.15)

Proof. Assume that t is a closed semibounded form and ϕn →t ϕ. Then ϕ ∈ dom t
and t[ϕn − ϕ] → 0, and since ϕn → ϕ it follows that (t− γ)[ϕn − ϕ] → 0. Hence,
(t−γ)[ϕn] → (t−γ)[ϕ] by (5.1.6), and therefore t[ϕn] → t[ϕ]. This shows (5.1.14).
Now polarization and (5.1.12) yield the assertion (5.1.15). �

Lemma 5.1.9. Let t be a semibounded form in H with lower bound γ and let a < γ.
Then the following statements are equivalent:

(i) Ht−a is a Hilbert space;

(ii) t is closed.

In particular, t is closed if and only if t− x is closed for some, and hence for all
x ∈ R.
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Proof. (i) ⇒ (ii) Assume that Ht−a is complete. To show that t is closed, assume
that ϕn →t ϕ, so

ϕn → ϕ and t[ϕn − ϕm] → 0.

In particular, this implies by Lemma 5.1.3 that ‖ϕn − ϕm‖t−a → 0. Since Ht−a

is complete there is an element ϕ0 ∈ Ht−a = dom t such that ‖ϕn − ϕ0‖t−a → 0.
Hence, by (5.1.9),

‖ϕn − ϕ0‖ → 0.

Thus ϕ = ϕ0 ∈ dom t. Therefore, ‖ϕn − ϕ‖t−a → 0 and by (5.1.7) one sees that
t[ϕn − ϕ] → 0. This proves that t is closed.

(ii) ⇐ (i) Assume that t is closed. To show that Ht−a is complete, let (ϕn) be
a Cauchy sequence in Ht−a. This implies that ϕn →t ϕ for some ϕ ∈ H; cf.
Corollary 5.1.5. The closedness of t gives that ϕ ∈ dom t = Ht−a and t[ϕn−ϕ] → 0.
By (5.1.7) this leads to ‖ϕn − ϕ‖t−a → 0, so that Ht−a is complete.

Since t − x is a semibounded form in H with lower bound γ − x, the last
statement follows from Ht−a = Ht−x−(a−x) and the equivalence of (i) and (ii). �

Let t be a semibounded form in H with lower bound γ and let Ht−a be the
corresponding inner product space with a < γ. In general t is not closed and hence
Ht−a is not complete; cf. Lemma 5.1.9. If t1 is a semibounded form with lower
bound γ1, which extends the semibounded form t with lower bound γ, then

γ1 ≤ γ.

Note that for a < γ1 one has that t1 is closed if and only if Ht1−a is a Hilbert space.
The question is when such a closed extension t1 exists and, if so, to determine the
smallest such extension of t. In order to construct an extension of t, note that
Lemma 5.1.8 suggests the following definition.

Definition 5.1.10. Let t be a semibounded form in H. The linear subspace dom t̃
is the set of all ϕ ∈ H for which there exists a sequence (ϕn) in dom t such that
ϕn →t ϕ.

It is clear that dom t̃ is an extension of dom t. To establish the linearity of
dom t̃, recall the property (5.1.12). According to (5.1.13), it would now be natural
to define the form t̃ on dom t̃ as an extension of t by

t̃[ϕ,ψ] = lim
n→∞ t[ϕn, ψn] for any ϕn →t ϕ, ψn →t ψ, (5.1.16)

as the limit on the right-hand side exists. However, in general the limit on the
right-hand side of (5.1.16) depends on the choice of the sequences (ϕn) and (ψn),
so that t̃ may not be well defined as a form.

Definition 5.1.11. A semibounded form t in H is said to be closable if for any
sequence (ϕn) in dom t

ϕn →t 0 ⇒ t[ϕn] → 0.
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It will be shown that the extension procedure in (5.1.16) defines a form
extension of t if t is closable. In fact, in this case the resulting form t̃ is unique,
being the smallest closed extension, and will be called the closure of t.

Theorem 5.1.12. Let t be a semibounded form in H with lower bound γ and let
a < γ. Then t has a closed extension if and only if t is closable. In fact, if t is
closable, then

(i) the closure t̃ in (5.1.16) is a well-defined form which extends t;

(ii) t̃ has the same lower bound as t;

(iii) t̃ is the smallest closed extension of t,

and the inner product space Ht−a is dense in the Hilbert space Ht̃−a. Moreover, t
is closable if and only t−x is closable for some, and hence for all x ∈ R, in which
case

t̃− x = t̃− x. (5.1.17)

Proof. (⇒) Let t1 be a closed extension of t. In order to show that t is closable,
assume that ϕn →t 0. The form t1 is an extension of t and this implies ϕn →t1 0.
Since t1 is closed, it follows that

t[ϕn] = t1[ϕn] → 0.

Hence, t is closable.

(⇐) Assume that t is closable. It will be shown that t̃ in (5.1.16) is a well-defined
form on dom t̃. It is clear from (5.1.13) that the limit on the right-hand side of
(5.1.16) exists. To verify that this limit depends only on the elements ϕ, ψ and
not on the particular sequences (ϕn), (ψn), let (ϕ

′
n), (ψ

′
n) be other sequences such

that ϕ′
n →t ϕ and ψ′

n →t ψ. Then

ϕ′
n − ϕn →t 0 and ψ′

n − ψn →t 0;

cf. (5.1.12). In particular, this gives

ϕ′
n − ϕn → 0 and ψ′

n − ψn → 0,

while the closability of t implies that

t[ϕ′
n − ϕn] → 0 and t[ψ′

n − ψn] → 0.

To see that the sequences t[ϕ′
n, ψ

′
n] and t[ϕn, ψn] have the same limit, consider the

inequalities

|(t− γ)[ϕ′
n, ψ

′
n]− (t− γ)[ϕn, ψn]|

= |(t− γ)[ϕ′
n − ϕn, ψ

′
n] + (t− γ)[ϕn, ψ

′
n − ψn]|

≤ |(t− γ)[ϕ′
n − ϕn, ψ

′
n]|+ |(t− γ)[ϕn, ψ

′
n − ψn]|

≤ (t− γ)[ϕ′
n − ϕn]

1
2 (t− γ)[ψ′

n]
1
2 + (t− γ)[ϕn]

1
2 (t− γ)[ψ′

n − ψn]
1
2 .
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Clearly, due to the closability assumption, the terms

(t− γ)[ϕ′
n − ϕn] and (t− γ)[ψ′

n − ψn]

converge to 0 as n → ∞, while the terms

(t− γ)[ψ′
n] and (t− γ)[ϕn]

are bounded since ψ′
n →t ψ and ϕn →t ϕ, respectively; cf. Corollary 5.1.6. It

follows that t[ϕ′
n, ψ

′
n] − t[ϕn, ψn] → 0 and hence t̃ in (5.1.16) is a well-defined

form. Moreover, it is clear that t̃ extends t: t ⊂ t̃.

The form t̃ is semibounded. To see this, let ϕ ∈ dom t̃. Then there exists
a sequence (ϕn) in dom t such that ϕn →t ϕ. In particular, ϕn → ϕ and hence
‖ϕn‖ → ‖ϕ‖. According to (5.1.16),

t̃[ϕ] = lim
n→∞ t[ϕn],

where t[ϕn] ≥ γ‖ϕn‖2. Therefore,
t̃[ϕ] ≥ γ‖ϕ‖2, ϕ ∈ dom t̃,

so that t̃ is semibounded. Moreover, this argument shows that the lower bound of
the extension is at least γ. Hence, t̃ and t have the same lower bound.

The argument to show that t̃ is closed, is based on the observation that for
the extension t̃:

ϕn →t ϕ ⇒ t̃[ϕ− ϕn] → 0. (5.1.18)

To see this, let ϕn →t ϕ, that is ϕn → ϕ and limm,n→∞ t[ϕn − ϕm] = 0. Now fix
n ∈ N, then ϕm →t ϕ implies that

ϕm − ϕn →t ϕ− ϕn as m → ∞,

so that, by definition,

t̃[ϕ− ϕn] = lim
m→∞ t[ϕm − ϕn].

Now taking n → ∞ gives (5.1.18).

The following three steps will establish that t̃ is closed or, equivalently, that
Ht̃−a, a < γ, is complete.

Step 1. Ht−a is dense in Ht̃−a. Indeed, let ϕ ∈ Ht̃−a = dom t̃. Then there is a
sequence (ϕn) in Ht−a = dom t such that ϕn →t ϕ. It follows from this assumption
and (5.1.18) that

ϕn → ϕ and t̃[ϕ− ϕn] → 0,

in other words,

‖ϕ− ϕn‖2t̃−a
= t̃[ϕ− ϕn]− a‖ϕ− ϕn‖2 → 0.

This shows that Ht−a is dense in Ht̃−a.
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Step 2. Every Cauchy sequence in Ht−a is convergent in Ht̃−a. To see this, let (ϕn)
be a Cauchy sequence in Ht−a. Then clearly there exists an element ϕ ∈ H such
that ϕn →t ϕ; cf. Corollary 5.1.5. Again by (5.1.18) it follows that

‖ϕ− ϕn‖t̃−a → 0,

which now shows that the Cauchy sequence (ϕn) in Ht−a is convergent in Ht̃−a

to, in fact, ϕ ∈ dom t̃ = Ht̃−a.

Step 3. Ht̃−a is a Hilbert space. To see this, let (χn) be a Cauchy sequence in Ht̃−a.
By Step 1, there is an element ϕn ∈ Ht−a such that

‖χn − ϕn‖t̃−a ≤ 1

n
.

Hence, the approximating sequence (ϕn) is a Cauchy sequence in Ht−a. By Step 2,
(ϕn) converges in Ht̃−a, which implies that the original sequence (χn) converges
in Ht̃−a.

Next it will be shown that t̃ is the smallest closed extension of t. Assume that
t1 is a closed extension of t: t ⊂ t1. Let ϕ ∈ dom t̃; then there exists a sequence (ϕn)
in dom t with ϕn →t ϕ. Then also ϕn →t1 ϕ and hence ϕ ∈ dom t1. Therefore,
dom t̃ ⊂ dom t1. For every ϕ,ψ ∈ dom t̃ it follows via corresponding sequences
(ϕn), (ψn) in dom t with ϕn →t ϕ and ψn →t ψ that

t̃[ϕ,ψ] = lim
n→∞ t[ϕn, ψn] = lim

n→∞ t1[ϕn, ψn] = t1[ϕ,ψ],

where the first equality follows from (5.1.16), the second equality is valid as t1
extends t, and the third equality follows from (5.1.15). Therefore, t̃ ⊂ t1, and t̃ is
the smallest closed extension of t.

As to the last statement, observe that Definition 5.1.11 implies that t is
closable if and only t − x is closable for some, and hence for all x ∈ R. Finally,
(5.1.17) follows from (5.1.16). �

Thus, a closed semibounded form t1 which extends t contains the closure t̃.
The next corollary is a simple but useful description of the gap between t1 and t̃.

Corollary 5.1.13. Let the semibounded form t with lower bound γ be closable and
let the closed form t1 with lower bound γ1 be an extension of t, so that γ1 ≤ γ.
Assume that a < γ1, then

Ht1−a =
{
ϕ ∈ Ht1−a : (ϕ,ψ)t1−a = 0, ψ ∈ Ht̃−a

}⊕t1−a Ht̃−a.

Let t be a closed semibounded form in H. Let D ⊂ dom t be a linear subspace
and consider the restriction tD of t to D,

tD[ϕ,ψ] = t[ϕ,ψ], ϕ, ψ ∈ D.
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Since tD is a restriction of a closed form, it is closable, see Theorem 5.1.12. Let t̃D
be the closure of tD. Then by definition dom t̃D is the set of all ϕ ∈ H for which
there exists a sequence (ϕn) in D with ϕn →tD ϕ, which means ϕn →t ϕ. Since t
is closed, one sees in particular that dom t̃D ⊂ dom t. Moreover, one has

t̃D[ϕ,ψ] = lim
n→∞ tD[ϕn, ψn] = lim

n→∞ t[ϕn, ψn] = t[ϕ,ψ]

for ϕ,ψ ∈ dom t̃D, where the first equality is by definition, and the third equality
follows from Lemma 5.1.8. Hence, the closure t̃D of tD is the restriction of t to
dom t̃D. Since t is closed, it follows that ϕ ∈ dom t̃D if and only if there is a
sequence (ϕn) in D such that

ϕn → ϕ and t[ϕn − ϕ] → 0.

Definition 5.1.14. Let t be a closed semibounded form in H. A linear subspace D
of dom t is said to be a core of t if the closure t̃D of the restriction tD of t to D
coincides with t.

Therefore, D ⊂ dom t is a core of t if and only if for every ϕ ∈ dom t there is
a sequence (ϕn) in D such that

ϕn → ϕ and t[ϕn − ϕ] → 0. (5.1.19)

This leads to the following corollary.

Corollary 5.1.15. Let t be a closed semibounded form in H with lower bound γ, let
a < γ, and let D ⊂ dom t be a linear subspace. Then D is a core of t if and only
if D is dense in the Hilbert space Ht−a.

Note that in the situation of Theorem 5.1.12 the original domain dom t is a
core of the closure t̃ of t (recall that the form t̃ is closed). The following fact is useful:
If t and s are closed semibounded forms in H which coincide on D ⊂ dom t∩dom s
and D is a core of both t and s, then t = s.

Recall the definition of the sum of two forms in Definition 5.1.1 and observe
that a sum of semibounded forms is also semibounded. The following result is
concerned with additive perturbations of forms: it provides a sufficient condition
so that the sum of a closed semibounded form and a symmetric form remains
closed and semibounded. Sometimes this result is referred to as KLMN theorem,
named after Kato, Lions, Lax, Milgram, and Nelson. For a typical application to
Sturm–Liouville operators, see, e.g., Lemma 6.8.3.

Theorem 5.1.16. Assume that t is a closed semibounded form in H and let s be a
symmetric form in H such that dom t ⊂ dom s and

|s[ϕ]| ≤ a‖ϕ‖2 + bt[ϕ], ϕ ∈ dom t, (5.1.20)
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holds for some a ≥ 0 and b ∈ [0, 1). Then the symmetric form

t+ s, dom (t+ s) = dom t,

is closed and semibounded in H. Furthermore, if D is a core of t, then D is also a
core of t+ s.

Proof. Let γ be the lower bound of t. Fix some a′ < γ and assume a′ < 0. For all
ϕ ∈ dom t, ϕ 	= 0, one obtains from (5.1.20) that

s[ϕ] ≥ −a‖ϕ‖2 − bt[ϕ], (5.1.21)

and hence

(t+ s)[ϕ] ≥ (1− b)t[ϕ]− a‖ϕ‖2 >
(
(1− b)a′ − a

)‖ϕ‖2 = c′‖ϕ‖2,
where c′ = (1 − b)a′ − a < 0. This shows that t + s is semibounded from below.
Furthermore, the estimate (5.1.21) also shows that

(1− b)‖ϕ‖2t−a′ = (1− b)t[ϕ]− (1− b)a′‖ϕ‖2
= t[ϕ]− bt[ϕ]− a‖ϕ‖2 − (

(1− b)a′ − a
)‖ϕ‖2

≤ (t+ s)[ϕ]− (
(1− b)a′ − a

)‖ϕ‖2
= ‖ϕ‖2t+s−c′ .

Using (5.1.20) one obtains

‖ϕ‖2t+s−c′ = t[ϕ] + s[ϕ]− c′‖ϕ‖2
≤ (1 + b)t[ϕ]− (c′ − a)‖ϕ‖2
≤ b′‖ϕ‖2t−a′ ,

where b′ = max {(1 + b), (c′ − a)/a′}. Therefore, the above estimates imply that
the norms ‖ · ‖2t−a′ and ‖ · ‖2t+s−c′ are equivalent on dom t = dom (s+ t). Since t is
closed, Ht−a′ is a Hilbert space and hence Ht+s−c′ is a Hilbert space, that is, the
form t+ s is closed; cf. Lemma 5.1.9. The assertion about the core D is clear from
Corollary 5.1.15. �

Semibounded relations in a Hilbert space generate closable semibounded
forms as will be shown in the following lemma. Note that if a relation is semi-
bounded, then so is its closure, with the same lower bound; this follows directly
from Definition 1.4.5. Furthermore, the closure will generate the same form. The
particular situation of semibounded self-adjoint relations will be considered in
detail in Theorem 5.1.18 and Proposition 5.1.19.

Lemma 5.1.17. Let S be a semibounded relation in H with lower bound m(S). Then
the form tS given by

tS [ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′}, {ψ,ψ′} ∈ S, (5.1.22)
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with dom tS = domS, is well defined, semibounded with the lower bound m(S),
and closable. The closure t̃S of tS is a semibounded closed form whose lower bound
is equal to m(S), and

dom t̃S ⊂ domS. (5.1.23)

Moreover, domS = dom tS is a core of t̃S. Furthermore, with the closure S of S
one has

t̃S = t̃S . (5.1.24)

Proof. As a semibounded relation S is automatically symmetric, it follows that
mulS ⊂ mulS∗ = (domS)⊥, and hence

(ϕ′, ψ) = (ϕ′′, ψ), {ϕ,ϕ′}, {ϕ,ϕ′′}, {ψ,ψ′} ∈ S.

Thus, the form in (5.1.22) is well defined with dom tS = domS. By definition tS
is semibounded and its lower bound is clearly equal to γ = m(S).

In order to show that tS is closable, let ϕn →tS 0. Then, equivalently,

ϕn → 0 and (tS − γ)[ϕn − ϕm] → 0.

It suffices to verify that (tS − γ)[ϕn] → 0. Note that there exists ϕ′
n ∈ H such that

{ϕn, ϕ
′
n} ∈ S. Then

(tS − γ)[ϕn] = (tS − γ)[ϕn, ϕn] = (tS − γ)[ϕn, ϕn − ϕm] + (tS − γ)[ϕn, ϕm],

and it follows with the help of the Cauchy–Schwarz inequality (5.1.3) for the
nonnegative form (tS − γ) and (5.1.22) that

|(tS − γ)[ϕn]| ≤ |(tS − γ)[ϕn, ϕn − ϕm]|+ |(tS − γ)[ϕn, ϕm]|
≤ (tS − γ)[ϕn]

1
2 (tS − γ)[ϕn − ϕm]

1
2 + |(ϕ′

n − γϕn, ϕm)|.
By Corollary 5.1.6, the sequence ((tS−γ)[ϕn]) is bounded by M2 for some M > 0.
Moreover, for every ε > 0 there exists N ∈ N such that (tS − γ)[ϕn−ϕm] ≤ ε2 for
n,m ≥ N . Therefore,

|(tS − γ)[ϕn]| ≤ Mε+ |(ϕ′
n − γϕn, ϕm)|, n,m ≥ N.

Fix n ≥ N and let m → ∞. From |(ϕ′
n − γϕn, ϕm)| ≤ ‖ϕ′

n − γϕn‖‖ϕm‖ and
‖ϕm‖ → 0 it follows that |(tS − γ)[ϕn]| ≤ Mε for n ≥ N . This shows that
(tS − γ)[ϕn] → 0 as n → ∞, and hence tS is closable.

By Theorem 5.1.12, it is clear that the closure t̃S of tS is a semibounded closed
form whose lower bound is equal to m(S). It also follows from the definition of t̃
that the inclusion (5.1.23) holds. Furthermore, domS = dom tS is a core of t̃S .

It remains to show (5.1.24). The inclusion t̃S ⊂ t̃S is clear. For the opposite
inclusion, let ϕ ∈ dom tS = domS and ϕ′ ∈ H such that {ϕ,ϕ′} ∈ S, in which
case

tS [ϕ,ϕ] = (ϕ′, ϕ).
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Then there exists a sequence ({ϕn, ϕ
′
n}) in S with ϕn → ϕ and ϕ′

n → ϕ′, and
hence

tS [ϕn − ϕm] = (ϕ′
n − ϕ′

m, ϕn − ϕm) → 0.

Therefore, ϕn →tS ϕ, so that ϕ ∈ dom t̃S . Moreover,

tS [ϕ,ϕ] = (ϕ′, ϕ) = lim
n→∞(ϕ′

n, ϕn) = lim
n→∞ tS [ϕn, ϕn] = t̃S [ϕ,ϕ],

where in the last equality the definition of the closure in Theorem 5.1.12 was used.
This implies tS ⊂ t̃S and hence t̃S ⊂ t̃S . Therefore, t̃S = t̃S . �

In the next theorem it is shown that every closed semibounded form can be
represented by a semibounded self-adjoint relation.

Theorem 5.1.18 (First representation theorem). Assume that t is a closed semi-
bounded form in H. Then there exists a semibounded self-adjoint relation H in H
such that the following statements hold:

(i) domH ⊂ dom t and
t[ϕ,ψ] = (ϕ′, ψ) (5.1.25)

for every {ϕ,ϕ′} ∈ H and ψ ∈ dom t;

(ii) domH is a core of t;

(iii) if ϕ ∈ dom t, ϕ′ ∈ H, and
t[ϕ,ψ] = (ϕ′, ψ) (5.1.26)

for every ψ in a core of t, then {ϕ,ϕ′} ∈ H;

(iv) mulH = (dom t)⊥ and
t[ϕ,ψ] = (Hopϕ,ψ) (5.1.27)

for every ϕ ∈ domH and ψ ∈ dom t.

The semibounded self-adjoint relation H is uniquely determined by (i). The closed
form t and the corresponding semibounded self-adjoint relation H have the same
lower bound: m(t) = m(H). Moreover, for each x ∈ R the closed semibounded
form t− x corresponds to the semibounded self-adjoint relation H − x.

Proof. (i) Let m(t) = γ and choose a < γ. Then the assumption that t is closed is
equivalent to the inner product space Ht−a being complete, where Ht−a = dom t is
equipped with the inner product of (·, ·)t−a as in (5.1.7)–(5.1.8); cf. Lemma 5.1.9.
For any fixed ω ∈ H consider the linear functional

ψ �→ (ψ, ω)

defined for all ψ ∈ Ht−a = dom t ⊂ H. It follows from (5.1.9) that

|(ψ, ω)| ≤ ‖ψ‖‖ω‖ ≤
(

1√
γ − a

‖ω‖
)
‖ψ‖t−a, ψ ∈ Ht−a.
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Hence, the mapping ψ �→ (ψ, ω) from Ht−a to C is bounded with bound at most
‖ω‖/√γ − a. Therefore, by the Riesz representation theorem, there exists an ele-
ment ω̂ in Ht−a such that for all ψ ∈ Ht−a:

(ψ, ω) = (ψ, ω̂)t−a, ‖ω̂‖t−a ≤ 1√
γ − a

‖ω‖.

Taking conjugates for convenience, it follows from the definition (5.1.7) of (·, ·)t−a

that
(ω, ψ) = (ω̂, ψ)t−a = t[ω̂, ψ]− a(ω̂, ψ), (5.1.28)

or, in other words,
t[ω̂, ψ] = (ω + aω̂, ψ), ψ ∈ Ht−a. (5.1.29)

Note that the linear mapping A from H to Ht−a defined by Aω = ω̂ satisfies

√
γ − a ‖Aω‖ ≤ ‖Aω‖t−a ≤ 1√

γ − a
‖ω‖;

where in the first inequality (5.1.9) was used. In other words, if A is interpreted
as a mapping from H to H, then

‖Aω‖ ≤ 1

γ − a
‖ω‖.

By means of A define the linear relation H in H by

H =
{{Aω, ω + aAω} : ω ∈ H

}
,

so that
A = (H − a)−1.

One sees that domH = ranA ⊂ dom t and mulH = kerA. Moreover, every
element {ϕ,ϕ′} ∈ H can be written as {ϕ,ϕ′} = {ω̂, ω + aω̂} for some ω, so that
by the identity (5.1.29) one obtains

t[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′} ∈ H, ψ ∈ Ht−a = dom t. (5.1.30)

It follows from (5.1.30) with ψ = ϕ that H is a semibounded relation with lower
bound

m(H) ≥ m(t) = γ. (5.1.31)

It is clear that H is symmetric. According to the definition of H one sees that
ran (H − a) = H, which, since a < γ, implies that H is self-adjoint; cf. Proposi-
tion 1.5.6. Thus, (i) has been proved.

(ii) The statement that domH is a core of t is equivalent to the statement that
domH is dense in the Hilbert space Ht−a. To verify denseness, assume that the
element ψ ∈ Ht−a is orthogonal to domH = ranA, i.e.,

0 = (Aω,ψ)t−a = (ω̂, ψ)t−a = (ω, ψ),

for all ω ∈ H; cf. (5.1.28). This leads to ψ = 0. Hence, domH = ranA is dense in
the Hilbert space Ht−a, and the assertion follows from Corollary 5.1.15.
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(iii) Let ϕ ∈ dom t and ϕ′ ∈ H satisfy (5.1.26) for every ψ in a core D of the form
t. Then (5.1.26) holds for all ψ ∈ dom t. To see this, let ψ ∈ dom t. Then there
exists a sequence (ψn) in D such that ψn →t ψ, which implies that t[ψn −ψ] → 0.
Since ψn ∈ D, the assumption yields

t[ϕ,ψ] = lim
n→∞ t[ϕ,ψn] = lim

n→∞(ϕ′, ψn) = (ϕ′, ψ), ψ ∈ dom t,

so that (5.1.26) holds for all ψ ∈ dom t. Due to the symmetry of t this result may
also be written as

t[ψ,ϕ] = (ψ,ϕ′), ψ ∈ dom t. (5.1.32)

Now let {ψ,ψ′} ∈ H. Then ψ ∈ domH ⊂ dom t and, by (i),

t[ψ,ϕ] = (ψ′, ϕ), (5.1.33)

because ϕ ∈ dom t. Comparing (5.1.32) and (5.1.33) gives

(ψ,ϕ′) = (ψ′, ϕ) for all {ψ,ψ′} ∈ H,

which leads to {ϕ,ϕ′} ∈ H∗ = H. This proves (iii).

(iv) It follows from (i) that if {0, ϕ′} ∈ H, then (ϕ′, ψ) = 0 for all ψ ∈ dom t,
and hence mulH ⊂ (dom t)⊥. Conversely, as domH ⊂ dom t by (i) and H is
self-adjoint, (dom t)⊥ ⊂ (domH)⊥ = mulH. This shows that mulH = (dom t)⊥.

To see (5.1.27), let {ϕ,ϕ′} ∈ H. Then ϕ′ = Hopϕ + χ, where χ ∈ mulH.
Hence, from (5.1.25) one obtains

t[ϕ,ψ] = (ϕ′, ψ) = (Hopϕ+ χ, ψ) = (Hopϕ,ψ),

which gives (5.1.27). This completes the proof of (iv).

To show uniqueness, assume that H ′ is a semibounded self-adjoint relation
in H such that domH ′ ⊂ dom t and

t[ϕ,ψ] = (ϕ′, ψ)

for every {ϕ,ϕ′} ∈ H ′ and ψ ∈ dom t. Then, in particular, one concludes that
ϕ ∈ domH ′ ⊂ dom t and ϕ′ ∈ H, so that by (iii) it follows that {ϕ,ϕ′} ∈ H.
Hence, H ′ ⊂ H and one obtains equality as H ′ and H are both self-adjoint.

Recall that it has been shown in the proof of (i) that m(H) ≥ m(t); cf.
(5.1.31). The equality follows from the fact that domH is a core of t; see (ii). In
fact, if ϕ ∈ dom t, then there exists a sequence (ϕn) in domH such that ϕn →t ϕ.
Therefore, if ϕ 	= 0, then

t[ϕ]

‖ϕ‖2 = lim
n→∞

t[ϕn]

‖ϕn‖2 = lim
n→∞

(Hopϕn, ϕn)

‖ϕn‖2 ≥ m(H).
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Since this inequality holds for every nontrivial ϕ ∈ dom t one concludes that

m(t) = inf

{
t[ϕ]

‖ϕ‖2 : ϕ ∈ dom t, ϕ 	= 0

}
≥ m(H),

and so m(t) = m(H).

Finally, note that for x ∈ R the form t − x is semibounded and closed, and
the relation H − x is semibounded and self-adjoint. For {ϕ,ϕ′} ∈ H,

(t− x)[ϕ,ψ] = (ϕ′, ψ)− x(ϕ,ψ) = (ϕ′ − xϕ, ψ) (5.1.34)

for all ψ ∈ dom t = dom t−x. Observe from (iii) that {ϕ,ϕ′−xϕ} ∈ H−x belongs
to the semibounded self-adjoint relation corresponding to t− x. As H − x is self-
adjoint and contained in the semibounded self-adjoint relation corresponding to
t−x both coincide, i.e.,H−x corresponds to the closed semibounded form t−x. �

The representation result in Theorem 5.1.18 gives assertions concerning the
semibounded self-adjoint relation associated with a given semibounded form. In
fact, every semibounded self-adjoint relation appears in such a context, as is shown
in the following proposition; cf. Lemma 5.1.17.

Proposition 5.1.19. Let A be a semibounded self-adjoint relation in H. Then the
semibounded, closable form defined by

tA[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′}, {ψ,ψ′} ∈ A,

has a closure whose corresponding semibounded self-adjoint relation is given by A.

Proof. Since A is semibounded and self-adjoint, Lemma 5.1.17 shows that the
form tA is well defined, semibounded, and closable. Moreover, domA is a core of
its closure t̃. Let H be the semibounded self-adjoint relation corresponding to t̃.
Since t̃ is an extension of t, one has

t̃[ϕ,ψ] = t[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′}, {ψ,ψ′} ∈ A.

Therefore, Theorem 5.1.18 (iii) implies that {ϕ,ϕ′} ∈ H, since domA is a core of
t̃. Consequently, A ⊂ H and since A and H are both self-adjoint, one concludes
A = H. �

The following observation, based on Theorem 5.1.18 and Proposition 5.1.19,
is included for completeness.

Corollary 5.1.20. There is a one-to-one correspondence between all closed semi-
bounded forms and all closed semibounded self-adjoint relations via the identity
(5.1.25) or, equivalently, via the identity (5.1.27) in the first representation theo-
rem.
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The correspondence between closed semibounded forms and semibounded
self-adjoint relations in Theorem 5.1.18 can be illuminated further in the context
of nonnegative forms and nonnegative self-adjoint relations. As a preparation,
observe that a typical way to define forms is via linear operators.

Lemma 5.1.21. Let T be a linear operator from a Hilbert space H to a Hilbert space
K and define a nonnegative form t in H by

t[ϕ,ψ] = (Tϕ, Tψ), ϕ, ψ ∈ dom t = domT.

Then

t is a closable form ⇔ T is a closable operator,

and in this case the closure of t is given by

t̃[ϕ,ψ] = (Tϕ, Tψ), ϕ, ψ ∈ dom t̃ = domT . (5.1.35)

Proof. (⇒) Assume that t is closable. Let (ϕn) be a sequence in domT such that
ϕn → 0 in H and Tϕn → ψ in K. Then

t[ϕn − ϕm] = ‖T (ϕn − ϕm)‖2 → 0,

which implies that ϕn →t 0. Since t is closable, one obtains

‖Tϕn‖2 = t[ϕn] → 0,

so that Tϕn → 0. It follows that T is closable.

(⇐) Assume that T is closable. Let (ϕn) in dom t with ϕn →t 0. Then ϕn → 0 in
H and (Tϕn) is a Cauchy sequence in K. Hence, Tϕn → ψ for some ψ ∈ K and
since T is closable one sees that ψ = 0. Therefore, t[ϕn] = ‖Tϕn‖2 → 0. It follows
that t is closable.

Finally, assume that t or, equivalently, T is closable. Then one has

dom t̃ = domT . (5.1.36)

Indeed, for the inclusion (⊂) in (5.1.36) consider ϕ ∈ dom t̃. Then there exists
a sequence (ϕn) in dom t with ϕn →t ϕ; cf. Theorem 5.1.12. Hence, ϕn → ϕ in
H and (Tϕn) is a Cauchy sequence in K. Thus, there exists ϕ′ ∈ K such that
Tϕn → ϕ′. Since T is closable it follows that ϕ ∈ domT and ϕ′ = Tϕ. Moreover,
by Theorem 5.1.12 and (5.1.16) it follows that

t̃[ϕ,ϕ] = lim
n→∞ t[ϕn, ϕn] = lim

n→∞(Tϕn, Tϕn) = (Tϕ, Tϕ),
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and polarization leads to the identity in (5.1.35). For the inclusion (⊃) in (5.1.36)
let ϕ ∈ domT . Then Tϕ = ϕ′ for some ϕ′ ∈ K, and there exists a sequence (ϕn) in
domT for which ϕn → ϕ while Tϕn → ϕ′. In particular, it follows that ϕn →t ϕ.
Therefore, ϕ ∈ dom t̃; this proves (5.1.36). �

The following result specializes the first representation theorem to closed
nonnegative forms as in Lemma 5.1.21. For a class of closed nonnegative forms it
identifies the associated self-adjoint relations. Recall that for a closed operator R
a linear subspace D ⊂ domR is a core if the closure of the restriction R �D of R
to D coincides with R; cf. Lemma 1.5.10.

Proposition 5.1.22. Let T be a closed relation from a Hilbert space H to a Hilbert
space K and let Top = PT be the closed orthogonal operator part of T , where P is
the orthogonal projection in K onto (mulT )⊥; cf. Theorem 1.3.15. Then the rule

t[ϕ,ψ] = (Topϕ, Topψ), ϕ, ψ ∈ dom t = domTop = domT, (5.1.37)

defines a closed nonnegative form t in H. The nonnegative self-adjoint relation
corresponding to the form t is given by T ∗T . Moreover, a subset of dom t = domT
is a core of the form t if and only if it is a core of the operator Top .

Proof. Since the operator Top is closed, the nonnegative form t in (5.1.37) is closed,
with dom t = domTop = domT ; cf. Lemma 5.1.21. Recall that T ∗T is a nonneg-
ative self-adjoint relation in H; cf. Lemma 1.5.8. Assume that ϕ ∈ domT ∗T and
ψ ∈ domT . Let ϕ′ ∈ H be any element such that {ϕ,ϕ′} ∈ T ∗T . This implies
that {ϕ, η} ∈ T and {η, ϕ′} ∈ T ∗ for some η ∈ K. Clearly, η = Topϕ+ ω for some
ω ∈ mulT . Since {Topϕ+ ω, ϕ′} ∈ T ∗ and {ψ, Topψ} ∈ T , one sees that

0 = (ϕ′, ψ)− (Topϕ+ ω, Topψ) = (ϕ′, ψ)− (Topϕ, Topψ), ψ ∈ domT,

i.e.,

t[ϕ,ψ] = (ϕ′, ψ), {ϕ,ϕ′} ∈ T ∗T, ψ ∈ domT.

LetH be the nonnegative self-adjoint relation associated with t via Theorem 5.1.18.
According to (iii) of Theorem 5.1.18, the nonnegative self-adjoint relation T ∗T sat-
isfies T ∗T ⊂ H, which gives T ∗T = H.

Now let D ⊂ dom t = domT be a linear subset. Then D is a core of t if and
only if for every ϕ ∈ dom t = domT there is a sequence (ϕn) in D such that

ϕn → ϕ and t[ϕn − ϕ] → 0;

cf. (5.1.19). In view of the definition of t, this condition reads as

ϕn → ϕ and Topϕn → Topϕ,

in other words D is a core of Top . �
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The so-called second representation theorem may be seen as a corollary of
Theorem 5.1.18 and Proposition 5.1.22.

Theorem 5.1.23 (Second representation theorem). Assume that the closed semi-
bounded form t and the semibounded self-adjoint relation H are connected as in
Theorem 5.1.18, so that m(H) = m(t) = γ, and let x ≤ γ. Then

dom t = dom (H − x)
1
2

and the form t is represented by

t[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ

)
+ x(ϕ,ψ), ϕ, ψ ∈ dom t.

Moreover, a subset of dom t = dom (H − x)
1
2 is a core of the form t if and only if

it is a core of the operator (Hop − x)
1
2 .

Proof. For x ≤ γ define the form sx by

sx[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ

)
, ϕ, ψ ∈ dom sx,

on the domain dom sx = dom (Hop − x)1/2 = dom (H − x)1/2. By Proposi-
tion 5.1.22, the form sx is closed and nonnegative. The corresponding nonnegative
self-adjoint relation is given by(

(H − x)
1
2

)∗
(H − x)

1
2 = H − x,

and hence sx[ϕ,ψ] = (ϕ′, ψ) holds for all {ϕ,ϕ′} ∈ H−x and ψ ∈ dom sx. It follows
as in the proof of Theorem 5.1.18 (see (5.1.34)) that the closed semibounded form

(sx + x)[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ

)
+ x(ϕ,ψ), ϕ, ψ ∈ dom sx,

is represented by the semibounded self-adjoint relation H. Furthermore,

(sx + x)[ϕ,ψ] = ((Hop − x)ϕ,ψ) + x(ϕ,ψ) = (Hopϕ,ψ)

for all ϕ,ψ ∈ domH, and hence the restrictions of the form sx+x and of the form
t to domHop coincide; cf. Theorem 5.1.18 (iv). According to Proposition 5.1.22
and Lemma 1.5.10, domHop is a core of sx and hence also of sx+x. On the other
hand, by Theorem 5.1.18 (ii), domHop = domH is also a core of t. Hence, the
forms sx + x and t coincide on the common core domHop . This implies that the
forms sx + x and t coincide. Therefore,

dom t = dom (sx + x) = dom (H − x)
1
2 , x ≤ γ,

and

t[ϕ,ψ] =
(
(Hop − x)

1
2ϕ, (Hop − x)

1
2ψ

)
+ x(ϕ,ψ), ϕ, ψ ∈ dom t.

Finally, Proposition 5.1.22 shows that a subset of dom t is a core of t if and only
if it is a core of the operator (Hop − x)

1
2 . This completes the proof. �
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5.2 Ordering and monotonicity

In this section an ordering will be introduced for semibounded closed forms t1
and t2, and for semibounded self-adjoint relations H1 and H2 in a Hilbert space
H. It will be shown that these orderings are compatible if t1 and H1, and t2 and
H2 are related via the first representation theorem (Theorem 5.1.18), respectively.
An alternative formulation of the ordering of semibounded self-adjoint relations
will be given in terms of their resolvent operators. The last part of the section is
devoted to a general monotonicity principle in the context of semibounded self-
adjoint relations or, equivalently, of closed semibounded forms.

First an ordering will be defined for semibounded forms that are not neces-
sarily closed.

Definition 5.2.1. Let t1 and t2 be semibounded forms in H that are not necessarily
closed. Then one writes t1 ≤ t2, if

dom t2 ⊂ dom t1, t1[ϕ] ≤ t2[ϕ], ϕ ∈ dom t2. (5.2.1)

Note that if t1 ≤ t2, then t2-convergence implies t1-convergence. Indeed, let
ϕn →t2 ϕ. By Definition 5.1.4, this means that

ϕn ∈ dom t2, ϕn → ϕ, and t2[ϕn − ϕm] → 0.

Since t1 ≤ t2, this implies that

ϕn ∈ dom t1 and t1[ϕn − ϕm] → 0,

which shows that ϕn →t1 ϕ. Definition 5.2.1 generates a number of simple but
useful observations.

Lemma 5.2.2. Let t1, t2, and t3 be semibounded forms in H that are not necessarily
closed. Then the following statements hold:

(i) t2 ⊂ t1 ⇒ t1 ≤ t2;

(ii) t1 ≤ t2 ⇒ m(t1) ≤ m(t2);

(iii) t1 ≤ t2 and t2 ≤ t3 ⇒ t1 ≤ t3;

(iv) t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2;

(v) t1 ≤ t2 ⇒ t̃1 ≤ t̃2, when t1 and t2 are closable.

Proof. (i) This follows from the definition of t2 ⊂ t1; cf. (5.1.2).

(ii) It follows from (5.2.1) that

inf

{
t1[ϕ]

‖ϕ‖2 : ϕ ∈ dom t1, ϕ 	= 0

}
≤ inf

{
t1[ϕ]

‖ϕ‖2 : ϕ ∈ dom t2, ϕ 	= 0

}
≤ inf

{
t2[ϕ]

‖ϕ‖2 : ϕ ∈ dom t2, ϕ 	= 0

}
.

Hence, Definition 5.1.2 implies that m(t1) ≤ m(t2).
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(iii) This is an immediate consequence of Definition 5.2.1.

(iv) If t1 ≤ t2 and t2 ≤ t1, then it follows from (5.2.1) that dom t1 = dom t2 and
that t1[ϕ] = t2[ϕ] for all ϕ ∈ dom t1 = dom t2. The conclusion now follows by
polarization; cf. (5.1.1).

(v) Assume that t1 and t2 are closable forms. Let ϕ ∈ dom t̃2; then, by Defi-
nition 5.1.10, there exists a sequence (ϕn) in dom t2 such that ϕn →t2 ϕ. Re-
call that t2-convergence implies t1-convergence and thus ϕ ∈ dom t̃1. This shows
dom t̃2 ⊂ dom t̃1. Therefore, Theorem 5.1.12 implies that for ϕ ∈ dom t̃2 one has

t̃1[ϕ] = lim
n→∞ t1[ϕn] ≤ lim

n→∞ t2[ϕn] = t̃2[ϕ],

which shows (v). �

Next an ordering will be defined for semibounded self-adjoint relations. It
will be shown in Proposition 5.2.6 below that this ordering is in agreement with
the notation γ ≤ H for a semibounded self-adjoint relation H with lower bound
γ; cf. Definition 1.4.5. Note that the following definition relies on Lemma 1.5.10.

Definition 5.2.3. Let H1 and H2 be semibounded self-adjoint relations in H, with
lower bounds m(H1) and m(H2), respectively. Then the relations H1 and H2 are
said to be ordered, and one writes H1 ≤ H2, if

dom (H2 − x)
1
2 ⊂ dom (H1 − x)

1
2 ,

‖(H1,op − x)
1
2ϕ‖ ≤ ‖(H2,op − x)

1
2ϕ‖, ϕ ∈ dom (H2 − x)

1
2 ,

(5.2.2)

is satisfied for some, and hence for all x ≤ min {m(H1),m(H2)}.
In the next theorem it is shown that the ordering for semibounded forms

in Definition 5.2.1 and the ordering for semibounded self-adjoint relations in
Definition 5.2.3 are compatible. Here the second representation theorem (The-
orem 5.1.23) plays an essential role.

Theorem 5.2.4. Let t1 and t2 be closed semibounded forms in H and let H1 and
H2 be the corresponding semibounded self-adjoint relations. Then

t1 ≤ t2 ⇔ H1 ≤ H2.

Proof. Assume first that t1 ≤ t2. Then, by Definition 5.2.1,

dom t2 ⊂ dom t1, t1[ϕ] ≤ t2[ϕ], ϕ ∈ dom t2,

and for all x ≤ min {m(t1),m(t2)} it follows from Theorem 5.1.23 that (5.2.2)
holds. Hence, H1 ≤ H2 by Definition 5.2.3.

Conversely, assume that H1 ≤ H2. Then, by Definition 5.2.3, (5.2.2) holds
for all x ≤ min {m(H1),m(H2)} and hence Theorem 5.1.23 implies t1 ≤ t2. �



302 Chapter 5. Boundary Triplets and Boundary Pairs for Semibounded Relations

Lemma 5.2.5. Let H1, H2, and H3 be semibounded self-adjoint relations in H.
Then the following statements hold:

(i) H1 ≤ H2 ⇒ mulH1 ⊂ mulH2;

(ii) H1 ≤ H2 ⇒ m(H1) ≤ m(H2);

(iii) H1 ≤ H2 and H2 ≤ H3 ⇒ H1 ≤ H3;

(iv) H1 ≤ H2 and H2 ≤ H1 ⇒ H1 = H2;

(v) H1 ≤ H2 ⇔ H1 − x ≤ H2 − x for every x ∈ R.

Proof. Let ti be the closed semibounded form corresponding to Hi, i = 1, 2, 3.
For the proof of (i) it is sufficient to observe that

domH2 = dom t2 ⊂ dom t1 = domH1,

where Theorem 5.2.4 and Theorem 5.1.18 (iv) were used. Taking orthogonal com-
plements then gives mulH1 ⊂ mulH2. For (ii) recall that

m(H1) = m(t1) ≤ m(t2) = m(H2),

as follows from Lemma 5.2.2 and Theorem 5.1.18. Statements (iii) and (iv) are
translations of similar statements in Lemma 5.2.2. The statement (v) is clear from
Theorem 5.2.4. �

Assume that in Definition 5.2.3 the self-adjoint relation H1 has a closed
domain domH1. Then the operator part H1,op of H1 is a bounded operator which

implies that domH1 = dom (H1 − x)
1
2 . Thus, in this case H1 ≤ H2 if and only if

dom (H2 − x)
1
2 ⊂ domH1,

((H1,op − x)ϕ,ϕ) ≤ ‖(H2,op − x)
1
2ϕ‖2, ϕ ∈ dom (H2 − x)

1
2 .

(5.2.3)

The following proposition gives an alternative version of this statement.

Proposition 5.2.6. Let H1 and H2 be semibounded self-adjoint relations in H and
assume that domH1 is closed. Then the following statements are equivalent:

(i) H1 ≤ H2;

(ii) domH2 ⊂ domH1, (H1,opϕ,ϕ) ≤ (H2,opϕ,ϕ), ϕ ∈ domH2.

Moreover, if H1 ∈ B(H), then these statements are equivalent to

(iii) (H1ϕ,ϕ) ≤ (H2,opϕ,ϕ), ϕ ∈ domH2;

(iv) (H1ϕ,ϕ) ≤ (ϕ′, ϕ), {ϕ,ϕ′} ∈ H2;

and in the particular case that H1 = γ1IH to

(v) γ1‖ϕ‖2 ≤ (H2,opϕ,ϕ), ϕ ∈ domH2;

(vi) γ1‖ϕ‖2 ≤ (ϕ′, ϕ), {ϕ,ϕ′} ∈ H2.
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Proof. (i) ⇒ (ii) Let (i) be satisfied. Then domH2 ⊂ dom (H2 − x)
1
2 ⊂ domH1

by (5.2.3), and for all ϕ ∈ domH2 the inequality in (5.2.3) takes the form

((H1,op − x)ϕ,ϕ) ≤ ((H2,op − x)ϕ,ϕ),

which implies (ii).

(ii) ⇒ (i) Let (ii) be satisfied and let ϕ ∈ dom (H2 − x)
1
2 . Then there exists a

sequence (ϕn) in domH2 such that

ϕn → ϕ and (H2,op − x)
1
2ϕn → (H2,op − x)

1
2ϕ, n → ∞,

since domH2 is a core of (H2 − x)
1
2 ; see Lemma 1.5.10. Due to the assumption

one has ϕn ∈ domH1 and

((H1,op − x)ϕn, ϕn) ≤ ((H2,op − x)ϕn, ϕn) = ‖(H2,op − x)
1
2ϕn‖2.

Since domH1 is closed it follows by taking the limit that

((H1,op − x)ϕ,ϕ) ≤ ‖(H2,op − x)
1
2ϕ‖2, ϕ ∈ dom (H2 − x)

1
2 .

Hence, (5.2.3) is satisfied or, equivalently, H1 ≤ H2.

If H1 ∈ B(H), then domH1 = H and hence the rest of the statements is clear. �

In particular, the inequality in (v)–(vi) of Proposition 5.2.6 shows that the
ordering γIH ≤ H is equivalent to H being semibounded with lower bound γ
as defined in Definition 1.4.5. Furthermore, if both H1 and H2 are self-adjoint
operators in B(H), then they are semibounded and Proposition 5.2.6 (iii) shows
that H1 ≤ H2 in the sense of Definition 5.2.3 agrees with the usual definition
(H1ϕ,ϕ) ≤ (H2ϕ,ϕ) for all ϕ ∈ H.

The ordering for semibounded relations H1 and H2 can also be expressed in
terms of their resolvent operators. The next proposition is an immediate conse-
quence of Proposition 1.5.11 (for the special case ρ = 1).

Proposition 5.2.7. Let H1 and H2 be semibounded self-adjoint relations in H. Then
the following statements are equivalent:

(i) H1 ≤ H2;

(ii) for some, and hence for all x < min {m(H1),m(H2)}

(H2 − x)−1 ≤ (H1 − x)−1.

The next corollary slightly extends Proposition 5.2.7 and gives a further
interpretation of the inequality H1 ≤ H2 when x ≤ min {m(H1),m(H2)}. The
equivalence in (5.2.4) below is an example of the antitonicity property.
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Corollary 5.2.8. Let H1 and H2 be semibounded self-adjoint relations in H. Then

H1 ≤ H2

if and only if for γ ≤ min {m(H1),m(H2)} one has

(H2 − γ)−1 ≤ (H1 − γ)−1.

In particular, if H1 and H2 are nonnegative self-adjoint relations, then

H1 ≤ H2 ⇔ H−1
2 ≤ H−1

1 . (5.2.4)

Proof. Let H be a semibounded self-adjoint relation with γ ≤ m(H). Then H − γ
is nonnegative and hence also (H − γ)−1 is a nonnegative self-adjoint relation.
Now write for x < γ

H − x = H − γ − (x− γ),

and apply Corollary 1.1.12 (with H replaced by (H − γ)−1 and λ replaced by
(x− γ)−1), obtaining

(H − x)
−1

= − 1

x− γ
− 1

(x− γ)2

(
(H − γ)−1 − 1

x− γ

)−1

.

Hence, for the pair of semibounded self-adjoint relations H1 and H2 and with
γ ≤ min {m(H1),m(H2)} one obtains for each x < γ:

(H1 − x)−1 − (H2 − x)−1

=
1

(x− γ)2

[(
(H2 − γ)−1 − 1

x− γ

)−1

−
(
(H1 − γ)−1 − 1

x− γ

)−1
]
.

Since x−γ < 0, a repeated application of Proposition 5.2.7 shows the equivalence.
In fact, H1 ≤ H2 if and only if (H2 − x)−1 ≤ (H1 − x)−1 by Proposition 5.2.7,
which by the above formula is equivalent to(

(H1 − γ)−1 − 1

x− γ

)−1

≤
(
(H2 − γ)−1 − 1

x− γ

)−1

. (5.2.5)

Another application of Proposition 5.2.7 shows that the inequality (5.2.5) is equiv-
alent to the inequality (H2 − γ)−1 ≤ (H1 − γ)−1. �

As a corollary to Proposition 5.2.7 it will be shown that in the case H1 ≤ H2

the difference (H1 − x)−1 − (H2 − x)−1, x < min {m(H1),m(H2)}, can be used to
describe the gap between the corresponding form domains

dom (H2 − x)
1
2 ⊂ dom (H1 − x)

1
2 .
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Corollary 5.2.9. Let H1 and H2 be semibounded self-adjoint relations in H and
assume that

H1 ≤ H2.

Then for all x < min {m(H1),m(H2)} the operator (H1−x)−1−(H2−x)−1 ∈ B(H)
is nonnegative and

dom (H1 − x)
1
2 = ran

(
(H1 − x)−1 − (H2 − x)−1

) 1
2 + dom (H2 − x)

1
2 .

Proof. Since H1 ≤ H2, the operator R(x) ∈ B(H), defined by

R(x) = (H1 − x)−1 − (H2 − x)−1,

is nonnegative for x < min {m(H1),m(H2)}; cf. Proposition 5.2.7. Hence, one can
write

(H1 − x)−1 = R(x) + (H2 − x)−1

=
(
R(x)

1
2 (H2 − x)−

1
2

)( R(x)
1
2

(H2 − x)−
1
2

)
.

(5.2.6)

Now recall that if T = (A B) is a row operator with A,B ∈ B(H), then it follows

from ran (TT ∗)
1
2 = ran |T ∗| = ranT , cf. Corollary D.6, that

ran (AA∗ +BB∗)
1
2 = ran (A B) = ranA+ ranB. (5.2.7)

Hence, taking square roots in the identity (5.2.6) and applying (5.2.7) shows that

ran (H1 − x)−
1
2 = ranR(x)

1
2 + ran (H2 − x)−

1
2 ,

which yields the desired decomposition

dom (H1 − x)
1
2 = ranR(x)

1
2 + dom (H2 − x)

1
2

for x < min {m(H1),m(H2)}. �

Now the ordering for semibounded self-adjoint relations and for semibounded
closed forms will be used to reinterpret and extend the monotonicity result in
Proposition 1.9.9

For the proof of the following theorem it is useful to have available an auxiliary
result concerning the interchange of limits. Let (fn) be a nondecreasing sequence of real
nondecreasing functions defined on an open interval (a, b). Thus, for all x ∈ (a, b) one
has

fm(x) ≤ fn(x), m ≤ n, (5.2.8)

and for all n ∈ N
fn(x) ≤ fn(y), a < x ≤ y < b. (5.2.9)

In view of (5.2.8) the pointwise limit

f∞(x) = lim
n→∞

fn(x), x ∈ (a, b), (5.2.10)
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gives a function f∞ : (a, b) → R ∪ {∞} that is nondecreasing, thanks to (5.2.9). This
is clear when all f∞(x) are finite, in which case limx→b f∞(x) is proper or improper.
However, if f∞(x0) = ∞ for some x0 ∈ (a, b), then (5.2.9) shows that f∞(x) = ∞ for
all x0 ≤ x < b. In this case the function f∞ is also called nondecreasing (in the sense of
R ∪ {∞}) and one defines limx→b f∞(x) = ∞. In view of (5.2.9) the limit

fn(b) = lim
x→b

fn(x), n ∈ N, (5.2.11)

gives a sequence with values in R ∪ {∞} that is nondecreasing, thanks to (5.2.8). This
is again clear when all limits fn(b) are finite in which case limn→∞ fn(b) is proper or
improper. However, if there exists some m ∈ N for which fm(b) = ∞, then for all n ≥ m
one has fn(b) = ∞. In this case one defines limn→∞ fn(b) = ∞.

Lemma 5.2.10. Let (fn) be a nondecreasing sequence of nondecreasing functions defined
on some open interval (a, b). Let f∞ be the nondecreasing limit function in (5.2.10) and
let (fn(b)) be the nondecreasing sequence of limits in (5.2.11). Then

lim
x→b

f∞(x) = lim
n→∞

fn(b). (5.2.12)

In particular, both limits in (5.2.12) are finite or infinite simultaneously.

Proof. Consider the case that all values of f∞ are real. Since fn(x) ≤ f∞(x) for all
x ∈ (a, b), it follows that for any n ∈ N

fn(b) = lim
x→b

fn(x) ≤ lim
x→b

f∞(x).

This implies
lim

n→∞
fn(b) ≤ lim

x→b
f∞(x), (5.2.13)

where the limits may be infinite. Assume that there is strict inequality in (5.2.13). First
consider the case limx→b f∞(x) < ∞. Then clearly there exists some δ > 0 for which

δ + lim
n→∞

fn(b) < lim
x→b

f∞(x). (5.2.14)

Next consider the case limx→b f∞(x) = ∞. Then limn→∞ fn(b) < ∞ (otherwise there
would be equality in (5.2.13)) and (5.2.14) holds for any δ > 0. In each case, there exists
some x ∈ (a, b) such that

δ + lim
n→∞

fn(b) < f∞(x).

From this one concludes

δ + f∞(x) = δ + lim
n→∞

fn(x) ≤ δ + lim
n→∞

fn(b) < f∞(x);

a contradiction. Hence, there is equality in (5.2.13). It remains to consider the situation
where f∞(x0) = ∞ for some a < x0 < b. In this case f∞(x) = ∞ for all x0 < x < b and
limx→b f∞(x) = ∞. Assume that

L = lim
n→∞

fn(b) < ∞.

For any x0 ≤ x < b one has
fn(x) ≤ fn(b) ≤ L,

which implies that limn→∞ fn(x) ≤ L; a contradiction. Again, there is equality in
(5.2.13). �
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Theorem 5.2.11 (Monotonicity principle). Let (Hn) be a nondecreasing sequence
of semibounded self-adjoint relations in H and let γ ≤ m(H1). Then there exists a
semibounded self-adjoint relation H∞ with γ ≤ m(H∞) and Hn ≤ H∞ such that
Hn → H∞ in the strong resolvent sense, i.e.,

(Hn − λ)−1ϕ → (H∞ − λ)−1ϕ, ϕ ∈ H, λ ∈ C \ [γ,∞). (5.2.15)

Furthermore, H∞ satisfies

dom (H∞ − γ)
1
2

=

{
ϕ ∈

∞⋂
n=1

dom (Hn − γ)
1
2 : lim

n→∞ ‖(Hn,op − γ)
1
2ϕ‖ < ∞

}
(5.2.16)

and for all ϕ ∈ dom (H∞ − γ)
1
2 it holds that

‖(H∞,op − γ)
1
2ϕ‖ = lim

n→∞ ‖(Hn,op − γ)
1
2ϕ‖. (5.2.17)

Proof. The assumption Hn ≤ Hm for n ≤ m and Proposition 5.2.7 lead to

0 ≤ (Hm − x)−1 ≤ (Hn − x)−1, x < γ,

where γ ≤ m(H1). Hence, by Proposition 1.9.14, there exists a semibounded self-
adjoint relation H∞ with γ ≤ m(H∞) such that

0 ≤ (H∞ − x)−1 ≤ (Hn − x)−1, x < γ, (5.2.18)

and Hn converges to H∞ in the strong resolvent sense on C \ [γ,∞), that is,
(5.2.15) holds.

It remains to prove (5.2.16) and (5.2.17). It follows from Corollary 1.1.12
with H replaced by Hn − γ and H∞ − γ, respectively, that for x < 0 one has((

(Hn − γ)−1 − x
)−1

ϕ,ϕ
)− ((

(H∞ − γ)−1 − x
)−1

ϕ,ϕ
)

=
1

x2

[((
(H∞ − γ)− 1

x

)−1

ϕ,ϕ

)
−
((

(Hn − γ)− 1

x

)−1

ϕ,ϕ

)]
.

Since γ + 1/x < γ, the right-hand side tends to zero monotonically from below
for n → ∞, as follows from (5.2.15) and (5.2.18); but then also the left-hand side
tends to zero monotonically from below.

To complete the proof, consider the functions, defined for ϕ ∈ H and x < 0 by

fn(x) =
((
(Hn − γ)−1 − x

)−1
ϕ,ϕ

)
and

f∞(x) =
((
(H∞ − γ)−1 − x

)−1
ϕ,ϕ

)
.
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The above argument shows that the sequence fn is nondecreasing with f∞ as
pointwise limit. It follows from Lemma 1.5.12 (with H replaced by Hn − γ and
H∞ − γ, respectively), that both functions fn and f∞ are nondecreasing on the
interval (−∞, 0) and that

fn(0) = lim
x ↑ 0

(
((Hn − γ)−1 − x)−1ϕ,ϕ

)
=

{ ‖(Hn,op − γ)
1
2ϕ‖2, ϕ ∈ dom (Hn − γ)

1
2 ,

∞, otherwise,

(5.2.19)

while

f∞(0) = lim
x ↑ 0

(
((H∞ − γ)−1 − x)−1ϕ,ϕ

)
=

{ ‖(H∞,op − γ)
1
2ϕ‖2, ϕ ∈ dom (H∞ − γ)

1
2 ,

∞, otherwise.

(5.2.20)

Hence, by Lemma 5.2.10,
lim
n→∞ fn(0) = f∞(0), (5.2.21)

where the limits in (5.2.21) are finite or infinite simultaneously.

Assume that ϕ ∈ dom (H∞ − γ)
1
2 . Then, by (5.2.20), f∞(0) < ∞, which, in

view of (5.2.21), implies that all fn(0) < ∞. Hence, ϕ ∈ ⋂∞
n=1 dom (Hn − γ)

1
2 by

(5.2.19), and (5.2.21) reads

lim
n→∞ ‖(Hn,op − γ)

1
2ϕ‖2 = ‖(H∞,op − γ)

1
2ϕ‖2. (5.2.22)

Thus, ϕ belongs to the right-hand side of (5.2.16). This shows the inclusion (⊂)
in (5.2.16), and (5.2.22) gives (5.2.17).

Conversely, assume that ϕ belongs to the right-hand side of (5.2.16), that is,

ϕ ∈ ⋂∞
n=1 dom (Hn − γ)

1
2 and

lim
n→∞ ‖(Hn,op − γ)

1
2ϕ‖ < ∞.

By (5.2.19) one sees that fn(0) < ∞ and that limn→∞ fn(0) < ∞. It follows from

(5.2.21) that f∞(0) < ∞. Now apply (5.2.20) to conclude that ϕ ∈ dom (H∞−γ)
1
2 .

This shows the inclusion (⊃) in (5.2.16). �

Corollary 5.2.12. Let (Hn) be a nondecreasing sequence of semibounded self-adjoint
relations and let H∞ be the strong resolvent limit as in Theorem 5.2.11. Then the
following statements hold:

(i) If K is a semibounded self-adjoint relation such that Hn ≤ K for all n ∈ N,
then also H∞ ≤ K.

(ii) If S is a symmetric relation such that S ⊂ Hn for all n ∈ N, then also
S ⊂ H∞.



5.2. Ordering and monotonicity 309

Proof. (i) Assume that Hn ≤ K. Then for all x < γ ≤ m(H1)

0 ≤ ((K − x)−1ϕ,ϕ) ≤ ((Hn − x)−1ϕ,ϕ), ϕ ∈ H.

By (5.2.15), (Hn − x)−1ϕ → (H∞ − x)−1ϕ for ϕ ∈ H and one concludes that

0 ≤ ((K − x)−1ϕ,ϕ) ≤ ((H∞ − x)−1ϕ,ϕ), ϕ ∈ H.

Hence, by Proposition 5.2.7 it follows that H∞ ≤ K.

(ii) Assume that {ϕ,ϕ′} ∈ S. Then {ϕ,ϕ′} ∈ Hn by assumption and hence for all
n ∈ N one has

(Hn − λ)−1(ϕ′ − λϕ) = ϕ, λ ∈ C \ [γ,∞).

By (5.2.15), (Hn − x)−1ψ → (H∞ − x)−1ψ for ψ ∈ H and one concludes that

(H∞ − λ)−1(ϕ′ − λϕ) = lim
n→∞(Hn − λ)−1(ϕ′ − λϕ) = ϕ,

which gives {ϕ,ϕ′} ∈ H∞. Hence, S ⊂ H∞. �

Now consider the special case of a nondecreasing sequence of self-adjoint
operators (Hn) in B(H). Then it is clear that H∞ is a semibounded self-adjoint
relation which is an operator in B(H) if and only if the sequence (Hn) is uniformly
bounded; cf. Corollary 1.9.10 and the beginning of Section 1.9. The following
corollary shows that the domain of the square root of H∞ − γ, γ ≤ m(H1), is
given by those ϕ ∈ H for which (Hnϕ,ϕ) has a finite limit as n → ∞.

Corollary 5.2.13. Let (Hn) be a nondecreasing sequence of self-adjoint operators
in B(H) with γ ≤ m(H1) and define

E =
{
ϕ ∈ H : lim

n→∞(Hnϕ,ϕ) < ∞
}
.

Let H∞ be the semibounded self-adjoint limit of the sequence Hn. Then

E = dom (H∞ − γ)
1
2 .

In particular, one has

(i) E = H ⇔ H∞ ∈ B(H);

(ii) E is closed ⇔ H∞,op is a bounded operator;

(iii) closE = H ⇔ H∞ is an operator;

(iv) E = {0} ⇔ H∞ = {0} × H.

A useful variant of Corollary 5.2.13 is concerned with a nondecreasing func-
tion M : (a, b) → B(H), whose values are self-adjoint operators; cf. Corollary 2.3.8.
Then there exists a self-adjoint limit at the right endpoint b, which can be re-
trieved via sequences converging to b. For the existence of the self-adjoint limit
at the left endpoint a consider the function x �→ −M(x), which is nondecreasing
when x ∈ (a, b) tends to a.
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Corollary 5.2.14. Let M : (a, b) → B(H) be a nondecreasing function, whose values
are self-adjoint operators. Then there exist self-adjoint relations M(a) and M(b)
in H such that M(x) → M(b) in the strong resolvent sense when x → b and
M(x) → M(a) in the strong resolvent sense when x → a. Furthermore,

M(x) ≤ M(b) and −M(x) ≤ −M(a), x ∈ (a, b).

Define

Eb =

{
ϕ ∈ H : lim

x ↑ b
(M(x)ϕ,ϕ) < ∞

}
and

Ea =

{
ϕ ∈ H : lim

x ↓ a
(M(x)ϕ,ϕ) > −∞

}
.

Then for c = a or c = b one has

(i) Ec = H ⇔ M(c) ∈ B(H);

(ii) Ec is closed ⇔ M(c)op is a bounded operator;

(iii) closEc = H ⇔ M(c) is an operator;

(iv) Ec = {0} ⇔ M(c) = {0} × H.

Let (tn) be a nondecreasing sequence of closed semibounded forms in H which
satisfy γ ≤ m(t1). By Theorem 5.1.18, there exist unique semibounded self-adjoint
relations Hn, bounded from below by γ, which correspond to tn. According to
Theorem 5.2.4, the sequence (Hn) is nondecreasing. By the monotonicity principle
in Theorem 5.2.11 the strong resolvent limit of the sequence (Hn) exists as a
semibounded self-adjoint relationH∞ with lower bound γ such thatHn ≤ H∞. Let
t∞ be the form corresponding to H∞ by Proposition 5.1.19. Then t∞ is bounded
below by γ and tn ≤ t∞ by Theorem 5.2.4. Therefore, the following theorem
concerning a nondecreasing sequence of forms may be seen as a direct consequence
of Theorem 5.2.11.

Theorem 5.2.15 (Monotonicity principle). Let (tn) be a nondecreasing sequence
of closed semibounded forms in H and let γ ≤ m(t1). Then there exists a closed
semibounded form t∞ with γ ≤ m(t∞) such that tn ≤ t∞ and

dom t∞ =

{
ϕ ∈

∞⋂
n=1

dom tn : lim
n→∞ tn[ϕ] < ∞

}
(5.2.23)

and
t∞[ϕ] = lim

n→∞ tn[ϕ], ϕ ∈ dom t∞. (5.2.24)

Moreover, the relations Hn corresponding to the forms tn converge in the strong
resolvent sense to the relation H∞ corresponding to the form t∞.

Proof. It is clear from Theorem 5.1.23 and the formulas (5.2.16) and (5.2.17) in
Theorem 5.2.11 that the limit form t∞ satisfies (5.2.23) and (5.2.24). �
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5.3 Friedrichs extensions of semibounded relations

A semibounded, not necessarily closed, relation S in a Hilbert space H has equal
defect numbers, and hence admits self-adjoint extensions in H. It will be shown that
such a relation S has a distinguished semibounded self-adjoint extension SF, the
so-called Friedrichs extension of S, with m(SF) = m(S). The construction of this
extension involves a closed semibounded form associated with S. The characteristic
properties of this extension will be investigated in detail.

Let S be a semibounded relation in H. Recall from Lemma 5.1.17 that the
form tS given by

tS [f, g] = (f ′, g), {f, f ′}, {g, g′} ∈ S, (5.3.1)

is well defined and that it is semibounded with the lower bound m(S). Moreover,
it has been shown that tS is closable and that the closure t̃S of tS is a semibounded
closed form whose lower bound is equal to m(S). Also, dom tS = domS is a core
of t̃S .

Lemma 5.3.1. Let S be a semibounded relation in H with lower bound m(S). Let t̃S
be the closure of the form tS in (5.3.1). Then the unique relation SF corresponding
to t̃S via Theorem 5.1.18 is a semibounded self-adjoint extension of S with the lower
bound m(SF) = m(S). In fact, SF is a self-adjoint extension of the semibounded

relation S +̂ N̂∞(S∗), so that

S ⊂ S +̂ N̂∞(S∗) ⊂ SF, where N̂∞(S∗) = {0} ×mulS∗. (5.3.2)

Moreover,
SF = (S)F. (5.3.3)

Proof. By Theorem 5.1.18, the closed form t̃S induces a unique semibounded self-
adjoint relation SF in H such that

t̃S [f, g] = (f ′, g), {f, f ′} ∈ SF, g ∈ dom t̃S .

To show that SF is an extension of S, let {f, f ′} ∈ S. As f ∈ dom tS , it follows
that for all g ∈ dom tS

t̃S [f, g] = tS [f, g] = (f ′, g).

Since dom tS = domS is a core of t̃S , one obtains {f, f ′} ∈ SF from The-
orem 5.1.18 (iii). Hence, SF is a self-adjoint extension of S with lower bound
m(SF) = m(S).

In order to verify (5.3.2) it now suffices to see that {0} ×mulS∗ ⊂ SF. Let
ϕ ∈ mulS∗ and let g ∈ domS, then clearly t̃S [0, g] = 0 and (ϕ, g) = 0. Therefore,

t̃S [0, g] = (ϕ, g) for all g ∈ domS.

Since domS is a core of t̃S , it follows that {0, ϕ} ∈ SF.

To see that (5.3.3) holds, it suffices to recall from Lemma 5.1.17 that t̃S = t̃S
holds for the closures of tS and tS . �
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Definition 5.3.2. Let S be a semibounded relation in H. The semibounded self-
adjoint relation SF associated with the closure of the form tS in (5.3.1) is called
the Friedrichs extension of S. The closure t̃S of the form tS will be denoted by
tSF

, so that tSF
= t̃S .

Let S be a semibounded relation in H and let a < m(S). Then S − a is a
nonnegative relation and it is a consequence of (5.3.1) that tS−a = tS − a. The
translation invariance of the closures, cf. (5.1.17), leads to

t(S−a)F = t̃S−a = t̃S − a = t̃S − a = tSF − a.

The nonnegative self-adjoint relation (S − a)F corresponding to the form on the
left-hand side is equal to the nonnegative self-adjoint relation corresponding to
the form on the right-hand side. Thus, one obtains

(S − a)F = SF − a, a < m(S). (5.3.4)

In other words, the Friedrichs extension is translation invariant.

By Lemma 5.3.1, the Friedrichs extension SF is a semibounded self-adjoint
extension of S. As a restriction of S∗ the Friedrichs extensions can be characterized
as follows.

Theorem 5.3.3. Let S be a semibounded relation in H. The Friedrichs extension
SF of S admits the representation

SF =
{{f, f ′} ∈ S∗ : f ∈ dom tSF

}
(5.3.5)

with mulSF = mulS∗. Furthermore, if H is a self-adjoint extension of S, that is
not necessarily semibounded, then

domH ⊂ dom tSF ⇒ H = SF.

Proof. In order to show that SF is contained in the right-hand side of (5.3.5), let
{f, f ′} ∈ SF. Clearly, S ⊂ SF and since SF is self-adjoint this implies SF ⊂ S∗, so
that {f, f ′} ∈ S∗. Note also that f ∈ domSF ⊂ dom tSF . Hence, SF is contained
in the right-hand side of (5.3.5).

To show the opposite inclusion, let {f, f ′} ∈ S∗ be such that f ∈ dom tSF
.

Then there exists a sequence (fn) in dom tS = domS with

fn →tSF
f.

Let {fn, f ′
n} be corresponding elements in S and let {g, g′} ∈ S be arbitrary. Then

tS ⊂ tSF
and S ⊂ S∗ imply that

tSF [fn, g] = tS [fn, g] = (f ′
n, g) = (fn, g

′).
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Since tSF is a closed form, it follows that

tSF [f, g] = (f, g′).

As {f, f ′} ∈ S∗ and {g, g′} ∈ S, one obtains (f, g′) = (f ′, g), so that

tSF [f, g] = (f ′, g).

This identity holds for an arbitrary element g ∈ domS. Since domS = dom tS is
a core of the form tSF

it follows from Theorem 5.1.18 (iii) that {f, f ′} ∈ SF.

Now let H be any self-adjoint extension of S with domH ⊂ dom tSF . Hence,
if {f, f ′} ∈ H, then {f, f ′} ∈ S∗ and f ∈ domH ⊂ dom tSF . By (5.3.5), one has
{f, f ′} ∈ SF. This shows H ⊂ SF, and since both H and SF are self-adjoint, it
follows that H = SF. �

According to Theorem 5.3.3, the inclusion domH ⊂ dom tSF
for any self-

adjoint extension H of S implies H = SF. Note that in general a self-adjoint
extension of a semibounded relation is not necessarily semibounded. The situation
is different when S has finite defect numbers; cf. Proposition 5.5.8.

The construction of SF in (5.3.5) results in a description of SF by means of
approximating elements from the graph of S.

Corollary 5.3.4. Let S be a semibounded relation in H. Then SF is the set of all
elements {f, f ′} ∈ S∗ for which there exists a sequence ({fn, f ′

n}) in S such that

fn → f and (f ′
n, fn) → (f ′, f).

Proof. By Theorem 5.3.3, SF is the set of all elements {f, f ′} ∈ S∗ for which
f ∈ dom tSF

. Hence, there exists a sequence ({fn, f ′
n}) in S such that

fn →tSF
f.

In particular, fn → f in H and, moreover,

(f ′, f) = tSF [f, f ] = lim
n→∞ tSF [fn, fn] = lim

n→∞ tS [fn, fn] = lim
n→∞(f ′

n, fn).

Hence, SF is contained in the relation{{f, f ′} ∈ S∗ : fn → f and (f ′
n, fn) → (f ′, f) for some {fn, f ′

n} ∈ S
}
.

Observe that this relation is symmetric since (f ′
n, fn) ∈ R implies (f ′, f) ∈ R.

Thus, the self-adjoint relation SF is contained in the symmetric relation above,
and therefore they coincide. �

Since S ⊂ SF ⊂ S∗ and domSF ⊂ domS by Corollary 5.3.4 one has that

domS ⊂ domSF ⊂ (
domS ∩ domS∗).

The next corollary shows when these inclusions are identities.
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Corollary 5.3.5. Let S be a semibounded relation in H. Then

S +̂ N̂∞(S∗) = SF, N̂∞(S∗) = {0} ×mulS∗, (5.3.6)

if and only if

domS = domS ∩ domS∗.

In particular, if domS is closed, then SF has the form (5.3.6).

Proof. Recall from (5.3.2) that S +̂ N̂∞(S∗) ⊂ SF. Note that there is equal-

ity if and only if S +̂ N̂∞(S∗) is self-adjoint. Hence, the assertion follows from
Lemma 1.5.7. �

The construction of the Friedrichs extension SF of a semibounded relation S
via the form tS in (5.3.1) leads to an important characteristic property. First of
all, recall that

tSF [f, g] = (f ′, g), {f, f ′} ∈ SF, g ∈ dom tSF ,

with lower bound m(SF) = m(S). Now assume that H is another semibounded
self-adjoint extension of S. Then clearly m(H) ≤ m(S), and according to Propo-
sition 5.1.19, the relation H generates a closed semibounded form tH on H with

tH [f, g] = (f ′, g), {f, f ′} ∈ H, g ∈ dom tH .

By specializing {f, f ′} ∈ S and g ∈ domS, it follows that

tH [f, g] = (f ′, g) = tS [f, g]

and hence tS ⊂ tH . By construction, tS ⊂ t̃ = tSF
and hence tSF

is the smallest
closed form extension of tS ; cf. Theorem 5.1.12. Therefore,

tS ⊂ tSF
⊂ tH . (5.3.7)

This leads to the extremality property of SF stated in the next result.

Proposition 5.3.6. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S. Then m(tH) = m(H) ≤ m(SF) = m(S) and

tH ≤ tSF or H ≤ SF;

or, equivalently, for some, and hence for all a < m(H),

(SF − a)−1 ≤ (H − a)−1.

Proof. It is a consequence of (5.3.7) and Lemma 5.2.2 (i) that tH ≤ tSF
. The rest

of the statements follow from Theorem 5.2.4 and Proposition 5.2.7. �
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According to Proposition 5.3.6, the Friedrichs extension SF is the largest
semibounded self-adjoint extension of S in the sense of the ordering for forms or
relations, and so it has the smallest form domain. Recall that for any semibounded
self-adjoint extension H of S one has for a < m(H) ≤ m(SF) that

dom (H − a)
1
2 = ranR(a)

1
2 + dom (SF − a)

1
2 , (5.3.8)

where the nonnegative operator R(a) is defined by

R(a) = (H − a)−1 − (SF − a)−1 ∈ B(H); (5.3.9)

cf. Corollary 5.2.9. The identity (5.3.8) will now be put in a geometric context.
Recall that for a < m(H) the closed nonnegative form tH − a on H defines the
following inner product on dom tH

(f, g)tH−a = tH [f, g]− a(f, g), f, g ∈ dom tH = dom (H − a)
1
2 , (5.3.10)

which makes the space HtH−a=domtH =dom(H−a)
1
2 complete; cf. Lemma 5.1.8.

Similarly, the closed nonnegative form tSF − a on H defines the following inner
product on dom tSF

:

(f, g)tSF
−a = tSF [f, g]− a(f, g), f, g ∈ dom tSF = dom (SF − a)

1
2 , (5.3.11)

which makes the space HtSF
−a = dom tSF = dom (SF − a)

1
2 complete. Thus, in

terms of inner product spaces one obtains

HtSF
−a ⊂ HtH−a,

and by (5.3.7) the restriction of the inner product in (5.3.10) to HtSF
−a coincides

with the inner product in (5.3.11). Therefore,

HtH−a =
(
HtH−a �tH−a HtSF

−a

)⊕tH−a HtSF
−a, (5.3.12)

see Corollary 5.1.13. In terms of the spaces HtH−a and HtSF
−a the sum decompo-

sition in (5.3.8) may be rewritten as

HtH−a = ranR(a)
1
2 + HtSF

−a. (5.3.13)

The connection between the decompositions in (5.3.12) and (5.3.13) is discussed
in the next proposition.

Proposition 5.3.7. Let S be a semibounded relation in H, let SF be its Friedrichs
extension, and let H be a semibounded self-adjoint extension of S with lower bound
m(H). Furthermore, let a < m(H) and let R(a) be the nonnegative operator in
(5.3.9). Then

HtH−a �tH−a HtSF
−a = ker (S∗ − a) ∩ HtH−a = ranR(a)

1
2 , (5.3.14)
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and, consequently, the Hilbert space HtH−a has the orthogonal decomposition

HtH−a =
(
ker (S∗ − a) ∩ HtH−a

)⊕tH−a HtSF
−a

= ranR(a)
1
2 ⊕tH−a HtSF

−a.
(5.3.15)

In particular, the sum decomposition in (5.3.8) is direct for every a < m(H).

Proof. First the identity

HtH−a �tH−a HtSF
−a = ker (S∗ − a) ∩ HtH−a (5.3.16)

in (5.3.14) will be shown. Recall from Lemma 5.1.17 and Theorem 5.1.12 that
HtS−a is a dense subspace of HtSF

−a, and hence it suffices to verify that

HtH−a �tH−a HtS−a = ker (S∗ − a) ∩ HtH−a. (5.3.17)

Assume first that g belongs to the left-hand side of (5.3.17). Then (f, g)tH−a = 0
for all f ∈ domS. Hence,

0 = (f, g)tH−a = tH [f, g]− a(f, g) = (f ′, g)− a(f, g) = (f ′ − af, g)

for all {f, f ′} ∈ S ⊂ H, where in the third equality the first representation theorem
was used. This implies g ∈ (ran (S − a))⊥ ∩ HtH−a = ker (S∗ − a) ∩ HtH−a.
Conversely, assume that g ∈ ker (S∗ − a) ∩ HtH−a. Then the same reasoning as
above shows that g belongs to the left-hand side of (5.3.17).

In order to prove the second equality in (5.3.14), one first shows that

ranR(a)
1
2 ⊂ ker (S∗ − a). (5.3.18)

To see this, let {f, f ′} ∈ S. Then {f, f ′} ∈ H∩SF and hence (H−a)−1(f ′−af) = f
and (SF − a)−1(f ′ − af) = f , which implies that for h ∈ H

(f ′ − af,R(a)h) =
(
(H − a)−1(f ′ − af)− (SF − a)−1(f ′ − af), h

)
= 0.

Therefore,
ranR(a) ⊂ (ran (S − a))⊥ = ker (S∗ − a)

and hence also ranR(a) ⊂ ker (S∗ − a). Moreover, since R(a) is a nonnegative
self-adjoint operator it follows from Corollary D.7 that

ranR(a) ⊂ ranR(a)
1
2 ⊂ ranR(a)

1
2 = ranR(a) ⊂ ker (S∗ − a), (5.3.19)

which shows (5.3.18). By (5.3.8), one has ranR(a)
1
2 ⊂ dom (H − a)

1
2 = HtH−a.

Together with (5.3.19) one concludes that ranR(a)
1
2 ⊂ ker (S∗−a)∩HtH−a. From

(5.3.16) it is clear that

ranR(a)
1
2 ⊂ HtH−a �tH−a HtS−a.
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Comparing (5.3.8) with (5.3.12), one then concludes that

ranR(a)
1
2 = HtH−a �tH−a HtS−a.

Together with (5.3.16) the identities in (5.3.14) follow. Furthermore, the above
reasoning shows that the sum decomposition in (5.3.8) is direct. �

The semibounded self-adjoint extensions H of S for which the subspace
ker (S∗ − a) ∩ HtH−a is not a proper subset of ker (S∗ − a) are of special interest.
In fact, they coincide with the semibounded self-adjoint extensions H for which
H and SF are transversal.

Theorem 5.3.8. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S. Then the following statements are equivalent:

(i) H and SF are transversal, i.e., S∗ = H +̂ SF;

(ii) ker (S∗ − a) ⊂ dom (H − a)
1
2 for some, and hence for all a < m(H);

(iii) dom (H − a)
1
2 = ker (S∗ − a) + dom (SF − a)

1
2 for some, and hence for all

a < m(H);

(iv) domS∗ ⊂ dom (H − a)
1
2 for some, and hence for all a ≤ m(H).

Proof. (i) ⇔ (ii) In general, the self-adjoint extensions H and SF are transversal
if and only if for some, and hence for all a < m(H)

ranR(a) = ker (S∗ − a),

where R(a) = (H − a)−1 − (SF − a)−1, which follows from Theorem 1.7.8. Since
R(a) is a nonnegative self-adjoint operator and since ker (S∗−a) is closed, the last
statement is equivalent to

ranR(a)
1
2 = ker (S∗ − a);

cf. Corollary D.7. It follows from Proposition 5.3.7 that this condition is the same
as

ker (S∗ − a) ∩ dom (H − a)
1
2 = ker (S∗ − a).

(ii) ⇒ (iii) This follows immediately from the direct sum decomposition

dom (H − a)
1
2 =

(
ker (S∗ − a) ∩ dom (H − a)

1
2

)
+ dom (SF − a)

1
2 ;

cf. (5.3.8) and Proposition 5.3.7.

(iii) ⇒ (ii) This implication is trivial.

(i) ⇒ (iv) The identity S∗ = SF +̂ H shows that

domS∗ = domSF + domH,

and note that domH and domSF are subsets of dom (H − a)
1
2 .

(iv) ⇒ (ii) This is clear. �
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The following result is a consequence of Theorem 5.3.8; it describes the be-
havior of any semibounded self-adjoint extension H ′ of S in the presence of a
semibounded self-adjoint extension H such that H and SF are transversal.

Corollary 5.3.9. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S such that H and SF are transversal. Then every semi-
bounded self-adjoint extension H ′ of S satisfies

dom (H ′ − a)
1
2 ⊂ dom (H − a)

1
2 , a < min {m(H),m(H ′)}, (5.3.20)

in which case there exists C > 0 such that

‖(Hop − a)
1
2ϕ‖ ≤ C‖((H ′)op − a)

1
2ϕ‖ (5.3.21)

for all ϕ ∈ dom (H ′ − a)
1
2 . Moreover, there is equality in (5.3.20) if and only if

H ′ and SF are transversal, in which case there exist c > 0 and C > 0 such that

c‖((H ′)op − a)
1
2ϕ‖ ≤ ‖(Hop − a)

1
2ϕ‖ ≤ C‖((H ′)op − a)

1
2ϕ‖ (5.3.22)

for all ϕ ∈ dom (H ′ − a)
1
2 = dom (H − a)

1
2 .

Proof. By Theorem 5.3.8, the semibounded self-adjoint extension H of S satisfies
all of the equivalent conditions (i)–(iv) in Theorem 5.3.8. Let H ′ be another semi-
bounded self-adjoint extension of S. Applying Proposition 5.3.7 to H ′ one sees
that for a < m(H ′)

dom (H ′ − a)
1
2 =

(
ker (S∗ − a) ∩ HtH′−a

)
+ dom (SF − a)

1
2 .

Choosing a < min {m(H),m(H ′)} it follows from Theorem 5.3.8 (iii) for H that
the inclusion (5.3.20) holds. The inequality (5.3.21) is a direct consequence of
Proposition 1.5.11.

Assume that there is equality in (5.3.20). Then Theorem 5.3.8 (iii) implies
that H ′ and SF are transversal. Conversely, if H ′ and SF are transversal, then
it follows from Theorem 5.3.8 (iii) that there is equality in (5.3.20). If there is
equality in (5.3.20), then (5.3.21) also holds for some c > 0 when H and H ′ are
interchanged. Thus, the inequalities in (5.3.22) hold. �

The extreme case of equality of H and SF is described in the following im-
mediate corollary of Proposition 5.3.7 and (5.3.8).

Corollary 5.3.10. Let S be a semibounded relation in H and let H be a semibounded
self-adjoint extension of S. Then H = SF if and only if

ker (S∗ − a) ∩ dom (H − a)
1
2 = {0}

for some, and hence for all a < m(H).

In the next corollary the form corresponding to a semibounded self-adjoint
extension H which is transversal to SF is specified.
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Corollary 5.3.11. Let S be a semibounded relation in H, let H be a semibounded
self-adjoint extension of S such that H and SF are transversal, and let tSF

and tH
be the corresponding closed semibounded forms in H. Then

dom tH = ker (S∗ − a)⊕tH−a dom tSF
, a < m(H), (5.3.23)

and the restriction of tH to Na(S
∗) = ker (S∗ − a) is a closed form in Na(S

∗)
which is bounded from below by m(H) and represented by a bounded self-adjoint
operator La ∈ B(Na(S

∗)). Furthermore, one has

tH [f, g]− a(f, g) =
(
(La − a)fa, ga

)
+ tSF

[fF, gF]− a(fF, gF) (5.3.24)

for all f = fa + fF, g = ga + gF ∈ dom tH , where fa, ga ∈ ker (S∗ − a) and
fF, gF ∈ dom tSF

.

Proof. The orthogonal decomposition (5.3.23) of dom tH follows from (5.3.15) in
Proposition 5.3.7 and Theorem 5.3.8 (iii). Since the restriction of the form tH
to Na(S

∗) is a closed form which is bounded from below by m(H), it follows
from Theorem 5.1.18 that there exists a semibounded self-adjoint relation La in
Na(S

∗) which represents this form. Moreover, it follows from Theorem 5.1.23 that

Na(S
∗) = dom (La − x)

1
2 , x ≤ m(H), and hence (La − x)

1
2 and La are bounded

self-adjoint operators defined on Na(S
∗).

For f, g ∈ dom tH decomposed, with respect to (5.3.23), in

f = fa + fF and g = ga + gF,

where fa, ga ∈ ker (S∗ − a) and fF, gF ∈ dom tSF
, one has (fa, gF)tH−a = 0 and

(fF, ga)tH−a = 0, and hence

tH [f, g]− a(f, g) = (f, g)tH−a = (fa, ga)tH−a + (fF, gF)tH−a

= tH [fa, ga]− a(fa, ga) + tSF
[fF, gF]− a(fF, gF).

Now (5.3.24) follows from tH [fa, ga] = (Lafa, ga). �

5.4 Semibounded self-adjoint extensions and
their lower bounds

Let S be a, not necessarily closed, semibounded relation in a Hilbert space H
with lower bound m(S). The Friedrichs extension SF is a self-adjoint extension
of S whose lower bound m(SF) is equal to the lower bound m(S) of S. If H
is a semibounded self-adjoint extension of S, then necessarily m(H) ≤ m(S).
In this section the so-called Krĕın type extensions SK,x of S will be introduced.
They can be viewed as generalizations of the Krĕın–von Neumann extension of a
nonnegative symmetric operator or relation. The Krĕın type extension SK,x can
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be used to describe all semibounded self-adjoint extensions H of S whose lower
bound satisfies m(H) ∈ [x,m(S)] when x ≤ m(S).

Let S be a semibounded relation in H with lower bound γ = m(S). It is clear
that x ≤ γ implies that S − x ≥ 0. Hence, for x ≤ γ the relation (S − x)−1 is
nonnegative and one can define the Friedrichs extension ((S−x)−1)F of (S−x)−1,
which is nonnegative; cf. Definition 5.3.2.

Lemma 5.4.1. Let S be a semibounded relation in H with lower bound γ. For x ≤ γ
the relation SK,x defined by

SK,x :=
(
((S − x)−1)F

)−1
+ x (5.4.1)

is a semibounded self-adjoint extension of S with lower bound m(SK,x) = x. More-
over, SK,x = (S)K,x for x ≤ γ and

S ⊂ S +̂ N̂x(S
∗) ⊂ S +̂ N̂x(S

∗) ⊂ SK,x, x ≤ γ, (5.4.2)

while, in particular,
S +̂ N̂x(S

∗) = SK,x, x < γ. (5.4.3)

Proof. Since for x ≤ γ the Friedrichs extension ((S − x)−1)F of the nonnegative
relation (S − x)−1 is nonnegative, it follows that(

((S − x)−1)F
)−1

is a nonnegative self-adjoint extension of S − x. Hence, SK,x defined by (5.4.1) is
a self-adjoint extension of S and, clearly,

m(SK,x) ≥ x, x ≤ γ. (5.4.4)

Since the closure of (S − x)−1 is given by (S − x)−1, it follows from Lemma 5.3.1,
with S replaced by (S − x)−1, that

((S − x)−1)F = ((S − x)−1)F,

which leads to SK,x = (S)K,x for x ≤ γ.

Let x ≤ γ and note that the first and second inclusion in (5.4.2) are clear.
It is also clear that S ⊂ S ⊂ SK,x; thus, to show the third inclusion in (5.4.2) it

suffices to check that N̂x(S
∗) ⊂ SK,x. Set T = (S−x)−1, so that T is nonnegative

and mulT ∗ = Nx(S
∗). By Lemma 5.3.1, {0} ×mulT ∗ ⊂ TF or, equivalently,

{0} ×Nx(S
∗) ⊂ ((S − x)−1)F or Nx(S

∗)× {0} ⊂ ((S − x)−1)F)
−1.

Thus, N̂x(S
∗) ⊂ SK,x which completes the argument.

For x < γ it follows from Proposition 1.4.6 and Lemma 1.2.2 that ran (S−x)

is closed. Hence, the relation S +̂ N̂x(S
∗) is self-adjoint, cf. Lemma 1.5.7, and thus

the equality (5.4.3) prevails.
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It remains to show that m(SK,x) = x. When x < γ one concludes this from
(5.4.3). When x = γ observe that S ⊂ SK,γ implies m(SK,γ) ≤ m(S) = γ. On the
other hand, from (5.4.4) it follows that m(SK,γ) ≥ γ. �

Definition 5.4.2. Let S be a semibounded relation in H with lower bound γ and let
x ≤ γ. The semibounded self-adjoint extensions SK,x in (5.4.1) are called Krĕın
type extensions of S. In the case γ ≥ 0 the nonnegative self-adjoint extension SK,0

is called the Krĕın–von Neumann extension of S.

The definition of the Krĕın type extensions SK,x in (5.4.1) incorporates the
lower bound m(S) = γ of S. Note that m(S − x) = γ − x for any x ∈ R, so that
(S − x)K,γ−x is well defined, and

(S − x)K,γ−x =
((
((S − x)− (γ − x))−1

)
F

)−1
+ γ − x, x ∈ R,

which leads to
(S − x)K,γ−x = SK,γ − x, x ∈ R. (5.4.5)

The identity (5.4.5) is the analog for the Krĕın type extension SK,γ of the shift
invariance property (5.3.4) of SF. There are some more useful identities involving
Krĕın type extensions of S. First note the simple equality(

S +̂ N̂x(S
∗)
)−1

= S−1 +̂ N̂1/x(S
−∗), x ∈ R \ {0}. (5.4.6)

If S ≥ 0 or, equivalently, S−1 ≥ 0, then it follows from (5.4.6) and Lemma 5.4.1
that

(SK,x)
−1 = (S−1)K,1/x, x < 0, (5.4.7)

since 0 ≤ min {m(S),m(S−1)}. In particular, one sees from (5.4.7) that(
(S − γ)K,x

)−1
=

(
(S − γ)−1

)
K,1/x

, x < 0. (5.4.8)

Returning to the general case where S has lower bound γ, note the simple equality(
S +̂ N̂a+x(S

∗)
)− a = (S − a) +̂ N̂x((S − a)∗), a, x ∈ R.

For a+ x < γ this implies

SK,a+x − a = (S − a)K,x, (5.4.9)

and taking a = γ in (5.4.9) gives an analog of (5.4.5):

SK,γ+x − γ = (S − γ)K,x, x < 0. (5.4.10)

By Lemma 5.4.1, the Krĕın type extensions SK,x , x ≤ γ, are semibounded
self-adjoint extensions of S. As restrictions of S∗ the Krĕın type extensions can be
characterized in a similar way as the Friedrichs extension SF; cf. Theorem 5.3.3.
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Theorem 5.4.3. Let S be a semibounded relation in H with lower bound γ. Then
for each x ≤ γ the Krĕın type extension SK,x of S has the representation

SK,x =
{{f, f ′} ∈ S∗ : f ′ − xf ∈ dom t ((S−x)−1)F

}
(5.4.11)

with ker (SK,x − x) = ker (S∗ − x). Furthermore, if H is a self-adjoint extension
of S, which is not necessarily semibounded, then

ran (H − x) ⊂ dom t ((S−x)−1)K ⇒ H = SK,x.

Proof. Let x ≤ γ. Then by definition one has (SK,x − x)−1 = ((S − x)−1)F and
{f, f ′} ∈ SK,x if and only if {f ′ − xf, f} ∈ (SK,x − x)−1. Similarly, {f, f ′} ∈ S∗

if and only if {f ′ − xf, f} ∈ (S∗ − x)−1. Hence, the description (5.4.11) follows
from the representation of ((S − x)−1)F in Theorem 5.3.3 (with S now replaced
by (S − x)−1). Likewise,

ker (SK,x − x) = mul ((S − x)−1)F = mul (S∗ − x)−1 = ker (S∗ − x).

The last item also follows from Theorem 5.3.3. �

There is also an approximation of SK,x by elements in S as in Corollary 5.3.4;
in particular, this gives a useful description of mul SK,x.

Corollary 5.4.4. Let S be a semibounded relation in H with lower bound γ. Then
SK,x, x ≤ γ, is the set of all elements {f, f ′} ∈ S∗ for which there exists a sequence
({fn, f ′

n}) in S such that

f ′
n − xfn → f ′ − xf and (fn, f

′
n − xfn) → (f, f ′ − xf).

In particular, mulSK,x is the set of all elements f ′ ∈ mulS∗ for which there exists
a sequence ({fn, f ′

n}) in S such that

f ′
n − xfn → f ′ and (fn, f

′
n − xfn) → 0.

As in the case of the Friedrichs extension, the Krĕın type extension SK,γ

can sometimes be explicitly given in terms of S and an eigenspace of S∗; cf.
Lemma 1.5.7. The following result is the analog of Corollary 5.3.5. The special
case where ran (S − γ) is closed is particularly useful.

Corollary 5.4.5. Let S be a semibounded relation with lower bound γ. Then

SK,γ = S +̂ N̂γ(S
∗) (5.4.12)

if and only if

ran (S − γ) = ran (S − γ) ∩ ran (S∗ − γ).

In particular, if ran (S − γ) is closed, then SK,γ has the form (5.4.12).
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The semibounded self-adjoint extensions SK,x with x ≤ γ become extremal
extensions of S when a lower bound x ≤ γ for semibounded self-adjoint extensions
of S is prescribed.

Theorem 5.4.6. Let S be a semibounded relation in H with lower bound γ. Let
x ≤ γ be fixed and let H be a semibounded self-adjoint relation in H. Then the
following equivalence holds:

S ⊂ H and x ≤ m(H) ⇔ SK,x ≤ H ≤ SF. (5.4.13)

In particular, the class of semibounded self-adjoint extensions of S preserving the
lower bound of S is characterized by

S ⊂ H and γ = m(H) ⇔ SK,γ ≤ H ≤ SF. (5.4.14)

In fact, SK,x ≤ H ≤ SF, x ≤ γ, implies that S ⊂ (SF ∩ SK,x) ⊂ H.

Proof. (⇒) Assume that H is a semibounded self-adjoint extension of S with lower
bound m(H) ≥ x. Then clearly S−x ⊂ H−x and here both sides are nonnegative
relations. But then also (S−x)−1 ⊂ (H −x)−1, where both sides are nonnegative
relations. Applying Proposition 5.3.6 to the relation (S − x)−1 one obtains

(H − x)−1 ≤ ((S − x)−1)F.

Since these relations are nonnegative, the antitonicity property of the inverse in
Corollary 5.2.8 gives the inequality(

((S − x)−1)F
)−1 ≤ H − x

or, equivalently, SK,x ≤ H. The inequality H ≤ SF holds by Proposition 5.3.6.

(⇐) Let H be a semibounded self-adjoint relation such that SK,x ≤ H ≤ SF.
Then m(SK,x) ≤ m(H) ≤ m(SF) by Lemma 5.2.5 (ii) and, since m(SK,x) = x and
m(SF) = γ, one concludes that H is semibounded with x ≤ m(H) ≤ γ.

It remains to show that H is an extension of S. With a < x the assumption
on H is equivalent to(

(SF − a)−1h, h
) ≤ (

(H − a)−1h, h
) ≤ (

(SK,x − a)−1h, h
)
, h ∈ H; (5.4.15)

cf. Proposition 5.2.7. For R(a) = (H − a)−1 − (SF − a)−1 ∈ B(H) it follows from
(5.4.15) that

0 ≤ (R(a)h, h) ≤ (
(SK,x − a)−1h, h

)− (
(SF − a)−1h, h

)
, h ∈ H. (5.4.16)

Now, let {f, f ′} ∈ S and define h = f ′ − af . Then h ∈ ran (S − a) and
{h, f} ∈ (S − a)−1, and hence

{h, f} ∈ (SF − a)−1 ∩ (SK,x − a)−1,

so that (SF − a)−1h = (SK,x − a)−1h. It follows from (5.4.16) that (R(a)h, h) = 0,
and since R(a) ≥ 0, one concludes that R(a)h = 0 for all h ∈ ran (S − a).
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In other words,

(H − a)−1(f ′ − af) = (SF − a)−1(f ′ − af) = f, {f, f ′} ∈ S,

and it follows that {f, f ′} ∈ H. This proves the claim S ⊂ H and completes the
proof of (5.4.13). The inclusion SF ∩ SK,x ⊂ H follows similarly. �

If S is nonnegative, then Theorem 5.4.6 shows that the Krĕın–von Neumann
extension

SK,0 =
(
(S−1)F

)−1
(5.4.17)

in Definition 5.4.2 is the smallest nonnegative self-adjoint extension.

Corollary 5.4.7. Let S be a nonnegative relation in H and let H be a semibounded
self-adjoint relation in H. Then the following equivalence holds:

S ⊂ H and m(H) ≥ 0 ⇔ SK,0 ≤ H ≤ SF.

In fact, SK,0 ≤ H ≤ SF, implies that S ⊂ (SF ∩ SK,0) ⊂ H.

For completeness it is observed that the inequalities SK,x ≤ H ≤ SF in
(5.4.13) can also be expressed by inequalities for the corresponding forms:

tSK,x ≤ tH ≤ tSF ,

thanks to Theorem 5.2.4. Recall from (5.3.7) that the inequality tH ≤ tSF is in
fact equivalent to the inclusion tSF ⊂ tH .

It is clear from Lemma 5.3.1 or Theorem 5.3.3 that the Friedrichs extension
SF is an operator if and only if S is densely defined, in which case all self-adjoint ex-
tensions of S are operators. If S is not densely defined, then S may not be closable
as an operator, in which case all self-adjoint extensions of S are multivalued. The
following result shows when semibounded self-adjoint operator extensions exist.

Corollary 5.4.8. Let S be a semibounded operator in H with lower bound γ. Then
the following statements are equivalent:

(i) S has a semibounded self-adjoint operator extension;

(ii) for some x ≤ γ the self-adjoint extension SK,x is an operator;

(iii) there exists x ≤ γ such that for any sequence ({fn, f ′
n}) in S with the prop-

erties f ′
n − xfn → f ′ and (fn, f

′
n − xfn) → 0 one has f ′ = 0.

If any of these statements hold, then S is a closable operator. Furthermore, the
following statements are equivalent:

(i′) S has a bounded self-adjoint operator extension;

(ii′) for some x ≤ γ the self-adjoint extension SK,x belongs to B(H);

(iii′) there exist x ≤ γ and M ≥ 0 such that ‖f ′ − xf‖2 ≤ M(f, f ′ − xf) for all
{f, f ′} ∈ S.

If any of these statements hold, then S is a bounded operator.
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Proof. (i) ⇒ (ii) Let H be a semibounded self-adjoint operator extension of S.
Then H is densely defined and mulH = {0}. If x = m(H), then Theorem 5.4.6
shows that SK,x ≤ H. Hence, mulSK,x ⊂ mulH = {0} by Lemma 5.2.5 (i), and
therefore SK,x is an operator extension of S.

(ii) ⇒ (i) This is clear.

(ii) ⇔ (iii) This follows from Corollary 5.4.4.

The inclusion S ⊂ H for a self-adjoint operator H shows that S is a closable
operator; this holds when one of the equivalent conditions (i)–(iii) is satisfied.

(i′) ⇒ (iii′) Let H be a bounded self-adjoint operator which extends S and let
m(H) = x. Then H ∈ B(H) and an application of the Cauchy–Schwarz inequality
for the inner product ((H − x)·, ·) yields

‖(H − x)f‖2 ≤ ‖H − x‖ (f, (H − x)f), f ∈ H.

In particular, for f ∈ domS one obtains (iii′) with f ′ = Sf and M = ‖H − x‖.
(iii′) ⇒ (ii′) Assume that (iii′) holds for some x. To show (ii′) let {f, f ′} ∈ SK,x.
Then according to Corollary 5.4.4 there exists a sequence ({fn, f ′

n}) in S such
that f ′

n − xfn → f ′ − xf and (fn, f
′
n − xfn) → (f, f ′ − xf). By assumption

‖f ′
n − xfn‖2 ≤ M(fn, f

′
n − xfn) and taking limits gives

‖f ′ − xf‖2 ≤ M(f, f ′ − xf) ≤ M‖f‖‖f ′ − xf‖.

Thus, if {f, f ′} ∈ SK,x, then ‖f ′ − xf‖ ≤ M‖f‖, which gives mulSK,x = {0}.
In addition, one now sees that SK,x − x is a bounded operator, and since SK,x is
self-adjoint, it follows that SK,x ∈ B(H).

(ii′) ⇒ (i′) This is clear.

The last statement follows from any of the statements (i′), (ii′), and (iii′). �

Let S be a semibounded relation in H with lower bound m(S) = γ. By
means of Theorem 5.4.6 it will be shown that the mapping x �→ SK,x, x < γ, is
nondecreasing.

Corollary 5.4.9. Let S be a semibounded relation in H with lower bound γ. Let
x ≤ y < γ, then

SK,x ≤ SK,y ≤ SK,γ ≤ SF.

Proof. By construction, SK,x and SK,y are semibounded self-adjoint extensions of
S with lower bounds m(SK,x) = x and m(SK,y) = y. Hence, m(SK,x) ≤ m(SK,y)
and an application of (5.4.13) in Theorem 5.4.6 gives SK,x ≤ SK,y. Similarly,
m(SK,y) ≤ m(SK,γ) = γ leads to SK,y ≤ SK,γ . The inequality SK,γ ≤ SF also
follows from Theorem 5.4.6. �
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The Friedrichs extension SF and the Krĕın type extensions SK,x can be ap-
proximated in the strong resolvent sense by the semibounded self-adjoint relations
SK,t with t ∈ (−∞, γ); cf. Theorem 5.2.11.

Theorem 5.4.10. Let S be a semibounded relation in H with lower bound γ. Then
the Friedrichs extension SF is given by the strong resolvent limit

(SF − λ)−1h = lim
t ↓−∞

(SK,t − λ)−1h, h ∈ H, (5.4.18)

where λ ∈ C \ [γ,∞), and for each x ≤ γ the Krĕın type extension SK,x is given
by the strong resolvent limit

(SK,x − λ)−1h = lim
t ↑ x

(SK,t − λ)−1h, h ∈ H, (5.4.19)

where λ ∈ C \ [x,∞).

Proof. First the result in (5.4.19) will be shown. Let x ≤ γ, let ε > 0 be arbitrary,
and note that by Corollary 5.4.9

SK,x−ε ≤ SK,t ≤ SK,x, x− ε ≤ t < x.

In particular, for t ∈ [x−ε, x) the relations SK,t are bounded from below by x−ε.
By the monotonicity of SK,t and Theorem 5.2.11, the strong resolvent limit of SK,t

as t ↑ x exists for λ ∈ C \ [x− ε,∞) and it is a semibounded self-adjoint relation
S′ with x− ε ≤ t ≤ SK,t ≤ S′. It will now be shown that

S′ = SK,x. (5.4.20)

In fact, since SK,t ≤ SK,x, there is a common upper bound and hence one has
S′ ≤ SK,x; see Corollary 5.2.12 (i). As S ⊂ SK,t for all t < x, this implies that
S ⊂ S′ by Corollary 5.2.12 (ii). Thus, S′ is a semibounded self-adjoint extension
of S. Since m(SK,t) ≤ m(S′) for all t < x, it follows that x ≤ m(S′) and, hence
SK,x ≤ S′ by Theorem 5.4.6. Combining S′ ≤ SK,x and SK,x ≤ S′, it follows from
Lemma 5.2.5 (iv) that (5.4.20) holds. This establishes (5.4.19) for λ ∈ C\[x−ε,∞).
Since ε > 0 is arbitrary, one obtains (5.4.19).

Next, (5.4.18) will be shown. Apply the previous result (5.4.19) to the Krĕın–
von Neumann extension ((S − γ)−1)K,0 of the nonnegative relation (S − γ)−1:(

((S − γ)−1)K,0 − λ
)−1

h = lim
t ↑ 0

(
((S − γ)−1)K,t − λ

)−1
h, h ∈ H, (5.4.21)

where λ ∈ C \ [0,∞). Then it follows from (5.4.1) (with x = 0 and S replaced
by (S − γ)−1) and the translation invariance property (5.3.4) of the Friedrichs
extension that

((S − γ)−1)K,0 = ((S − γ)F)
−1 = (SF − γ)−1. (5.4.22)
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Likewise, using (5.4.8) and (5.4.10) one obtains for t < 0 that

((S − γ)−1)K,t = ((S − γ)K,1/t)
−1 = (SK,γ+1/t − γ)−1. (5.4.23)

Substitute (5.4.22) and (5.4.23) into (5.4.21) and replace λ by 1/λ:(
(SF − γ)−1 − 1

λ

)−1

h = lim
t ↑ 0

(
(SK,γ+1/t − γ)−1 − 1

λ

)−1

h, h ∈ H. (5.4.24)

Now recall that for any relation H one has the identity

(H−1 − 1/λ)−1 = −λ− λ2(H − λ)−1, λ 	= 0,

see Corollary 1.1.12. Therefore, (5.4.24) yields(
SF − γ − λ

)−1
h = lim

t ↑ 0

(
SK,γ+1/t − γ − λ

)−1
,

where λ ∈ C \ [0,∞), which is equivalent to (5.4.18). �

The next lemma and Proposition 5.4.12 below show that the convergence
in (5.4.18) in Theorem 5.4.10 is uniform if the limit is a compact operator. First
the case where the Krĕın–von Neumann extension SK,0 is compact is treated.
There is in general no analog of Lemma 5.4.11 for the other Krĕın type extensions
SK,x, x 	= 0, since the eigenspace ker (SK,x − x) = ker (S∗ − x) for the eigenvalue
x ∈ σp(SK,x) is infinite-dimensional whenever the defect numbers of S are infinite.
Hence, SK,x cannot be compact for x 	= 0.

Lemma 5.4.11. Let S be a bounded nonnegative operator in H and assume that the
Krĕın–von Neumann extension SK,0 is a compact operator. Then SK,t ∈ B(H) for
t < 0 and

lim
t ↑ 0

‖SK,t − SK,0‖ = 0.

Proof. Since SK,0 is compact one has, in particular, SK,0 ∈ B(H) and hence
SK,t ∈ B(H) for t < 0; cf. Corollary 5.4.9 and Definition 5.2.3. By Theorem 5.4.10,
the resolvents of SK,t converge in the strong sense to the resolvent of SK,0 and
since all operators belong to B(H) it follows that SK,t converges strongly to SK,0.
In fact, strong resolvent convergence is equivalent to strong graph convergence by
Corollary 1.9.6, and for operators in B(H) this implies strong convergence. Now it
will be shown that this convergence is uniform. Since SK,0 is compact by assump-
tion, for ε > 0 one can choose an orthogonal projection Pε such that ‖SK,0Pε‖ < ε
and I −Pε is a finite-rank operator. Then it follows that the finite-rank operators

(SK,t − SK,0)(I − Pε) and (I − Pε)(SK,t − SK,0)Pε (5.4.25)

tend to zero uniformly as t ↑ 0. For t < 0 one has 0 ≤ SK,t − t ≤ SK,0 − t by
Corollary 5.4.9, and hence

0 ≤ Pε(SK,t − t)Pε ≤ Pε(SK,0 − t)Pε.
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This implies

‖Pε(SK,t − SK,0)Pε‖ ≤ ‖Pε(SK,t − t)Pε‖+ ‖Pε(t− SK,0)Pε‖
≤ 2‖Pε(SK,0 − t)Pε‖
≤ 2ε+ 2|t|,

and now the assertion follows together with (5.4.25) and the estimate

‖(SK,t − SK,0)‖ ≤ ‖(SK,t − SK,0)(I − Pε)‖
+ ‖Pε(SK,t − SK,0)Pε‖+ ‖(I − Pε)(SK,t − SK,0)Pε‖.

This completes the proof. �

The counterpart of Lemma 5.4.11 for the case where the Friedrichs extension
SF has a compact resolvent is provided next.

Proposition 5.4.12. Let S be a semibounded relation in H with lower bound γ and
assume that the resolvent (SF−λ)−1 of the Friedrichs extension SF is compact for
some, and hence for all λ ∈ C \ [γ,∞). Then

lim
t ↓−∞

‖(SK,t − λ)−1 − (SF − λ)−1‖ = 0.

Proof. It follows from the resolvent identity (see Theorem 1.2.6) that the resolvent
of SF is compact for all λ ∈ C \ [γ,∞) if it is compact for some λ ∈ C \ [γ,∞).
Now let x0 < γ and note that (S − x0)

−1 is a bounded nonnegative operator. By
(5.4.17) and (5.3.4) one has(

(S − x0)
−1

)
K,0

=
(
(S − x0)F

)−1
= (SF − x0)

−1,

which is a compact operator by assumption. From Lemma 5.4.11 it follows that
((S − x0)

−1)K,x converge uniformly to ((S − x0)
−1)K,0 when x ↑ 0. This implies

the assertion for λ = x0, since

lim
x ↑ 0

(
(S − x0)

−1
)
K,x

= lim
t ↓−∞

(
(S − x0)

−1
)
K,1/t

= lim
t ↓−∞

(
(S − x0)K,t

)−1

= lim
t ↓−∞

(
SK,t+x0 − x0

)−1

= lim
t ↓−∞

(
SK,t − x0

)−1
,

where (5.4.7) was used in the second equality and (5.4.9) was used in the third
equality. The general case λ ∈ C \ [γ,∞) follows with Lemma 1.11.4. �
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Let S be a closed semibounded relation in H with lower bound γ and let
x < γ. Then x ∈ ρ(SF) is a point of regular type of S and one has that

S∗ = SF +̂ N̂x(S
∗) and SK,x = S +̂ N̂x(S

∗);

cf. Theorem 1.7.1 and (5.4.3). Therefore, it is clear that

SK,x +̂ SF = S∗, x < γ; (5.4.26)

in other words, the extensions SK,x and SF are transversal for x < γ. For x = γ
the situation is different. Now it is possible that the extensions SK,γ and SF are
transversal, but it is also possible that they are not transversal because, for in-
stance, the extensions SK,γ and SF may even coincide. First the case of transver-
sality is discussed.

Corollary 5.4.13. Let S be a semibounded relation in H with lower bound γ. Then
the following statements hold:

(i) SK,γ and SF are transversal if and only if domS∗ ⊂ dom (SK,γ − γ)
1
2 ;

(ii) SK,γ and SF are transversal and S is bounded if and only if SK,γ ∈ B(H).

Proof. (i) This statement follows from Theorem 5.3.8.

(ii) Assume that SF and SK,γ are transversal and that S is a bounded operator.
Then part (i) shows that

domS∗ ⊂ dom (SK,γ − γ)
1
2 . (5.4.27)

Since S∗∗ is a bounded closed operator, domS∗∗ is closed, and hence so is domS∗;
see Theorem 1.3.5. Moreover, (domS∗)⊥ = mulS∗∗ = {0} implies that domS∗ is
dense in H, so that domS∗ = H. Then it follows from (5.4.27) that

dom (SK,γ − γ)
1
2 = H.

Therefore, domSK,γ = H and hence SK,γ ∈ B(H).

Conversely, assume that SK,γ ∈ B(H). Then also S is bounded. Moreover,

domS∗ ⊂ H = dom (SK,γ − γ)
1
2 , which together with (i) shows that SF and SK,γ

are transversal. �

The extreme case of equality of SK,γ and SF is described in the following
corollary.

Corollary 5.4.14. Let S be a semibounded relation in H with lower bound γ. Then
the following statements hold:

(i) SF = SK,γ if and only if ker (S∗ − a)∩ dom (SK,γ − a)
1
2 = {0} for some, and

hence for all a < γ;

(ii) SF = SK,γ and SK,γ ∈ B(H) if and only if S ∈ B(H).
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Proof. (i) This statement follows from Corollary 5.3.10.

(ii) Assume that SF = SK,γ and SK,γ ∈ B(H). The assumption SK,γ ∈ B(H) and
Corollary 5.4.13 (ii) imply that SF and SK,γ are transversal and S is bounded.
Furthermore, SF = SK,γ implies that S∗ = SF +̂ SK,γ = SK,γ , so that S = SK,γ

is a self-adjoint operator in B(H).

Conversely, if S ∈ B(H), then S is the only self-adjoint extension of S and
hence SF = SK,γ = S∗∗ ∈ B(H). �

In the next corollary, which is a special version of Corollary 5.3.11, the form
tSK,x

for x < γ corresponding to the Krĕın type extensions SK,x is expressed in
terms of the Friedrichs form tSF .

Corollary 5.4.15. Let S be a semibounded relation in H with lower bound γ, let
x < γ, and let tSK,x

be the form corresponding to SK,x. Then

dom tSK,x = ker (S∗ − a)⊕tSK,x
−a dom tSF , a < x, (5.4.28)

and the restriction of tSK,x to Na(S
∗) = ker (S∗−a) is represented by the bounded

self-adjoint operator

La = PNa(S∗)
(
x+ (x− a)2(SF − x)−1

)
ιNa(S∗) ∈ B(Na(S

∗)), (5.4.29)

where ιNa(S∗) is the canonical embedding of Na(S
∗) into H and PNa(S∗) is the

orthogonal projection onto Na(S
∗). Furthermore,

tSK,x [f, g]− a(f, g) = (x− a)
((
I + (x− a)(SF − x)−1

)
fa, ga

)
+ tSF [fF, gF]− a(fF, gF)

(5.4.30)

holds for all f = fa + fF, g = ga + gF ∈ dom tSK,x , where fa, ga ∈ ker (S∗ − a) and
fF, gF ∈ dom tSF

.

Proof. The decomposition (5.4.28) is clear from Corollary 5.3.11, since SK,x and
SF are transversal for x < γ. Next it will be shown that the representing oper-
ator for the restriction of tSK,x to Na(S

∗) is given by (5.4.29); then (5.3.24) in
Corollary 5.3.11 also leads to (5.4.30).

In order to verify (5.4.29) consider fa, ga ∈ Na(S
∗) and let

fx =
(
I + (x− a)(SF − x)−1

)
fa.

Then fx ∈ Nx(S
∗) and fa = (I + (a − x)(SF − a)−1)fx by Lemma 1.4.10.

Moreover, since SK,x is representing the form tSK,x and fx ∈ domSK,x one has
tSK,x

[fx, ga] = (xfx, ga). Using (SF − a)−1fx ∈ dom tSF
and ga ∈ Na(S

∗) the
orthogonal decomposition (5.4.28) yields ((SF − a)−1fx, ga)tSK,x

−a = 0.
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Now one computes

tSK,x [fa, ga] = tSK,x [fx, ga] + (a− x)tSK,x

[
(SF − a)−1fx, ga]

= (xfx, ga) + (a− x)a
(
(SF − a)−1fx, ga

)
=

(
xfx + a(fa − fx), ga

)
=

(
(x− a)

(
I + (x− a)(SF − x)−1

)
fa + afa, ga

)
=

((
x+ (x− a)2(SF − x)−1

)
fa, ga

)
,

which implies (5.4.29). �

Finally, the decomposition (5.4.28) in the previous corollary is used to show
a similar direct sum decomposition for a = x.

Corollary 5.4.16. Let S be a semibounded relation in H with lower bound γ, let
x < γ, and let tSK,x be the form corresponding to SK,x. Then

dom tSK,x
= ker (S∗ − x) + dom tSF

(5.4.31)

is a direct sum decomposition.

Proof. Let a < x < γ. Recall that the decomposition (5.4.28) holds since SK,x and
SF are transversal.

It is clear that the right-hand side of (5.4.31) is contained in the left-hand
side. Observe for this that

dom tSF ⊂ dom tSK,x and ker (S∗ − x) ⊂ domSK,x ⊂ dom tSK,x .

To show that the left-hand side of (5.4.31) is contained in the right-hand side, let
f ∈ dom tSK,x . According to (5.4.28) one has f = fa + fF, with fa ∈ ker (S∗ − a)
and fF ∈ dom tSF . Define

fx = (I + (x− a)(SF − x)−1)fa.

Then

fx ∈ ker (S∗ − x) and f = fx + (fa − fx + fF),

where the last term is in dom tSF since fa−fx ∈ domSF. Hence, the left-hand side
of (5.4.31) belongs to the right-hand side. Thus, the sum decomposition (5.4.31)
has been shown.

Finally, it will be shown that the sum decomposition (5.4.31) is direct. For
this assume that fx ∈ ker (S∗ − x) is nontrivial and belongs to dom tSF . Then
{fx, xfx} ∈ S∗ implies that {fx, xfx} ∈ SF; cf. Theorem 5.3.3. Since x < γ, this
is a contradiction. �
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5.5 Boundary triplets for semibounded relations

In this section semibounded self-adjoint extensions of semibounded symmetric re-
lations are studied in the context of boundary triplets and their Weyl functions.
The initial observations are general results about a closed symmetric relation S
with a boundary triplet {G,Γ0,Γ1}, where A0 = ker Γ0 is semibounded. In par-
ticular, the Friedrichs and the Krĕın type extensions will be identified. In the
remaining part of the section it will be assumed that S is a semibounded relation
with a boundary triplet {G,Γ0,Γ1}, where A0 = SF, and various specific prop-
erties are derived. The case where the self-adjoint extension A1 = ker Γ1 is also
semibounded is of specific interest. As a preparation for the main results in the
following section it will be explained how the corresponding semibounded form is
the first stepping stone to the notion of boundary pair.

Let S be a closed symmetric relation in a Hilbert space H and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Assume that A0 = ker Γ0 is semibounded with lower
bound γ0 = m(A0). Then clearly S is semibounded and γ0 ≤ m(S) = γ. Therefore,
one may speak of the Friedrichs extension SF so that γ0 ≤ m(SF) = γ and the
Krĕın type extensions SK,x of S with x ≤ γ. The corresponding Weyl function M
is holomorphic on ρ(A0) and, in particular, on C \ [γ0,∞). Moreover, one has

M(x) = Γ(N̂x(S
∗)) = Γ(S +̂ N̂x(S

∗)) = Γ(SK,x), x < γ0; (5.5.1)

cf. Definition 2.3.4 and (5.4.3). By Corollary 2.3.8, the mapping x �→ M(x) from
(−∞, γ0) to B(G) is nondecreasing. In particular, by Corollary 5.2.14 the limit
M(−∞) exists in the strong resolvent sense,(

M(−∞)− λ
)−1

= lim
x ↓−∞

(M(x)− λ)−1, (5.5.2)

and the limit M(γ0) exists in the strong resolvent sense,(
M(γ0)− λ

)−1
= lim

x ↑ γ0

(M(x)− λ)−1, (5.5.3)

where λ ∈ C \ [γ0,∞). Then M(−∞) and M(γ0) are self-adjoint relations in G;
cf. Theorem 5.2.11 and Corollary 5.2.14. In the following theorem the Friedrichs
extension SF and the Krĕın type extension SK,x with x ≤ γ0 will be characterized
by means of the limits in (5.5.2) and (5.5.3).

Theorem 5.5.1. Let S be a closed semibounded relation in H with lower bound γ.
Let {G,Γ0,Γ1} be a boundary triplet for S∗ and let M be the corresponding Weyl
function. Assume that the self-adjoint extension A0 = ker Γ0 is semibounded with
γ0 = m(A0) ≤ m(SF) = γ. Then the Friedrichs extension SF of S is given by

SF =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ M(−∞)

}
(5.5.4)

and the Krĕın type extension SK,x of S with x ≤ γ0 is given by

SK,x =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ M(x)

}
. (5.5.5)
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Proof. According to Theorem 5.4.10, the Friedrichs extension SF of S is given by
the strong resolvent limit

(SF − λ)−1h = lim
t ↓−∞

(SK,t − λ)−1h, h ∈ H, (5.5.6)

and for each x ≤ γ0 the Krĕın type extension SK,x is given by the strong resolvent
limit

(SK,x − λ)−1h = lim
t ↑ x

(SK,t − λ)−1h, h ∈ H, (5.5.7)

where λ ∈ C \ [x,∞). The idea behind the proof of the theorem is to connect the
limit formulas in (5.5.2) and (5.5.3) with the limit formulas in (5.5.6) and (5.5.7).
This in fact will be done by means of the Krĕın formula. For this purpose observe
that for t < γ0 and λ ∈ C \ R the resolvent formula in Theorem 2.6.1 for SK,t

reads

(SK,t − λ)−1 = (A0 − λ)−1 + γ(λ)
(
M(t)−M(λ)

)−1
γ(λ)∗, (5.5.8)

due to (5.5.1). Here (M(t)−M(λ))−1 ∈ B(G) by Theorem 2.6.1 and Theorem 2.6.2.

First consider the Krĕın type extension SK,x of S. If x < γ0, then the formula
(5.5.5) is a direct consequence of (5.5.1). To treat the case x = γ0 let ΘK be the
self-adjoint relation in G which corresponds to SK,γ0 , that is,

SK,γ0 =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ ΘK

}
. (5.5.9)

Then again by the resolvent formula in Theorem 2.6.1 one has

(SK,γ0
− λ)−1 = (A0 − λ)−1 + γ(λ)

(
ΘK −M(λ)

)−1
γ(λ)∗ (5.5.10)

for λ ∈ C \ R. Here (ΘK−M(λ))−1 ∈ B(G) by Theorem 2.6.1 and Theorem 2.6.2.
Subtracting (5.5.10) from (5.5.8) leads to

(SK,t − λ)−1 − (SK,γ0
− λ)−1

= γ(λ)
[(
M(t)−M(λ)

)−1 − (
ΘK −M(λ)

)−1]
γ(λ)∗

(5.5.11)

with t < γ0. Now take the strong limit for t ↑ γ0 and apply (5.5.7). Then for each
h ∈ H

(SK,t − λ)−1h → (SK,γ0 − λ)−1h as t ↑ γ0,

which, via (5.5.11), leads to

γ(λ)
[(
M(t)−M(λ)

)−1 − (
ΘK −M(λ)

)−1]
γ(λ)∗h → 0 as t ↑ γ0.

Since γ(λ) maps G isomorphically onto ker (S∗−λ) and γ(λ)∗ : H → G is surjective,
see Proposition 2.3.2, it follows that for each ϕ ∈ G(

M(t)−M(λ)
)−1

ϕ → (
ΘK −M(λ)

)−1
ϕ as t ↑ γ0. (5.5.12)
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Next the parameter ΘK will be identified with M(γ0). For this purpose, observe
that for ϕ ∈ G{

(M(t)−M(λ))−1ϕ,ϕ+M(λ)(M(t)−M(λ))−1ϕ
} ∈ M(t). (5.5.13)

As t ↑ γ0, the components on the left-hand side of (5.5.13) converge due to (5.5.12),
while the bounded operators M(t) converge in the strong resolvent sense, and
hence in the graph sense (see Corollary 1.9.6) to the self-adjoint relation M(γ0).
Hence, (5.5.13) implies{

(ΘK −M(λ))−1ϕ,ϕ+M(λ)(ΘK −M(λ))−1ϕ
} ∈ M(γ0) (5.5.14)

for all ϕ ∈ G, and thus (ΘK−M(λ))−1 ⊂ (M(γ0)−M(λ))−1. Since M(λ) ∈ B(G),
it follows that ΘK ⊂ M(γ0), or, since both relations are self-adjoint, ΘK = M(γ0).
Now (5.5.5) for x = γ0 follows from (5.5.9).

Next consider the Friedrichs extension SF of S. Let ΘF be the self-adjoint
relation in G which corresponds to SF, that is,

SF =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ ΘF

}
.

Then again by the resolvent formula in Theorem 2.6.1 one has

(SF − λ)−1 = (A0 − λ)−1 + γ(λ)
(
ΘF −M(λ)

)−1
γ(λ)∗ (5.5.15)

for λ ∈ C \ R. As above, (ΘF−M(λ))−1 ∈ B(G). Subtracting (5.5.15) from (5.5.8)
and using the same reasoning as above involving Theorem 5.4.10 yields(

M(t)−M(λ)
)−1

ϕ → (
ΘF −M(λ)

)−1
ϕ as t ↓ −∞.

From the fact that M(−∞) is the strong resolvent limit, and hence the strong
graph limit of M(t) when t ↓ −∞, one concludes ΘF = M(−∞) in the same way
as in (5.5.13)–(5.5.14). This shows (5.5.4). �

The statements in the following corollary are consequences of Theorem 5.5.1
and Proposition 2.1.8.

Corollary 5.5.2. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗, and let M be the corresponding Weyl function. Assume that the
self-adjoint extension A0 = ker Γ0 is semibounded with lower bound γ0. Then the
following statements hold:

(i) A0 = SF if and only if M(−∞) = {0} × G;

(ii) A0 ∩ SF = S if and only if M(−∞) is a closed operator;

(iii) A0 +̂ SF = S∗ if and only if M(−∞) ∈ B(G),

and, similarly

(iv) A0 = SK,γ0
if and only if M(γ0) = {0} × G;

(v) A0 ∩ SK,γ0 = S if and only if M(γ0) is a closed operator;

(vi) A0 +̂ SK,γ0 = S∗ if and only if M(γ0) ∈ B(G).
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Moreover, for A1 = ker Γ1 one has

(vii) A1 = SF if and only if M(−∞) = G× {0};
(viii) A1 = SK,γ0

if and only if M(γ0) = G× {0}.
Such facts can also be stated in terms of the limit behavior of M(−∞) and

M(γ0) via Corollary 5.2.14 applied to the Weyl function M . For this purpose recall
the notations

Eγ0
=

{
ϕ ∈ G : lim

x ↑ γ0

(M(x)ϕ,ϕ) < ∞
}
,

E−∞ =

{
ϕ ∈ G : lim

x ↓−∞
(M(x)ϕ,ϕ) > −∞

}
.

Corollary 5.5.3. Let S be a closed symmetric relation, let {G,Γ0,Γ1} be a boundary
triplet for S∗, and let M be the corresponding Weyl function. Assume that the
self-adjoint extension A0 = ker Γ0 is semibounded with lower bound γ0. Then the
following statements hold:

(i) A0 = SF if and only if E−∞ = {0};
(ii) A0 ∩ SF = S if and only if closE−∞ = G;

(iii) A0 +̂ SF = S∗ if and only if E−∞ = G,

and, similarly

(iv) A0 = SK,γ0
if and only if Eγ0

= {0};
(v) A0 ∩ SK,γ0 = S if and only if closEγ0 = G;

(vi) A0 +̂ SK,γ0 = S∗ if and only if Eγ0 = G.

In the context of Theorem 5.5.1, the Weyl function of the boundary triplet
is holomorphic on the interval (−∞, γ0). In this situation the inverse result in
Theorem 4.2.4 can be formulated as follows.

Proposition 5.5.4. Let G be a Hilbert space and let M be a uniformly strict B(G)-
valued Nevanlinna function, which is holomorphic on C\ [γ0,∞) and not holomor-
phic at γ0. Then there exist a Hilbert space H, a closed simple symmetric operator
S in H, and a boundary triplet {G,Γ0,Γ1} for S∗ such that A0 is a semibounded
self-adjoint relation with lower bound m(A0) = γ0 and M is the corresponding
Weyl function.

Proof. Let M be a uniformly strict Nevanlinna function with values in B(G). Let
H(NM ) be the reproducing kernel Hilbert space associated with the Nevanlinna
kernel

M(λ)−M(μ)∗

λ− μ
, λ, μ ∈ C \ R.

By Theorem 4.2.4, there exist a closed simple symmetric operator S in the re-
producing kernel Hilbert space H(NM ) and a boundary triplet {G,Γ0,Γ1} for S∗
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such that M is the corresponding Weyl function. The assumption that M is holo-
morphic on (−∞, γ0) and the fact that S is simple imply, by Theorem 3.6.1,
that (−∞, γ0) ⊂ ρ(A0). Moreover, since M is not holomorphic at γ0, one has
γ0 ∈ σ(A0). Therefore, the self-adjoint relation A0 is semibounded with lower
bound m(A0) = γ0. �

The context of Theorem 5.5.1 will now be narrowed. Let S be a closed semi-
bounded relation in H. Then the existence of a semibounded self-adjoint extension
of S is guaranteed by the Friedrichs extension SF of S. The interest in the rest of
this section is in boundary triplets {G,Γ0,Γ1} for which A0 = SF. The following
result is a consequence of Theorem 2.4.1 since for any self-adjoint extension H of
S there is a boundary triplet {G,Γ0,Γ1} for S∗ such that H = ker Γ0.

Corollary 5.5.5. Let S be a closed semibounded relation in H with lower bound γ.
Then there exists a boundary triplet {G,Γ0,Γ1} for S∗ such that

SF = ker Γ0.

The corresponding Weyl function M is holomorphic on (−∞, γ) and the mapping
x �→ M(x) from (−∞, γ) to B(G) is nondecreasing, while M(−∞) = {0} × G.

The following result will be useful in treating the connection between semi-
bounded self-adjoint extensions and the Weyl function.

Proposition 5.5.6. Let S be a closed semibounded relation in H, let {G,Γ0,Γ1} be
a boundary triplet for S∗ such that SF = ker Γ0, and let M be the corresponding
Weyl function. Let AΘ be a self-adjoint extension of S corresponding to the self-
adjoint relation Θ in G and assume that x < m(S). Then M(x) ∈ B(G) and the
following equivalence holds:

x ≤ AΘ ⇔ M(x) ≤ Θ.

In particular, if AΘ is semibounded in H, then Θ is semibounded in G.

Proof. The assumption x < m(S) = m(SF) implies that x ∈ ρ(SF) and hence
M(x) ∈ B(G) is clear. The formula in Theorem 2.6.1, applied to AΘ and SF, gives

(AΘ − x)−1 − (SF − x)−1 = γ(x)(Θ−M(x))−1γ(x)∗, (5.5.16)

since (SF − x)−1 ∈ B(H). Recall that γ(x)∗ maps ker (S∗ − x) onto G; see Propo-
sition 2.3.2. Note that if, in addition, x ∈ ρ(AΘ), then (Θ−M(x))−1 ∈ B(G).

(⇒) Since AΘ is a semibounded self-adjoint extension of S, it follows from Propo-
sition 5.3.6 that AΘ ≤ SF. Observe that for x ∈ ρ(AΘ)

0 ≤ (SF − x)−1 ≤ (AΘ − x)−1,
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where both operators belong to B(H) since x ∈ ρ(SF) ∩ ρ(AΘ). Hence, it then
follows from (5.5.16) that

(Θ−M(x))−1 ≥ 0 or, equivalently, Θ−M(x) ≥ 0.

Since M(x) ∈ B(G) it follows that M(x) ≤ Θ; cf. Proposition 5.2.6.

Now let x ≤ AΘ. First assume that x < m(AΘ). In this case, x ∈ ρ(AΘ)
and thus M(x) ≤ Θ. Next, assume that x = m(AΘ) and consider an increasing
sequence xn whose limit is x. Then clearly M(xn) ≤ Θ and thus M(x) ≤ Θ; cf.
Corollary 5.2.12 (i).

(⇐) Assume that M(x) ≤ Θ. Then Θ−M(x) ≥ 0 by Proposition 5.2.6 and hence
(Θ−M(x))−1 ≥ 0. It is straightforward to see that the right-hand side of (5.5.16)
is a nonnegative relation. Thus, the relation

(AΘ − x)−1 − (SF − x)−1

on the left-hand side of (5.5.16) is also nonnegative and, in fact, this relation is also
self-adjoint since (AΘ − x)−1 is self-adjoint and (SF − x)−1 ∈ B(H) is self-adjoint.
Therefore, one concludes with the help of Proposition 5.2.6 and x < m(SF) that

0 ≤ (SF − x)−1 ≤ (AΘ − x)−1.

In particular, this shows that 0 ≤ AΘ − x or x ≤ AΘ. �

From Proposition 5.5.6 one sees that if the self-adjoint extension AΘ is semi-
bounded in H, then the corresponding self-adjoint relation Θ is semibounded in
G. The converse is not true in general; cf. Remark 5.6.16. However, in Proposi-
tion 5.5.8 below it will be shown that the converse holds if S has finite defect
numbers or SF has a compact resolvent. The following result is a preliminary
observation.

Lemma 5.5.7. Let S be a closed semibounded relation in H with lower bound γ and
let {G,Γ0,Γ1} be a boundary triplet for S∗ such that SF = ker Γ0. Let M be the
corresponding Weyl function and assume that for any C > 0 there exists x1 < γ
such that

M(x) ≤ −C, x ≤ x1. (5.5.17)

Then for every semibounded self-adjoint relation Θ in G the corresponding self-
adjoint extension AΘ is semibounded from below.

Proof. Let Θ be a self-adjoint relation in G with lower bound ν and choose C > 0
in (5.5.17) such that −C < ν ≤ Θ. For all x ≤ x1 one then has

0 < ν + C ≤ Θ+ C ≤ Θ−M(x),

which implies that Θ − M(x) is boundedly invertible for all x ≤ x1. From The-
orem 2.6.2 one concludes (−∞, x1) ∈ ρ(AΘ) and hence AΘ is semibounded from
below. This conclusion also follows from Proposition 5.5.6. �
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Now it will be shown that the condition (5.5.17) holds when S has finite
defect numbers or SF has a compact resolvent.

Proposition 5.5.8. Let S be a closed semibounded relation in H with lower bound
γ and let {G,Γ0,Γ1} be a boundary triplet for S∗ such that SF = ker Γ0. Assume
that one of the following conditions hold:

(i) G is finite-dimensional;

(ii) (SF − λ)−1 is compact for some, and hence for all, λ ∈ ρ(SF).

Then for any C > 0 there exists x1 < γ such that (5.5.17) holds. In particular, if
(i) holds, then all self-adjoint extensions of S in H are semibounded from below, or
if (ii) holds and Θ is a semibounded self-adjoint relation in G, then the self-adjoint
extension AΘ of S is semibounded from below.

Proof. (i) As SF = ker Γ0, one has (M(x)ϕ,ϕ) → −∞ for x → −∞ and all
ϕ ∈ G by Corollary 5.5.3 (i). Since G is finite-dimensional, a compactness argument
shows that there exists x1 < γ such that (5.5.17) holds. Every self-adjoint relation
Θ in the finite-dimensional space G is semibounded and hence it follows from
Lemma 5.5.7 that all self-adjoint extensions AΘ are semibounded.

(ii) Recall from Proposition 5.4.12 that the resolvents of the Krĕın type extensions
SK,t converge uniformly to the resolvent of SF, that is, for all λ ∈ C \ [γ,∞) one
has

lim
t ↓−∞

‖(SK,t − λ)−1 − (SF − λ)−1‖ = 0. (5.5.18)

In the following fix some λ = x0 < m(SF) and note that, by (5.5.18), there exists
t′ < x0 such that x0 ∈ ρ(SK,t) for all t ≤ t′. Using (5.5.1) it follows that the
resolvent of SK,t has the form

(SK,t − x0)
−1 − (SF − x0)

−1 = γ(x0)
(
M(t)−M(x0)

)−1
γ(x0)

∗,

where (M(t)−M(x0))
−1 ∈ B(G) for all t ≤ t′ by Theorem 2.6.1 and Theorem 2.6.2.

Since γ(x0) maps G isomorphically to Nx0(S
∗) and γ(x0)

∗ maps Nx0(S
∗) isomor-

phically to G, it follows together with (5.5.18) that

lim
t ↓−∞

∥∥(M(t)−M(x0)
)−1∥∥ = 0. (5.5.19)

This implies that for any C > 0 there exists x1 < γ such that (5.5.17) holds.
In fact, otherwise there exists some C0 > 0 and a sequence sn → −∞ such that
sn < t′ < x0 and M(sn) > −C0. Then the estimate

−C0 − ‖M(x0)‖ ≤ −C0 −M(x0) ≤ M(sn)−M(x0) ≤ 0

and (M(sn) − M(x0))
−1 ∈ B(G) contradict (5.5.19). Therefore, the condition

(5.5.17) is satisfied and if Θ is a semibounded self-adjoint relation in G, then by
Lemma 5.5.7 the corresponding self-adjoint extension AΘ is semibounded. �
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In the case of Corollary 5.5.5 the relationship between the Friedrichs exten-
sion SF and the Krĕın type extension SK,γ is described in the following corollary,
which is a translation of (iv)–(vi) in Corollary 5.5.2; cf. Corollary 5.4.13 and Corol-
lary 5.4.14.

Corollary 5.5.9. Let S be a closed semibounded relation in H. Let {G,Γ0,Γ1} be
a boundary triplet for S∗ such that SF = ker Γ0 and let M be the corresponding
Weyl function. Let γ = m(SF). Then the following statements hold:

(i) SF and SK,γ coincide if and only if M(γ) = {0} × G;

(ii) SF and SK,γ are disjoint if and only if M(γ) is a closed operator;

(iii) SF and SK,γ are transversal if and only if M(γ) ∈ B(G).

In general it may not be possible to simultaneously prescribe ker Γ0 as the
Friedrichs extension SF and ker Γ1 as the Krĕın type extension SK,γ , since ker Γ0

and ker Γ1 are necessarily transversal; cf. Section 2.1. However, note that the
Friedrichs extension SF and the Krĕın type extension SK,x for x < γ are automat-
ically transversal; cf. (5.4.26).

Proposition 5.5.10. Let S be a closed semibounded relation in H with lower bound
γ. Then the following statements hold:

(i) For x < γ there exists a boundary triplet {G,Γ0,Γ1} for S∗ such that

SF = ker Γ0 and SK,x = ker Γ1. (5.5.20)

(ii) If SF and SK,γ are transversal, then there exists a boundary triplet {G,Γ0,Γ1}
for S∗ such that

SF = ker Γ0 and SK,γ = ker Γ1.

In both cases the corresponding Weyl function satisfies M(−∞) = {0} × G and
M(x) = G× {0}, x ≤ γ. In particular, M(t) ≤ 0 for all t ≤ x, i.e., M belongs to
the class S−1

G (−∞, x) of inverse Stieltjes functions.

Proof. (i) The extensions SF and SK,x for x < γ are automatically transversal
according to (5.4.26). Hence, it follows from Theorem 2.5.9 that there exists a
boundary triplet {G,Γ0,Γ1} for S∗ such that (5.5.20) holds.

(ii) Since it is assumed that SF and SK,γ are transversal, Theorem 2.5.9 yields the
statement.

The Weyl function M satisfies M(−∞) = {0} × G and M(x) = G × {0}
as a consequence of Corollary 5.5.2. Finally, that M(t) ≤ 0 for all t ≤ x is a
consequence of the monotonicity of the Weyl function M in Corollary 2.3.8. The
assertion M ∈ S−1

G (−∞, x) is immediate from the definition of the inverse Stieltjes
class in Definition A.6.1. �
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The following corollary is a consequence of Proposition 5.5.4 and Corol-
lary 5.5.2.

Corollary 5.5.11. Let G be a Hilbert space and let M be a uniformly strict B(G)-
valued Nevanlinna function, which is holomorphic on C \ [γ,∞) and not holomor-
phic at γ. Assume, in addition, that

M(−∞) = {0} × G and M(γ) = G× {0}. (5.5.21)

Then there exist a Hilbert space H, a closed simple semibounded operator S in H
with lower bound γ, and a boundary triplet {G,Γ0,Γ1} for S∗ with SF = ker Γ0

and SK,γ = ker Γ1, such that M is the corresponding Weyl function.

Proof. It follows from Proposition 5.5.4 that there exist a Hilbert space H, a
closed simple symmetric operator S in H, and a boundary triplet {G,Γ0,Γ1} for
S∗ such that A0 = ker Γ0 is a semibounded self-adjoint relation with lower bound
m(A0) = γ andM is the corresponding Weyl function. The assumptions in (5.5.21)
and Corollary 5.5.2 (i) and (viii) imply SF = ker Γ0 = A0 and SK,γ = ker Γ1. Since
m(SF) = m(A0) = γ, it is also clear that the symmetric operator S is semibounded
with lower bound γ. �

In the next corollary a boundary triplet with the properties as in Proposi-
tion 5.5.10 (i) is exhibited.

Corollary 5.5.12. Let S be a closed semibounded relation in H with lower bound γ.
Then

S∗ = SF +̂ N̂x(S
∗), x < γ, (5.5.22)

is a direct sum decomposition. Let f̂ = {f, f ′} ∈ S∗ have the unique decomposition

f̂ = f̂F + f̂x,

with f̂F = {fF, f ′
F} ∈ SF and f̂x = {fx, xfx} ∈ N̂x(S

∗). Then

Γ0f̂ = fx and Γ1f̂ = PNx(S∗)(f
′
F − xfF)

defines a boundary triplet {Nx(S
∗),Γ0,Γ1} for S∗ such that (5.5.20) holds. For

λ ∈ ρ(SF) the corresponding γ-field γ is given by

γ(λ) =
(
I + (λ− x)(SF − λ)−1

)
ιNx(S∗), (5.5.23)

and the corresponding Weyl function M is given by

M(λ) = λ− x+ (λ− x)2PNx(S∗)(SF − λ)−1ιNx(S∗). (5.5.24)

Proof. It is clear from Theorem 1.7.1 that (5.5.22) is a direct sum decompo-
sition. Now choose μ = x in Theorem 2.4.1 and modify the boundary triplet
{Nx(S

∗),Γ0,Γ1} in Theorem 2.4.1 to {Nx(S
∗),Γ0,Γ1 − xΓ0}. Then SF = ker Γ0
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and the corresponding γ-field and Weyl function have the form (5.5.23) and
(5.5.24); cf. Theorem 2.4.1 and Corollary 2.5.5. It is easy to see that

S +̂ N̂x(S
∗) ⊂ ker Γ1,

and since SK,x = S +̂ N̂x(S
∗) and ker Γ1 are both self-adjoint, one concludes that

SK,x = ker Γ1, so that (5.5.20) holds. �

The following example is an illustration of Proposition 5.5.10 (i) and Corol-
lary 5.5.12 for the case where the semibounded relation S is uniformly positive. In
this situation it is convenient to have a boundary triplet for which the Krĕın–von
Neumann extension SK,0 corresponds to the boundary mapping Γ1; cf. Chapter 8.

Example 5.5.13. Let S be a closed nonnegative symmetric relation in H with
lower bound γ > 0. In this case the Krĕın–von Neumann extension SK,0 is given

by SK,0 = S +̂ N̂0(S
∗); cf. (5.4.3). Moreover, the Friedrichs extension SF and

the Krĕın–von Neumann extension SK,0 are transversal by (5.4.26). For x = 0
Corollary 5.5.12 shows that {N0(S

∗),Γ0,Γ1}, where

Γ0f̂ = f0 and Γ1f̂ = PN0(S∗)f
′
F, f̂ = {fF, f ′

F}+ {f0, 0},

is a boundary triplet for S∗ = SF +̂ N̂0(S
∗) such that

SF = ker Γ0 and SK,0 = ker Γ1;

moreover, for λ ∈ ρ(SF) the corresponding γ-field γ is given by

γ(λ) =
(
I + λ(SF − λ)−1

)
ιN0(S∗),

and the corresponding Weyl function M is given by

M(λ) = λ+ λ2PN0(S∗)(SF − λ)−1ιN0(S∗).

Note that, in particular, γ(0) = ιN0(S∗) is the canonical embedding of N0(S
∗) into

H, γ(0)∗ = PN0(S∗) is the orthogonal projection onto N0(S
∗), and M(0) = 0.

The last objective in this section is to derive an abstract first Green identity.
For this consider a boundary triplet {G,Γ0,Γ1} for which SF = ker Γ0 and assume
that also the self-adjoint extension corresponding to Γ1 is semibounded. In the
following the notation S1 = ker Γ1 (instead of A1) is used; this will turn out to be
more convenient for the next section. As a first step rewrite the abstract Green
identity (2.1.1) in the form

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = (f, g′)− (Γ0f̂ ,Γ1ĝ), f̂ , ĝ ∈ S∗. (5.5.25)

In the following theorem it will be shown that the expression on the left-hand side,
and hence on the right-hand side, of (5.5.25) can be seen as a restriction of the
form tS1 .
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Theorem 5.5.14. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗ such that

SF = ker Γ0 and S1 = ker Γ1, (5.5.26)

where SF is the Friedrichs extension and S1 is a semibounded self-adjoint extension
of S. Moreover, let tS1 be the closed semibounded form corresponding to S1. Then
domS∗ ⊂ dom tS1 and the following equality holds:

(f ′, g) = tS1
[f, g] + (Γ1f̂ ,Γ0ĝ), f̂ , ĝ ∈ S∗. (5.5.27)

Proof. By the assumption (5.5.26), the extensions SF and S1 are transversal and
hence it follows from Theorem 5.3.8 that domS∗ ⊂ dom tS1 . Moreover, every

f̂ , ĝ ∈ S∗ can be decomposed as

f̂ = f̂F + f̂1, ĝ = ĝF + ĝ1, f̂F, ĝF ∈ SF, f̂1, ĝ1 ∈ S1.

Using the conditions in (5.5.26) one sees that

Γ0f̂F = Γ0ĝF = 0 and Γ1f̂1 = Γ1ĝ1 = 0, (5.5.28)

and therefore the identity (5.5.25) can be rewritten as

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = (f, g′)− (Γ0f̂ ,Γ1ĝ)

= (fF + f1, g
′
F + g′1)− (Γ0f̂1,Γ1ĝF).

(5.5.29)

In order to rewrite the last term on the right-hand side of (5.5.29) observe that

f̂1, ĝF ∈ S∗. Therefore, another application of the abstract Green identity for the
boundary triplet {G,Γ0,Γ1} shows that

(f ′
1, gF)− (f1, g

′
F) = (Γ1f̂1,Γ0ĝF)− (Γ0f̂1,Γ1ĝF)

= −(Γ0f̂1,Γ1ĝF),
(5.5.30)

where (5.5.28) was used in the last equality. A combination of (5.5.29) and (5.5.30)
gives

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = (fF, g
′
F) + (fF, g

′
1) + (f1, g

′
1) + (f ′

1, gF). (5.5.31)

Since domS∗ ⊂ dom tS1
, the last three terms on the right-hand side of (5.5.31)

can be rewritten by means of Theorem 5.1.18:

(fF, g
′
1) = tS1 [fF, g1], (f1, g

′
1) = tS1 [f1, g1], (f ′

1, gF) = tS1 [f1, gF],

whereas the first term on the right-hand side of (5.5.31) can be rewritten by means
of Theorem 5.1.18 and the inclusion tSF

⊂ tS1
as follows:

(fF, g
′
F) = tSF [fF, gF] = tS1 [fF, gF].
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Combined with (5.5.31), the above rewriting leads to

(f ′, g)− (Γ1f̂ ,Γ0ĝ) = tS1
[fF, gF] + tS1

[fF, g1] + tS1
[f1, g1] + tS1

[f1, gF]

= tS1 [fF + f1, gF + g1]

= tS1
[f, g],

and hence (5.5.27) has been shown. �

Let Θ be a self-adjoint relation in G and consider the corresponding self-
adjoint extension

HΘ =
{
f̂ ∈ S∗ : {Γ0f̂ ,Γ1f̂} ∈ Θ

}
; (5.5.32)

here the notation HΘ (instead of AΘ) is used, which is more convenient for the

next section. For f̂ ∈ S∗ the condition {Γ0f̂ ,Γ1f̂} ∈ Θ is equivalent to

Γ0f̂ ∈ domΘop and Pop Γ1f̂ = Θop Γ0f̂ , (5.5.33)

where Pop denotes the orthogonal projection from G onto Gop = domΘ and Θop

is the self-adjoint operator part of the self-adjoint relation Θ; cf. the end of Sec-
tion 2.2. The following statement is an immediate consequence of Theorem 5.5.14.

Corollary 5.5.15. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗ such that SF = ker Γ0 and S1 = ker Γ1, where SF

is the Friedrichs extension and S1 is a semibounded self-adjoint extension of S.
Let tS1 be the closed semibounded form corresponding to S1. Assume that HΘ is a
self-adjoint extension of S corresponding to the self-adjoint relation Θ in G. Then

(f ′, g) = tS1
[f, g] + (Θop Γ0f̂ ,Γ0ĝ), f̂ , ĝ ∈ HΘ. (5.5.34)

Under the assumption that HΘ is semibounded, the left-hand side of (5.5.34)
can be written as tHΘ

[f, g]. One may view the identity (5.5.34) as a perturbation

of the form tS1 by means of the term (Θop Γ0f̂ ,Γ0ĝ). The proper interpretation of
(5.5.34) in terms of quadratic forms requires an extension of the mapping Γ0; this
procedure will be taken up in detail in Section 5.6 with the introduction of the
notion of a boundary pair.

5.6 Boundary pairs and boundary triplets

In this section the notion of a boundary pair for a semibounded symmetric rela-
tion in a Hilbert space H is developed. It will turn out that there is an intimate
connection between boundary pairs and boundary triplets. In fact, a boundary
pair helps to express the closed semibounded form associated with a semibounded
self-adjoint extension in terms of the parameter provided by the boundary triplet.
The concept of a boundary pair is motivated by applications occurring in the study
of semibounded differential operators.
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Definition 5.6.1. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and the Friedrichs extension
SF are transversal. Let tS1

be the closed form associated with S1 and let

HtS1
−a =

(
dom tS1 , (·, ·)tS1

−a

)
, a < m(S1),

be the corresponding Hilbert space. A pair {G,Λ} is called a boundary pair for S
corresponding to S1 if G is a Hilbert space and Λ ∈ B(HtS1

−a,G) satisfies

kerΛ = dom tSF
and ranΛ = G.

Let S be a closed semibounded relation in H, let SF be the Friedrichs ex-
tension of S, and assume that {G,Λ} is a boundary pair for S corresponding
to a semibounded self-adjoint extension S1 of S. Then, by Definition 5.6.1, the
semibounded self-adjoint extensions S1 and SF are transversal, which, by Theo-
rem 5.3.8, is equivalent to the inclusion

domS∗ ⊂ dom tS1 = domΛ.

One also has the orthogonal decomposition

HtS1
−a = ker (S∗ − a)⊕tS1

−a HtSF
−a, a < m(S1) ≤ m(SF);

cf. Proposition 5.3.7 and Theorem 5.3.8. Since kerΛ = dom tSF and ranΛ = G,
one sees that the restriction of Λ to the space ker (S∗−a) equipped with the norm
‖ · ‖tS1

−a, is a bounded mapping from ker (S∗ − a) to G such that

ran
(
Λ� ker (S∗ − a)

)
= G.

Hence, the restriction Λ� ker (S∗ − a) has a bounded everywhere defined inverse.

Boundary pairs have a useful invariance property. To see this consider a pair
of semibounded self-adjoint extensions S1 and S2 of S which are each transversal
with SF, i.e.,

S∗ = S1 +̂ SF = S2 +̂ SF. (5.6.1)

Lemma 5.6.2. Let S be a closed semibounded relation in H, let S1 and S2 be semi-
bounded self-adjoint extensions which satisfy the transversality conditions (5.6.1),
and assume that a < min {m(S1),m(S2)}. Then dom tS1 = dom tS2 and the form
topologies of tS1 and tS2 coincide. Consequently, {G,Λ} is a boundary pair for S
corresponding to S1 if and only if {G,Λ} is a boundary pair for S corresponding
to S2.

Proof. It suffices to consider the boundedness property, as the other properties of
a boundary pair in Definition 5.6.1 do not depend on the choice of the transversal
extensions S1 and S2. In fact, according to Corollary 5.3.9, the transversality
conditions in (5.6.1) imply that

dom (S1 − a)
1
2 = dom (S2 − a)

1
2 , a < min {m(S1),m(S2)}.
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Moreover, again by Corollary 5.3.9, this implies that

c1‖((S1)op − a)
1
2ϕ‖2 ≤ ‖((S2)op − a)

1
2ϕ‖2 ≤ c2‖((S1)op − a)

1
2ϕ‖2

for all ϕ ∈ dom (S2 − a)
1
2 = dom (S1 − a)

1
2 and for some constants c1, c2 > 0. In

other words, c1(tS1 − a) ≤ tS2 − a ≤ c2(tS1 − a) for some constants c1, c2 > 0.
Therefore, the form topologies of tS1

and tS2
coincide and thus Λ ∈ B(HtS1

−a,G)
if and only if Λ ∈ B(HtS2

−a,G). This implies that {G,Λ} is a boundary pair for
S corresponding to S1 if and only if {G,Λ} is a boundary pair for S correspond-
ing to S2. �

To explore the connection between boundary pairs and boundary triplets,
the notion of extension in the next definition will be important.

Definition 5.6.3. Let S be a closed semibounded relation in H, let {G,Γ0,Γ1} be
a boundary triplet for S∗ with A0 = ker Γ0 and assume that mulA0 = mulS∗.
Let S1 be a semibounded self-adjoint extension of S such that S1 and SF are
transversal, so that, domS∗ ⊂ dom tS1

. Then an operator Λ ∈ B(HtS1
−a,G) is

said to be an extension of Γ0 if

Γ0f̂ = Λf for all f̂ = {f, f ′} ∈ S∗. (5.6.2)

It follows already from the assumption mulA0 = mulS∗ that the mapping
f �→ Γ0f̂ from domS∗ to G in (5.6.2) is an operator. In fact, if f̂ = {0, f ′} ∈ S∗,
then f̂ ∈ A0 = ker Γ0, so that Γ0f̂ = 0. Note also that in the case A0 = SF the
condition mulA0 = mulS∗ is satisfied by Theorem 5.3.3.

Next the notion of a compatible boundary pair will be introduced.

Definition 5.6.4. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗ with

A0 = ker Γ0 and A1 = ker Γ1.

Let S1 be a semibounded self-adjoint extension of S such that S1 and SF are
transversal and let {G,Λ} be a boundary pair for S corresponding to S1. Then
{G,Γ0,Γ1} and {G,Λ} are said to be compatible if Λ is an extension of Γ0 and the
self-adjoint relations A1 and S1 coincide.

The next lemma provides a sufficient condition for an extension Λ of Γ0 such
that {G,Λ} is a boundary pair, or compatible boundary pair, for S corresponding
to S1. In the special case where the defect numbers of S are finite this condition is
automatically satisfied, which makes the lemma useful in applications to Sturm–
Liouville operators in Chapter 6.

Lemma 5.6.5. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0 and A1 = ker Γ1. Let S1 be a semibounded
self-adjoint extension of S such that S1 and SF are transversal or, equivalently,
domS∗ ⊂ dom tS1 , and let a < m(S1). Then the following statements hold:
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(i) If Λ ∈ B(HtS1
−a,G) is an extension of Γ0, then ranΛ = G and

dom tSF
⊂ kerΛ.

(ii) If Λ ∈ B(HtS1
−a,G) is an extension of Γ0 and

dom tSF
= kerΛ, (5.6.3)

then A0 = ker Γ0 = SF and {G,Λ} is a boundary pair for S corresponding to
S1. If, in addition, A1 = S1, then {G,Γ0,Γ1} and {G,Λ} are compatible.

In particular, if Λ ∈ B(HtS1
−a,G) is an extension of Γ0 and the defect numbers

of S are finite, then A0 = ker Γ0 = SF and {G,Λ} is a boundary pair for S
corresponding to S1. If, in this case, also A1 = S1, then {G,Γ0,Γ1} and {G,Λ} are
compatible.

Proof. (i) Let Λ ∈ B(HtS1
−a,G) be an extension of Γ0. It follows from the extension

property (5.6.2) that ranΛ = G and that

domS ⊂ domA0 ⊂ kerΛ. (5.6.4)

Since Λ ∈ B(HtS1
−a,G), it is clear that kerΛ is closed in HtS1

−a and, by (5.6.4),
the closure of domS with respect to the inner product (·, ·)tS1

−a is contained in
kerΛ. On the other hand, domS ⊂ domSF ⊂ dom tSF and the inner product on
HtS1

−a restricted to HtSF
−a coincides with the inner product (·, ·)tSF

−a in HtSF
−a

(see the discussion below (5.3.10) and (5.3.11)). As domS is a core of tSF
, it follows

from Corollary 5.1.15 that the closure of domS with respect to the inner product
(·, ·)tSF

−a coincides with dom tSF . Thus, one concludes dom tSF ⊂ kerΛ.

(ii) Assume that Λ ∈ B(HtS1
−a,G) is an extension of Γ0 and that (5.6.3) holds.

Then
A0 =

{
f̂ ∈ S∗ : f̂ ∈ ker Γ0

} ⊂ {
f̂ ∈ S∗ : f ∈ kerΛ

}
. (5.6.5)

Since kerΛ = dom tSF , it follows from Theorem 5.3.3 that the right-hand side of
(5.6.5) concides with SF. Thus, A0 ⊂ SF and since both relations are self-adjoint,
it follows that A0 = SF. Moreover, one has ranΛ = G by (i) and hence {G,Λ} is a
boundary pair for S∗ corresponding to S1. It follows directly from Definition 5.6.4
that the additional assumption A1 = S1 yields compatibility of {G,Γ0,Γ1} and
{G,Λ}.

For the last statement assume that the defect numbers of S are finite and let
Λ ∈ B(HtS1

−a,G) be an extension of Γ0. Then ranΛ = G and dom tSF ⊂ kerΛ by
(i). Since S1 and SF are transversal, one has the orthogonal decomposition

HtS1
−a = ker (S∗ − a)⊕tS1

−a HtSF
−a

for a < m(S1) by Proposition 5.3.7 and Theorem 5.3.8. Then

dim ranΛ = dimG = dimker (S∗ − a) < ∞
together with dom tSF

⊂ kerΛ implies dom tSF
= kerΛ. Now the assertions follow

from (ii). �
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If the boundary triplet {G,Γ0,Γ1} and the boundary pair {G,Λ} are compat-
ible, then automatically ker Γ0 = SF. In the next theorem it will be shown that for
a boundary triplet for S∗ such that ker Γ0 = SF and ker Γ1 = S1 is semibounded,
there exists a compatible boundary pair {G,Λ} for S corresponding to S1.

Theorem 5.6.6. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1} be
a boundary triplet for S∗. Assume that

ker Γ0 = SF and ker Γ1 = S1,

where SF is the Friedrichs extension and S1 is a semibounded self-adjoint extension
of S. Then, with a < m(S1) fixed, the mapping

Λ0 =
{{f,Γ0f̂} : f̂ ∈ S∗} ⊂ HtS1

−a × G, (5.6.6)

is (the graph of ) a densely defined bounded operator. Its unique bounded extension
Λ to all of HtS1

−a induces a boundary pair {G,Λ} for S corresponding to S1 which
is compatible with the boundary triplet {G,Γ0,Γ1}.
Proof. The assumption that {G,Γ0,Γ1} is a boundary triplet for S∗ implies that
SF and S1 are transversal extensions of S. By Theorem 5.3.8, this is equivalent to
domS∗ ⊂ dom tS1 , and hence domΛ0 = domS∗ is contained in HtS1

−a, i.e., the
relation Λ0 in (5.6.6) is well defined from HtS1

−a to G.

In order to see that Λ0 is an operator, assume that {f,Γ0f̂} ∈ Λ0 with f̂ ∈ S∗

satisfying f = 0. Hence, f̂ = {0, f ′} ∈ S∗, which by Theorem 5.3.3 shows that

f̂ ∈ SF. Now the identity SF = ker Γ0 implies that Γ0f̂ = 0. Hence, mulΛ0 = {0},
that is, Λ0 in (5.6.6) is an operator. Furthermore, it is clear that SF = ker Γ0 yields
kerΛ0 = domSF.

Next it will be shown that the operator

Λ0 : HtS1
−a ⊃ domS∗ → G, f �→ Λ0f = Γ0f̂ , (5.6.7)

is bounded. By assumption, a < m(S1) ≤ m(SF), and hence one has the decompo-

sition S∗ = SF +̂ N̂a(S
∗); see Theorem 1.7.1. Let f̂ = {f, f ′} ∈ S∗ and decompose

it accordingly,

f̂ = f̂F + f̂a, f̂F ∈ SF, f̂a = {fa, afa} ∈ N̂a(S
∗).

From SF = ker Γ0 and the fact that Γ0 : S∗ → G is bounded (with respect to the
graph norm; cf. Proposition 2.1.2) it follows that

‖Λ0f‖2 = ‖Γ0f̂‖2 = ‖Γ0f̂a‖2 ≤ M(‖fa‖2 + a2‖fa‖2) ≤ M ′‖fa‖2

holds for some constants M,M ′ > 0. Then is clear from (5.1.9) that there exists
M ′′ > 0 such that

‖Λ0f‖2 ≤ M ′′‖fa‖2tS1
−a ≤ M ′′(‖fF‖2tS1

−a + ‖fa‖2tS1
−a

)
= M ′′‖f‖2tS1

−a,
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where fF ∈ domSF ⊂ dom tSF ; here in the last equality one uses the orthogonal
decomposition

dom tS1
= ker (S∗ − a)⊕tS1

−a dom tSF

with respect to the inner product (·, ·)tS1
−a in the Hilbert space HtS1

−a, see Propo-
sition 5.3.7 and Theorem 5.3.8. This shows that the operator Λ0 in (5.6.7) is
bounded.

By Theorem 5.1.18 (ii), domS1 is a core of tS1 and hence domS1 is dense in
the Hilbert space HtS1

−a by Corollary 5.1.15. As domS1 ⊂ domS∗ ⊂ dom tS1 , it
follows that domS∗ is also a dense subspace of HtS1

−a. Therefore, the bounded
operator Λ0 in (5.6.7) is densely defined, and hence Λ0 admits a unique extension
Λ by continuity to all of HtS1

−a.

Since the restriction of the inner product in HtS1
−a to HtSF

−a coincides with
the inner product in HtSF

−a (see the discussion below (5.3.10) and (5.3.11)), the
closure of domSF = kerΛ0 in HtS1

−a is dom tSF . This implies kerΛ = dom tSF .
Finally, by definition ranΛ = ranΛ0 = G, and hence {G,Λ} is a boundary pair
for S corresponding to S1. It is also clear that the boundary pair {G,Λ} and the
boundary triplet {G,Γ0,Γ1} are compatible. �

In the next corollary it is shown that in the context of Theorem 5.6.6 the
continuity of Λ : HtS1

−a → G makes it possible to extend the identity

(f ′, g) = tS1
[f, g] + (Γ1f̂ ,Γ0ĝ), f̂ , ĝ ∈ S∗, (5.6.8)

in Theorem 5.5.14 to f̂ ∈ S∗ and g ∈ dom tS1 .

Corollary 5.6.7. Let S be a closed semibounded relation in H, and let {G,Γ0,Γ1}
and {G,Λ} be the boundary triplet and boundary pair in Theorem 5.6.6, respec-
tively. Then the following equality holds:

(f ′, g) = tS1 [f, g] + (Γ1f̂ ,Λg), f̂ ∈ S∗, g ∈ dom tS1 .

Proof. As domS∗ is a dense subspace of HtS1
−a, there exist gn ∈ domS∗ and

ĝn = {gn, g′n} ∈ S∗ such that gn → g in HtS1
−a, and hence Γ0ĝn = Λgn → Λg in G.

Furthermore, gn → g in HtS1
−a also implies gn → g ∈ H and tS1 [f, gn] → tS1 [f, g]

for f̂ = {f, f ′} ∈ S∗. By (5.6.8), the identity

(f ′, gn) = tS1
[f, gn] + (Γ1f̂ ,Γ0ĝn) = tS1

[f, gn] + (Γ1f̂ ,Λgn)

holds for f̂ = {f, f ′} and ĝn = {gn, g′n} ∈ S∗. Now the assertion follows by taking
limits. �

For the sake of completeness the existence of boundary pairs is stated in the
following corollary as an addendum to Definition 5.6.1.
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Corollary 5.6.8. Let S be a closed semibounded relation in H. Then there exist a
semibounded self-adjoint extension S1 of S such that S1 and SF are transversal
and a mapping Λ ∈ B(HtS1

−a,G), a < m(S1), such that {G,Λ} is a boundary pair
for S.

Proof. By Proposition 5.5.10, there exists a boundary triplet {G,Γ0,Γ1} for S∗

such that SF = ker Γ0 and SK,x = ker Γ1 for x < m(S) = m(SF). Now the
statement follows with S1 = SK,x and a < m(S1) = x from Theorem 5.6.6. �

Example 5.6.9. Let S be a closed semibounded relation in H with lower bound
γ, fix x < γ, and consider the boundary triplet {Nx(S

∗),Γ0,Γ1} for S∗ in Corol-
lary 5.5.12 with

Γ0f̂ = fx, f̂ = {fF, f ′
F}+ {fx, xfx} ∈ SF +̂ N̂x(S

∗).

Then SF = ker Γ0 and SK,x = ker Γ1 and for a < x one has the direct sum
decomposition

HtSK,x
−a = dom tSK,x = dom tSF +Nx(S

∗), a < x < γ; (5.6.9)

cf. Corollary 5.4.16. Then the mapping

Λf = fx, f = fF + fx ∈ dom tSF
+Nx(S

∗),

belongs to B(HtSK,x
−a,Nx(S

∗)). In fact, let f ∈ HtSK,x
−a have the decomposition

f = fF + fx as in (5.6.9), and define fa = (I + (a − x)(SF − a)−1)fx. Then
f = gF + fa, where gF = fx − fa + fF ∈ dom tSF and fa ∈ Na(S

∗). Now observe
that fx = (I+(x−a)(SF−x)−1)fa, so that Proposition 1.4.6 leads to the estimate

‖fx‖ ≤ γ − a

γ − x
‖fa‖.

Recall from (5.1.9) (with t = tSK,x , γ = x, ϕ = fa) and (5.4.28) that

(x− a)‖fa‖2 ≤ ‖fa‖2tSK,x
−a ≤ ‖fa‖2tSK,x

−a + ‖gF‖2tSK,x
−a = ‖f‖2tSK,x

−a,

which proves that Λ ∈ B(HtSK,x
−a,Nx(S

∗)). Thus, Λ extends Γ0 in the sense

of Definition 5.6.3. It is clear that dom tSF
= kerΛ, and hence Lemma 5.6.5 (ii)

implies that {Nx(S
∗),Λ} is a boundary pair for S corresponding to SK,x which is

compatible with the boundary triplet {Nx(S
∗),Γ0,Γ1} in Corollary 5.5.12.

Theorem 5.6.6 admits a converse. If S is a semibounded relation and {G,Λ} is
a boundary pair for S in the sense of Definition 5.6.1, then there exists a compatible
boundary triplet {G,Γ0,Γ1} for S∗. The construction of the mapping Γ0 : S∗ → G

is inspired by Lemma 5.6.5 and the construction of Γ1 : S∗ → G is inspired by the
first Green formula in Theorem 5.5.14.
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Theorem 5.6.10. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Λ} be a boundary pair for S corresponding to S1. Then

Γ0 =
{{f̂ ,Λf} : f̂ ∈ S∗} (5.6.10)

is (the graph of ) a linear operator from S∗ to G and there exists a unique linear
operator Γ1 : S∗ → G such that {G,Γ0,Γ1} defines a boundary triplet for S∗ which
is compatible with the boundary pair {G,Λ} for S corresponding to S1.

Proof. The relations S1 and SF are semibounded self-adjoint extensions of S and
hence m(S1) ≤ m(SF) = m(S). There are the following decompositions of the
relation S∗:

S∗ = SF +̂ N̂a(S
∗), a < m(SF), (5.6.11)

and, likewise,
S∗ = S1 +̂ N̂a(S

∗), a < m(S1); (5.6.12)

cf. Theorem 1.7.1. Recall that tSF
⊂ tS1

and, since S1 and SF are transversal,
there is the orthogonal decomposition

dom tS1 = ker (S∗ − a)⊕tS1
−a dom tSF , a < m(S1), (5.6.13)

of the Hilbert space HtS1
−a. Moreover, in this case one also has domS∗ ⊂ dom tS1 ;

cf. Proposition 5.3.7 and Theorem 5.3.8. The proof will be given in a number of
steps. The mapping Γ0 is considered in Step 1. Step 2 and Step 3 are preparations
for the construction of Γ1 in Step 4. In the remaining steps the various properties
of Γ1 are established.

Step 1. This step concerns the properties of Γ0 in (5.6.10). Since domS∗ ⊂ dom tS1

one sees from Definition 5.6.1 that the relation Γ0 is well defined. It is clear that
Γ0 is the graph of an operator,

Γ0 : S∗ → G, f̂ �→ Γ0f̂ = Λf, (5.6.14)

and that {0} ×mulS∗ ⊂ ker Γ0. Furthermore,

SF =
{
f̂ ∈ S∗ : f ∈ dom tSF

}
=

{
f̂ ∈ S∗ : f ∈ kerΛ

}
= ker Γ0, (5.6.15)

where the first equality holds by Theorem 5.3.3, the second equality is due to
dom tSF = kerΛ, and the third equality follows from (5.6.14).

Since ranΛ = G and kerΛ = dom tSF , it follows from (5.6.13) that Λ maps
ker (S∗ − a) bijectively onto G. Therefore,

Γ0 is a bijection between N̂a(S
∗) and G, (5.6.16)

and, in particular,
ranΓ0 = G. (5.6.17)
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Step 2. Now it will be shown that the identity

tS1
[f, gF] = (f ′, gF), f̂ ∈ S∗, gF ∈ dom tSF

, (5.6.18)

holds. For this, assume that f̂ is decomposed as

f̂ = f̂F + ĥa, f̂F ∈ SF, ĥa ∈ N̂a(S
∗); (5.6.19)

cf. (5.6.11). Recall that domS∗ ⊂ dom tS1
and observe that with (5.6.19) one gets

tS1
[f, gF] = tS1

[fF + ha, gF] = tSF
[fF, gF] + tS1

[ha, gF]. (5.6.20)

The orthogonal decomposition in (5.6.13) gives

0 = (ha, gF)tS1
−a = tS1 [ha, gF]− a(ha, gF).

Hence, (5.6.20) leads to the identity

tS1 [f, gF] = tSF [fF, gF] + a(ha, gF) = (f ′
F, gF) + a(ha, gF),

which shows (5.6.18).

Step 3. Next it will be shown that

tS1 [f, g]− (f ′, g) = (fa, ga)tS1
−a, f̂ , ĝ ∈ S∗, (5.6.21)

where f̂ and ĝ are decomposed as

f̂ = f̂1 + f̂a, f̂1 ∈ S1, f̂a ∈ N̂a(S
∗), (5.6.22)

and
ĝ = ĝF + ĝa, ĝF ∈ SF, ĝa ∈ N̂a(S

∗); (5.6.23)

cf. (5.6.12) and (5.6.11). For this note first that with (5.6.22) the identity (5.6.18)
in Step 2 gives

tS1
[f1 + fa, gF] = (f ′

1 + afa, gF). (5.6.24)

Furthermore, note that with ga from (5.6.23) one has

tS1
[f1, ga] = (f ′

1, ga) (5.6.25)

due to f̂1 ∈ S1 and ga ∈ Na(S
∗) ⊂ dom tS1 ; cf. Theorem 5.1.18. A combination of

(5.6.24) and (5.6.25) leads to

tS1
[f, g]− (f ′, g) = tS1

[f1 + fa, gF + ga]− (f ′
1 + afa, gF + ga)

= tS1 [f1 + fa, ga]− (f ′
1 + afa, ga)

= tS1
[fa, ga]− a(fa, ga),

which gives (5.6.21).
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Step 4. In this step the operator Γ1 : S∗ → G will be constructed. For this purpose
fix f̂ ∈ S∗ and consider the linear relation

Φf̂ =
{{Γ0 ĝ, (g, f

′)− tS1 [g, f ]} : ĝ ∈ S∗ }. (5.6.26)

It follows from ranΓ0 = G in (5.6.17) that domΦf̂ = G. Next it will be shown that

Φf̂ is the graph of a bounded linear functional. If f̂ and ĝ are decomposed as in

(5.6.22) and (5.6.23), then it follows from (5.6.21) in Step 3 that∣∣(g, f ′)− tS1
[g, f ]

∣∣ = ∣∣tS1
[f, g]− (f ′, g)

∣∣ = |(fa, ga)tS1
−a| ≤ ‖fa‖tS1

−a‖ga‖tS1
−a.

Recall that the restriction of Λ to ker (S∗−a) has a bounded inverse (with respect
to the norm ‖ · ‖tS1

−a on ker (S∗ − a)). Therefore, by (5.6.10) and (5.6.15),

‖ga‖tS1
−a ≤ C‖Λga‖ = C‖Γ0ĝa‖ = C‖Γ0ĝ‖ (5.6.27)

for some constant C > 0 and, as a consequence,∣∣(g, f ′)− tS1 [g, f ]
∣∣ ≤ C‖fa‖tS1

−a‖Γ0ĝ‖, ĝ ∈ S∗.

This implies that the relation Φf̂ in (5.6.26) is the graph of an everywhere defined
bounded functional. Hence, by the Riesz representation theorem, there exists a
unique ϕf̂ ∈ G such that

Φf̂ (Γ0ĝ) =
(
Γ0ĝ, ϕf̂

)
, ĝ ∈ S∗.

Define the mapping Γ1 by

Γ1 : S∗ → G, f̂ �→ Γ1f̂ := ϕf̂ . (5.6.28)

By construction, Γ1 is linear and it follows from (5.6.21) and (5.6.26) that

(Γ1f̂ ,Γ0ĝ) = (f ′, g)− tS1
[f, g] = −(fa, ga)tS1

−a (5.6.29)

for all f̂ ∈ S∗ and ĝ ∈ S∗ decomposed in the forms (5.6.22) and (5.6.23), respec-
tively.

Step 5. It will be shown that the operator Γ1, constructed in Step 4, satisfies

S1 = ker Γ1. (5.6.30)

To show that S1 ⊂ ker Γ1, assume that f̂ ∈ S1. Then (5.6.29) in Step 4 implies

that (Γ1f̂ ,Γ0ĝ) = 0 for all ĝ ∈ S∗, and since Γ0 is surjective (see (5.6.17)), one

concludes that Γ1f̂ = 0. Thus, S1 ⊂ ker Γ1. To show the reverse inclusion, assume
that f̂ = {f, f ′} ∈ ker Γ1. Then it follows from (5.6.29) that

tS1
[f, g] = (f ′, g) for all g ∈ domS1 ⊂ domS∗.

Since domS1 is a core of tS1 , it is a consequence of the first representation theorem

(Theorem 5.1.18) that f̂ = {f, f ′} ∈ S1. Thus, ker Γ1 ⊂ S1, and so (5.6.30) has
been proved.
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Step 6. Next it will be shown that the operator Γ1, constructed in Step 4, satisfies

ranΓ1 = G. (5.6.31)

For this purpose note first that ranΓ1 = G. In fact, if ranΓ1 	= G, then in view of
(5.6.16) there exists ĝa ∈ N̂a(S

∗) such that Γ0ĝa 	= 0 and

(Γ1f̂ ,Γ0ĝa) = 0 for all f̂ ∈ S∗. (5.6.32)

Now apply (5.6.29) with f̂ = f̂1+f̂a ∈ S∗, f̂1 ∈ S1, f̂a ∈ N̂a(S
∗), and ĝa ∈ N̂a(S

∗).
Then (5.6.32) implies

(fa, ga)tS1
−a = 0

for all fa ∈ Na(S
∗). Therefore, ga = 0 and hence ĝa = 0 and Γ0ĝa = 0, which is a

contradiction. Thus, ranΓ1 = G.

To conclude (5.6.31), it suffices to show that ranΓ1 is closed. For this consider

the restriction Γ′
1 to N̂a(S

∗). It follows from S∗ = S1 +̂ N̂a(S
∗) and (5.6.30) that

Γ′
1 is injective and that

ranΓ′
1 = ranΓ1. (5.6.33)

With the inner product (·, ·)tS1
−a the space N̂a(S

∗) is a closed subspace of the
Hilbert space HtS1

−a × HtS1
−a (see (5.6.13)). Since∣∣(Γ′

1f̂a,Γ0ĝ)
∣∣ = |(fa, ga)tS1

−a| ≤ C‖fa‖tS1
−a‖Γ0ĝ‖

by (5.6.29) and (5.6.27), it follows from

‖Γ′
1f̂a‖ = sup

‖Γ0ĝ‖=1

∣∣(Γ1f̂a,Γ0ĝ)
∣∣ ≤ C‖fa‖tS1

−a

that the operator Γ′
1 is bounded in the topology of HtS1

−a ×HtS1
−a. Hence, Γ

′
1 is

closed and the same is true for the inverse operator

(Γ′
1)

−1 : G ⊃ ranΓ′
1 → N̂a(S

∗).

Assume that (Γ′
1)

−1 is unbounded. Then there exists a sequence (ĝn) in N̂a(S
∗)

such that ‖gn‖tS1
−a = 1 and Γ′

1ĝn → 0 in G. From (5.6.29) and the definition of
Γ0 one obtains

1 = (gn, gn)tS1
−a = −(Γ′

1ĝn,Γ0ĝn) = −(Γ′
1ĝn,Λgn) ≤ ‖Γ′

1ĝn‖‖Λgn‖,
and as Λ : HtS1

−a → G is bounded this yields

1 ≤ C ′‖Γ′
1ĝn‖‖gn‖tS1

−a = C ′‖Γ′
1ĝn‖ → 0;

a contradiction. Hence, the operator (Γ′
1)

−1 is bounded. As (Γ′
1)

−1 is closed, it
follows that ranΓ′

1 = dom (Γ′
1)

−1 is closed, which together with (5.6.33) and
ranΓ1 = G shows (5.6.31).
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Step 7. First it will be verified that the mappings Γ0 and Γ1 form a boundary
triplet for S∗. Observe that (5.6.29) implies the Green identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ), f̂ , ĝ ∈ S∗.

It remains to show that

ran

(
Γ0

Γ1

)
= G× G. (5.6.34)

For this, let ϕ,ϕ′ ∈ G. From ranΓ0 = G in (5.6.17) and ranΓ1 = G in (5.6.31) it is

clear that there exist ĥ, k̂ ∈ S∗ such that Γ0ĥ = ϕ and Γ1k̂ = ϕ′. It follows from
the transversality S∗ = SF +̂ S1 that

ĥ = ĥF + ĥ1 and k̂ = k̂F + k̂1, ĥF, k̂F ∈ SF, ĥ1, k̂1 ∈ S1.

Define f̂ := ĥ1 + k̂F ∈ S∗. Making use of the facts that ker Γ0 = SF in (5.6.15)
and ker Γ1 = S1 in (5.6.30), one obtains

Γ0f̂ = Γ0ĥ1 = Γ0ĥ = ϕ,

Γ1f̂ = Γ1k̂F = Γ1k̂ = ϕ′,

which shows (5.6.34). Therefore, {G,Γ0,Γ1} is a boundary triplet for S∗.
Since ker Γ0 = SF and ker Γ1 = S1, and since Λ is an extension of Γ0, see

(5.6.10), one concludes that the boundary triplet {G,Γ0,Γ1} and the boundary
pair {G,Λ} are compatible; see Definition 5.6.4.

It remains to check that Γ1 constructed in (5.6.28)–(5.6.29) is uniquely de-
termined. Note that the mapping Γ0 and the kernel S1 of Γ1 are uniquely deter-
mined as the boundary triplet is required to be compatible with the boundary
pair {G,Λ}. Under these circumstances the action of Γ1 is uniquely determined by
formula (5.5.27) in Theorem 5.5.14. �

The following result gives a connection via a boundary pair {G,Λ} between
closed semibounded forms tH corresponding to semibounded self-adjoint exten-
sions H of S such that S1 ≤ H ≤ SF and closed nonnegative forms ω in G. A
similar result also involving boundary triplets follows later.

Theorem 5.6.11. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Λ} be a boundary pair for S corresponding to S1. Then the following statements
hold:

(i) If H is a semibounded self-adjoint extension of S such that S1 ≤ H, then
there exists a closed nonnegative form ω in G defined on domω = Λ(dom tH)
such that

tH [f, g] = tS1 [f, g] + ω[Λf,Λg], f, g ∈ dom tH . (5.6.35)

Moreover, the space Λ(domH) is a core of the form ω.
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(ii) If ω is a closed nonnegative form in G, then

t[f, g] = tS1
[f, g] + ω[Λf,Λg],

dom t =
{
f ∈ dom tS1 : Λf ∈ domω

}
,

(5.6.36)

is a closed semibounded form in H and the corresponding self-adjoint relation
H is a semibounded self-adjoint extension of S which satisfies S1 ≤ H.

The formulas (5.6.35) and (5.6.36) establish a one-to-one correspondence between
all closed nonnegative forms ω in G and all semibounded self-adjoint extensions H
of S satisfying the inequalities S1 ≤ H ≤ SF.

Proof. (i) Let H be a semibounded self-adjoint extension of S and let tH be the
corresponding closed semibounded form. By assumption, S1 ≤ H or, equivalently,
tS1 ≤ tH ; cf. Theorem 5.2.4. Hence, dom tH ⊂ dom tS1 and tS1 [f ] ≤ tH [f ] for all
f ∈ dom tH . Recall that tSF , as the closure of tS , satisfies tSF ⊂ tS1 and tSF ⊂ tH .
Since kerΛ = dom tSF , one concludes that the form

ω[Λf,Λg] := tH [f, g]− tS1 [f, g], domω = Λ(dom tH), f, g ∈ dom tH , (5.6.37)

is well defined and nonnegative in the Hilbert space G. To see that it is well defined,
just note that for f, g ∈ dom tH the Cauchy–Schwarz inequality shows∣∣tH [f, g]− tS1 [f, g]

∣∣ ≤ ∣∣tH [f, f ]− tS1 [f, f ]
∣∣ 1
2
∣∣tH [g, g]− tS1 [g, g]

∣∣ 1
2 ,

and hence tH [f, g] − tS1 [f, g] in (5.6.37) vanishes when either f or g belongs to
kerΛ = dom tSF .

Next it will be shown that the form ω is closed in G. To this end consider a
sequence (ϕn) in domω and assume that ϕn →ω ϕ for some ϕ ∈ G, that is, (ϕn)
is a sequence in domω = Λ(dom tH), such that

ϕn → ϕ ∈ G and ω[ϕn − ϕm] → 0. (5.6.38)

Since kerΛ = dom tSF
and

dom tSF ⊂ dom tH ⊂ dom tS1 =
(
dom tS1 �tS1

−a dom tSF

)⊕tS1
−a dom tSF

for a < m(S1), there exists a sequence (fn) in dom tH �tS1
−a dom tSF such that

Λfn = ϕn. Moreover, since ranΛ = G, there exists f ∈ dom tS1
�tS1

−a dom tSF

such that Λf = ϕ; see Proposition 5.3.7. Since the restriction of Λ to the space
dom tS1 �tS1

−a dom tSF has a bounded inverse (see the discussion following Def-
inition 5.6.1), it follows that fn → f in HtS1

−a. In particular, fn → f in H and
tS1 [fn − fm] → 0. Then (5.6.37) and (5.6.38) imply

tH [fn − fm] = tS1 [fn − fm] + ω[Λfn − Λfm]

= tS1
[fn − fm] + ω[ϕn − ϕm] → 0,
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and as tH is closed one concludes f ∈ dom tH and tH [fn − f ] → 0. This implies
ϕ = Λf ∈ domω. Furthermore, as tS1

is closed, also tS1
[fn − f ] → 0, and hence

ω[ϕn − ϕ] = ω[Λfn − Λf ] = tH [fn − f ]− tS1 [fn − f ] → 0,

so that ω is a closed form in G. It is clear that the definition of ω in (5.6.37) implies
the representation of tH in (i).

It remains to show that Λ(domH) is a core of ω. For this let ϕ ∈ domω
and choose f ∈ dom tH such that ϕ = Λf . As domH is a core of tH , there exists
a sequence (fn) in domH such that fn → f in H and tH [fn − f ] → 0. Then
0 ≤ (tS1

− a)[fn − f ] ≤ (tH − a)[fn − f ] → 0 and, in particular, one has fn → f
in HtS1

−a. Setting ϕn := Λfn one has ϕn ⊂ Λ(domH) and using the fact that Λ
is bounded one concludes that

ϕn = Λfn → Λf = ϕ

and
ω[ϕn − ϕ] = ω[Λfn − Λf ] = tH [fn − f ]− tS1 [fn − f ] → 0.

This shows that Λ(domH) is a core of ω.

(ii) Assume that ω is a closed nonnegative form in G. Then it is clear that the
form

t[f, g] = tS1 [f, g] + ω[Λf,Λg] (5.6.39)

defined on dom t = Λ−1(domω) ⊂ dom tS1
is semibounded and t[f ] ≥ tS1

[f ] holds
for all f ∈ dom t. To verify that t is closed consider a sequence (fn) in dom t such
that fn →t f for some f ∈ H, that is, fn → f in H and t[fn − fm] → 0. Since
the forms tS1

− a, a < m(S1), and ω are nonnegative, it follows from (5.6.39) and
(t− a)[fn − fm] → 0 that 0 ≤ (tS1 − a)[fn − fm] → 0 and ω[Λfn − Λfm] → 0. As
tS1

is a closed form in H, one concludes that f ∈ dom tS1
and tS1

[fn−f ] → 0. This
shows that fn converges to f in HtS1

−a and as Λ is bounded one has Λfn → Λf
in G. Moreover, since ω[Λfn − Λfm] → 0 and ω is closed in G, one concludes
that Λf ∈ domω and ω[Λfn − Λf ] → 0. Hence, f ∈ dom t = Λ−1(domω) and
t[fn − f ] → 0, and t is a closed form in H.

Let H be the semibounded self-adjoint relation associated with t via the
first representation theorem; see Theorem 5.1.18. Since dom tSF = kerΛ, it follows
from (5.6.36) that tSF ⊂ t. Hence, tS1 ≤ t ≤ tSF or, equivalently, S1 ≤ H ≤ SF;
see Theorem 5.2.4. One concludes from Theorem 5.4.6 (or its proof) that H is a
self-adjoint extension of S. This completes the proof of (ii).

The indicated one-to-one correspondence is clear from (i) and (ii) by the
uniqueness of the representing semibounded self-adjoint relation associated with
a closed semibounded form. �

A combination of Theorem 5.6.11 with Theorem 5.4.6 leads to the following
observations. Recall that the Krĕın type extensions SK,x and SF are transversal
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when x < γ = m(S) = m(SF) (see (5.4.26)) and that in the nonnegative case
γ ≥ 0 the Krĕın–von Neumann extension is given by SK,0; cf. Definition 5.4.2.

Corollary 5.6.12. Let S be a closed semibounded relation in H with lower bound γ.

(i) For x < γ and S1 = SK,x the formulas (5.6.35) and (5.6.36) establish a one-
to-one correspondence between all closed nonnegative forms ω in G and all
self-adjoint extensions H of S satisfying m(H) ≥ x.

(ii) If SK,γ and SF are transversal, then with S1 = SK,γ the formulas (5.6.35) and
(5.6.36) establish a one-to-one correspondence between all closed nonnegative
forms ω in G and all self-adjoint extensions H of S satisfying m(H) = γ.

(iii) If γ > 0, then with the Krĕın–von Neumann extension S1 = SK,0 the formulas
(5.6.35) and (5.6.36) establish a one-to-one correspondence between all closed
nonnegative forms ω in G and all nonnegative self-adjoint extensions H of
S. If γ = 0 the same is true if the Krĕın–von Neumann extension S1 = SK,0

and SF are transversal.

Theorem 5.6.11 is a first step towards a full description of all semibounded
self-adjoint extensions and their associated forms. The following result is a con-
tinuation of Theorem 5.5.14 for semibounded self-adjoint extensions (see Corol-
lary 5.5.15) and an extension of the first part of Theorem 5.6.11, in which also the
boundary conditions of the extensions and the corresponding forms are connected.

Theorem 5.6.13. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Γ0,Γ1} be a boundary triplet for S∗ and let {G,Λ} be a compatible boundary
pair for S corresponding to S1. Assume that HΘ is a semibounded self-adjoint
extension of S corresponding to the self-adjoint relation Θ in G as in (5.5.32)–
(5.5.33). Then Θ is semibounded in G and the corresponding closed semibounded
form ωΘ in G and the closed semibounded form tHΘ corresponding to HΘ are
related by

tHΘ [f, g] = tS1 [f, g] + ωΘ[Λf,Λg],

dom tHΘ =
{
f ∈ dom tS1 : Λf ∈ domωΘ

}
.

(5.6.40)

Proof. The proof of the theorem will rely on the results in Theorem 5.5.14 and
Corollary 5.5.15, where HΘ is now taken to be semibounded. In the first two steps
of the proof the equality between the forms in (5.6.40) will be verified. In the last
step the domain characterization in (5.6.40) will be shown.

Step 1. First recall from Corollary 5.5.15 the formula (5.5.34):

(f ′, g) = tS1
[f, g] + (Θop Γ0f̂ ,Γ0ĝ), f̂ , ĝ ∈ HΘ. (5.6.41)

Since HΘ is assumed to be semibounded, it follows from Theorem 5.1.18 that
(f ′, g) = tHΘ [f, g]. As the boundary pair {G,Λ} is compatible with the boundary
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triplet {G,Γ0,Γ1}, the mapping Λ is an extension of Γ0. Hence, (5.6.41) may now
be rewritten as

tHΘ [f, g] = tS1 [f, g] + (ΘopΛf,Λg), f, g ∈ domHΘ. (5.6.42)

Step 2. In this step it is shown that the formula (5.6.42) can be extended to
the form domain of tHΘ

as in (5.6.40). First observe that by Lemma 5.6.5 one
has A0 = SF. Moreover, since HΘ is a semibounded extension of S, it follows
from Proposition 5.5.6 that Θ is semibounded from below. Hence, (5.6.42) can be
written as

tHΘ [f, g] = tS1 [f, g] + ωΘ[Λf,Λg], f, g ∈ domHΘ, (5.6.43)

where ωΘ is the closed semibounded form corresponding to Θ in G. It follows from
Corollary 5.3.9 that

dom (HΘ − a)
1
2 ⊂ dom (S1 − a)

1
2 (5.6.44)

and hence there is a constant C > 0 such that

‖((S1)op − a)
1
2ϕ‖ ≤ C‖((HΘ)op − a)

1
2ϕ‖ (5.6.45)

for all ϕ ∈ dom (HΘ − a)
1
2 .

Now let f ∈ dom tHΘ
. As domHΘ is a core of tHΘ

, there exists a sequence
(fn) in domHΘ such that fn → f in H and tHΘ [fn − f ] → 0. By (5.6.44)–(5.6.45)
it follows that f ∈ dom tS1 and tS1 [fn−f ] → 0, so that fn → f in HtS1

−a. Since Λ
is bounded, this shows that Λfn → Λf in G. Furthermore, from (5.6.43) one sees
that

ωΘ[Λfn − Λfm] = tHΘ [fn − fm]− tS1 [fn − fm] → 0.

Since ωΘ is closed, one obtains

Λf ∈ domωΘ and ωΘ[Λfn − Λf ] → 0.

Therefore, the following inclusion has been shown

dom tHΘ ⊂ {
f ∈ dom tS1 : Λf ∈ domωΘ

}
. (5.6.46)

Let f, g ∈ dom tHΘ and choose (fn), (gn) in domHΘ as above. Then one has
tHΘ [fn, gn] → tHΘ [f, g], tS1 [fn, gn] → tS1 [f, g], and ωΘ[Λfn,Λgn] → ωΘ[Λf,Λg] as
n → ∞ by Lemma 5.1.8, and hence (5.6.43) extends to

tHΘ [f, g] = tS1 [f, g] + ωΘ[Λf,Λg], f, g ∈ dom tHΘ . (5.6.47)

Step 3. To complete the proof of the theorem the equality between the domains
in (5.6.40) must be verified. Due to (5.6.46) it suffices to show that{

f ∈ dom tS1 : Λf ∈ domωΘ

} ⊂ dom tHΘ .
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Let f ∈ dom tS1 and assume that ϕ = Λf ∈ domωΘ. Using the orthogonal decom-
position

dom tS1
=

(
dom tS1

�tS1
−a dom tSF

)⊕tS1
−a dom tSF

, a < m(S1), (5.6.48)

write f in the form f = h+k, where h ∈ dom tS1 �tS1
−a dom tSF and k ∈ dom tSF .

Then k ∈ dom tHΘ , and since kerΛ = dom tSF , one has ϕ = Λh. It remains to
show that h ∈ dom tHΘ

.

Recall that domΘ is a core of ωΘ. Hence, there exists a sequence (ϕn) in
domΘ such that ϕn →ωΘ ϕ, that is,

ϕn → ϕ ∈ G and ωΘ[ϕn − ϕm] → 0.

Note that ϕn ∈ domΘ means {ϕn, ϕ
′
n} ∈ Θ for some ϕ′

n ∈ G and there exists
{fn, f ′

n} ∈ HΘ such that Γ{fn, f ′
n} = {ϕn, ϕ

′
n}. Hence, Λfn = Γ0{fn, f ′

n} = ϕn,
where fn ∈ domHΘ ⊂ dom tHΘ ⊂ dom tS1 . Using (5.6.48), one can write fn in the
form

fn = hn + kn, hn ∈ dom tS1
�tS1

−a dom tSF
, kn ∈ dom tSF

.

From kerΛ = dom tSF it is clear that ϕn = Λfn = Λhn. Since the restriction of
Λ to dom tS1 �tS1

−a dom tSF has a bounded inverse it follows from ϕn → ϕ in G

that hn → h in HtS1
−a. In particular, hn → h in H and tS1

[hn − hm] → 0. Then it
follows from (5.6.47) that

tHΘ [hn − hm] = tS1 [hn − hm] + ωΘ[Λhn − Λhm]

= tS1
[hn − hm] + ωΘ[ϕn − ϕm] → 0,

and as tHΘ
is closed, one concludes that h ∈ dom tHΘ

. �

One may apply the second representation theorem (Theorem 5.1.23) to the
closed form ωΘ in Theorem 5.6.13. Assume that μ ≤ m(Θ), then it follows that

ωΘ[Λf,Λg] =
(
(Θop − μ)

1
2Λf, (Θop − μ)

1
2Λg

)
+ μ (Λf,Λg) ,

domωΘ = dom (Θop − μ)
1
2 .

Hence, one obtains the following result; cf. Corollary 5.5.15.

Corollary 5.6.14. Let the assumptions be as in Theorem 5.6.13 and let μ ≤ m(Θ).
Then the closed semibounded form tHΘ corresponding to HΘ is given by

tHΘ [f, g] = tS1 [f, g] +
(
(Θop − μ)

1
2Λf, (Θop − μ)

1
2Λg

)
+ μ (Λf,Λg) ,

dom tHΘ =
{
f ∈ dom tS1 : Λf ∈ dom (Θop − μ)

1
2

}
.

Furthermore, if Θop ∈ B(Gop), then

tHΘ [f, g] = tS1 [f, g] +
(
ΘopΛf,Λg

)
,

dom tHΘ =
{
f ∈ dom tS1 : Λf ∈ domΘop

}
,

(5.6.49)

and in the special case Θ ∈ B(G)

tHΘ [f, g] = tS1 [f, g] +
(
ΘΛf,Λg

)
, dom tHΘ = dom tS1 .
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Example 5.6.15. Let S be a closed semibounded relation in H with lower bound
γ, fix x < γ, and consider the boundary triplet {Nx(S

∗),Γ0,Γ1} for S∗ in Corol-
lary 5.5.12 and the corresponding compatible boundary pair {Nx(S

∗),Λ} in Ex-
ample 5.6.9. Assume that HΘ is a semibounded self-adjoint extension of S corre-
sponding to the self-adjoint relation Θ in Nx(S

∗) as in (5.5.32)–(5.5.33). Then Θ
is semibounded in Nx(S

∗) and the corresponding closed semibounded form ωΘ in
Nx(S

∗) and the closed semibounded form tHΘ
corresponding to HΘ are related by

tHΘ
[f, g] = tSK,x

[f, g] + ωΘ[fx, gx],

dom tHΘ =
{
f = fF + fx ∈ dom tSF +Nx(S

∗) : fx ∈ domωΘ

}
.

Let HΘ be a semibounded self-adjoint extension of S corresponding to the
self-adjoint relation Θ in G as in (5.5.32)–(5.5.33). The first boundary condition

in (5.5.33) is the essential boundary condition given by Γ0f̂ ∈ domΘop . Since HΘ

is now assumed to be semibounded, it follows from f ∈ domS∗ ⊂ domΛ that this
condition can be written as

Λf = Γ0f̂ ∈ domΘop ⊂ dom (Θop − μ)
1
2 , μ ≤ m(Θ),

which implies that f ∈ dom tHΘ
. The second boundary condition in (5.5.33) is

the natural boundary condition given by Pop Γ1f̂ = Θop Γ0f̂ . It is subsumed in the
additive term in the structure of the form tHΘ

:(
(Θop − μ)

1
2Λf, (Θop − μ)

1
2Λg

)
+ μ (Λf,Λg) ;

cf. Corollary 5.5.15, which in case of a bounded operator part Θop simplifies to(
ΘopΛf,Λg

)
;

cf. (5.6.49). In particular, the elements in domHΘ satisfy an essential boundary
condition if and only if domΘ 	= G, that is, Θ 	∈ B(G). Note that the extreme case

domΘ = {0} corresponds to Λf = 0 and Γ0f̂ = 0, i.e., f ∈ dom tSF and f̂ ∈ SF.

Remark 5.6.16. In Theorem 5.6.11 a one-to-one correspondence between the closed
nonnegative forms ω in G and the semibounded self-adjoint extensions H of S in
H satisfying S1 ≤ H ≤ SF is established. For closed semibounded forms ω in G the
situation is different: Although Theorem 5.6.13 shows that for each semibounded
self-adjoint extensionH = HΘ of S there exists a closed semibounded form ω = ωΘ

in G such that
tH [f, g] = tS1 [f, g] + ω[Λf,Λg], (5.6.50)

one can also see that for an arbitrary closed semibounded form ω in G the right-
hand side in (5.6.50) is not necessarily bounded from below. However, if, e.g., ω is
a symmetric form with domω = G such that for some a ≥ 0 and b ∈ [0, 1)

|ω[Λf ]| ≤ a‖f‖2 + btS1 [f ], f ∈ dom tS1 ,
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then Theorem 5.1.16 shows that tH in (5.6.50) is a closed semibounded form with
dom tH = dom tS1

in H. In particular, in this situation the corresponding self-
adjoint extension H of S is semibounded.

Recall from Proposition 5.5.8 that in the case of finite defect numbers or in
the case that SF has a compact resolvent the implication

Θ semibounded in G ⇒ HΘ semibounded in H

holds. The following corollary supplements Theorem 5.6.13 and can be seen as an
extension and completion of the second part of Theorem 5.6.11. When the defect
numbers are not finite or the resolvent of SF is not compact there is in general no
analog of the second part of Theorem 5.6.11.

Corollary 5.6.17. Let S be a closed semibounded relation in H and let S1 be a
semibounded self-adjoint extension of S such that S1 and SF are transversal. Let
{G,Γ0,Γ1} be a boundary triplet for S∗, let {G,Λ} be a compatible boundary pair for
S corresponding to S1 and assume, in addition, that one of the following conditions
hold:

(i) the defect numbers of S are finite;

(ii) (SF − λ)−1 is a compact operator for some λ ∈ ρ(SF).

Let Θ be a semibounded self-adjoint relation in G and let HΘ be the corresponding
self-adjoint extension of S as in (5.5.32)–(5.5.33). Then HΘ is semibounded and
the closed semibounded forms tHΘ

and ωΘ are related by (5.6.40).

The following corollary complements Corollary 5.6.12 (iii). If the symmetric
relation S is positive a natural choice for S1 is the Krĕın–von Neumann extension
SK,0. A possible explicit choice for the boundary triplet can be found in Exam-
ple 5.5.13.

Corollary 5.6.18. Let S be a closed semibounded relation in H with lower bound
γ > 0, let {G,Γ0,Γ1} be a boundary triplet for S∗, and let {G,Λ} be a compatible
boundary pair for S corresponding to the Krĕın–von Neumann extension SK,0.
Then the formula

tHΘ
[f, g] = tSK,0

[f, g] +
(
Θ

1
2
opΛf,Θ

1
2
opΛg

)
,

dom tHΘ
=

{
f ∈ dom tSK,0

: Λf ∈ domΘ
1
2
op

}
,

(5.6.51)

establishes a one-to-one correspondence between all closed nonnegative forms tHΘ

corresponding to nonnegative self-adjoint extensions HΘ of S in H and all closed
nonnegative forms ωΘ corresponding to nonnegative self-adjoint relations Θ in G.

Proof. By assumption, one has SK,0 = ker Γ1 and hence the Weyl function M
corresponding to {G,Γ0,Γ1} satisfies M(0) = 0 by Corollary 5.5.2 (viii). Assume
that HΘ is a nonnegative self-adjoint extension of S with corresponding closed
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nonnegative form tHΘ . Since γ > 0, Proposition 5.5.6 with x = 0 shows that the
self-adjoint relation Θ in G is nonnegative. Formula (5.6.51) follows from Theo-
rem 5.6.13 and Corollary 5.6.14 with μ = 0. Conversely, if Θ is a nonnegative
self-adjoint relation in G, then Theorem 5.6.11 (ii) shows that HΘ is a nonnegative
self-adjoint extension of S and (5.6.51) holds. �

In the next corollary the ordering of semibounded self-adjoint extensions is
translated in the ordering of the corresponding parameters.

Corollary 5.6.19. Let S be a closed semibounded relation in H and let {G,Γ0,Γ1}
be a boundary triplet for S∗. Assume that

ker Γ0 = SF and ker Γ1 = S1,

where SF is the Friedrichs extension and S1 is a semibounded self-adjoint extension
of S. Let HΘ1 and HΘ2 be semibounded self-adjoint extensions of S corresponding
to the semibounded self-adjoint relations Θ1 and Θ2. Then

HΘ1 ≤ HΘ2 ⇔ Θ1 ≤ Θ2. (5.6.52)

In particular, S1 ≤ HΘ2 ⇔ 0 ≤ Θ2.

Proof. Let {G,Λ} be a compatible boundary pair for S corresponding to S1 as in
Theorem 5.6.6. Then according to Theorem 5.6.13 one has the following identities

tHΘ1
[f, g] = tS1 [f, g] + ωΘ1 [Λf,Λg],

dom tHΘ1
=

{
f ∈ dom tS1

: Λf ∈ domωΘ1

}
,

(5.6.53)

and

tHΘ2
[f, g] = tS1 [f, g] + ωΘ2 [Λf,Λg],

dom tHΘ2
=

{
f ∈ dom tS1 : Λf ∈ domωΘ2

}
.

(5.6.54)

Recall from Theorem 5.2.4 that HΘ1
≤ HΘ2

if and only if tHΘ1
≤ tHΘ2

. This last
statement means by definition that

dom tHΘ2
⊂ dom tHΘ1

and tHΘ1
[f ] ≤ tHΘ2

[f ], f ∈ dom tHΘ2
, (5.6.55)

which, via (5.6.53) and (5.6.54), is equivalent to

dom tHΘ2
⊂ dom tHΘ1

and ωΘ1 [Λf ] ≤ ωΘ2 [Λf ], f ∈ dom tHΘ2
. (5.6.56)

Assume now that HΘ1 ≤ HΘ2 , i.e., that (5.6.56) (and (5.6.55)) holds. First
it will be shown that dom tHΘ2

⊂ dom tHΘ1
implies that

domΘ2 ⊂ domωΘ1 . (5.6.57)
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To see this, let ϕ ∈ domΘ2. Then {ϕ,ϕ′} ∈ Θ2 for some ϕ′ ∈ G. Now choose
{f, f ′} ∈ HΘ2

⊂ S∗ with the property Γ{f, f ′} = {ϕ,ϕ′}. Then it follows that
Λf = Γ0{f, f ′} = ϕ. Furthermore, since f ∈ domS∗ ⊂ dom tS1

and

ϕ = Λf ∈ domΘ2 ⊂ domωΘ2 ,

it follows from dom tHΘ2
⊂ dom tHΘ1

that ϕ = Λf ∈ domωΘ1 . Hence, (5.6.57)
has been shown. Next observe that due to the previous reasoning the inequality
in (5.6.56) gives

ωΘ1 [ϕ] ≤ ωΘ2 [ϕ], ϕ ∈ domΘ2. (5.6.58)

Denote the restriction of the form ωΘ2 to domΘ2 by ω̊Θ2 . Then the inclusion
(5.6.57) and the inequality (5.6.58) can be written as

ωΘ1
≤ ω̊Θ2

, (5.6.59)

and, since domΘ2 is a core of ωΘ2
, it follows from (5.6.59) and Lemma 5.2.2 (v)

that
ωΘ1 ≤ ωΘ2 or, equivalently, Θ1 ≤ Θ2.

Hence, HΘ1 ≤ HΘ2 implies that Θ1 ≤ Θ2.

For the converse statement assume Θ1 ≤ Θ2 or, equivalently, ωΘ1 ≤ ωΘ2 ,
i.e.,

domωΘ2
⊂ domωΘ1

and ωΘ1
[ϕ] ≤ ωΘ2

[ϕ], ϕ ∈ domωΘ2
. (5.6.60)

It will be shown that (5.6.56) holds. Let f ∈ dom tHΘ2
, so that f ∈ dom tS1

and
Λf ∈ domωΘ2 . Then it follows from (5.6.60) that also Λf ∈ domωΘ1 . Hence,
one sees that dom tHΘ2

⊂ dom tHΘ1
. Furthermore, if f ∈ dom tHΘ2

, then it fol-
lows directly from (5.6.60) that ωΘ1 [Λf ] ≤ ωΘ2 [Λf ]. Thus, (5.6.56) holds and one
concludes that H1 ≤ H2.

Finally, note that for the choice Θ1 = 0 one has HΘ1 = ker Γ1 = S1 and
hence the equivalence (5.6.52) takes the form S1 ≤ HΘ2 ⇔ 0 ≤ Θ2. �

If S is a semibounded relation in H with lower bound γ and one chooses HΘ1

to be the Krĕın type extension SK,x for some x ≤ γ in the previous corollary, then
the next statement follows from (5.5.1).

Corollary 5.6.20. Let the assumptions be as in Corollary 5.6.19 and let HΘ be a
semibounded self-adjoint extension of S corresponding to the self-adjoint relation
Θ in G as in (5.5.32)–(5.5.33). Then for any x ≤ m(S)

SK,x ≤ HΘ ⇔ M(x) ≤ Θ.



Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


	6
 Boundary Triplets and Boundary Pairs for Semibounded Relations
	5.1
Closed semibounded forms and their representations
	5.2
Ordering and monotonicity
	5.3
Friedrichs extensions of semibounded relations
	5.4
Semibounded self-adjoint extensions and their lower bounds
	5.5
Boundary triplets for semibounded relations
	5.6
Boundary pairs and boundary triplets




