
Chapter 3

Spectra, Simple Operators,
and Weyl Functions

In this chapter the spectrum of a self-adjoint operator or relation will be com-
pletely characterized in terms of the analytic behavior and the limit properties
of the Weyl function. In order to be able to treat the different parts of the spec-
trum, a short introduction to finite Borel measures on R and the corresponding
Borel transforms will be given in Section 3.1 and Section 3.2. The notions and some
properties of the absolutely continuous, singular continuous, pure point, and other
spectral subsets of a self-adjoint relation are recalled in Section 3.3. Moreover, the
concepts of simplicity (or complete non-self-adjointness) and local simplicity of
symmetric operators and relations will be explained in detail in Section 3.4. For a
boundary triplet {G,Γ0,Γ1} with corresponding Weyl function M , the spectrum of
the self-adjoint extension A0 = ker Γ0 is then characterized. An analytic descrip-
tion for the point spectrum of A0 in terms of M is given in Section 3.5, the rest
of the spectrum and its different parts, namely absolutely continuous, singular,
and continuous spectrum are studied in Section 3.6 under the additional condition
that the underlying symmetric relation S is simple or locally simple. The limit
properties of the Weyl function are also connected with defect elements belonging
to the domain or range of A0. This is discussed in Section 3.7. Finally, it is shown
with the help of tranformation properties of boundary triplets and Weyl functions
in Section 3.8 how the earlier results in this chapter extend to a description of the
spectrum of an arbitrary self-adjoint extension AΘ.

3.1 Analytic descriptions of minimal supports
of Borel measures

A Borel measure on R can be decomposed with respect to the Lebesgue measure
into an absolutely continuous measure and a singular measure. The minimal sup-
ports of the measure and its parts can be described by means of the derivative of
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the measure. The present interest is in an analytic description of these minimal
supports in terms of the Borel transform. For the convenience of the reader, a brief
review on Borel measures on R and some properties of their Borel transforms are
recalled.

In the following let μ be a regular Borel measure on R and denote the
Lebesgue measure on R by m. Recall that any Borel measure on R which is fi-
nite on compact sets is automatically regular. Associated with the regular Borel
measure μ is the nondecreasing, left-continuous function

νμ(x) =

⎧⎪⎨⎪⎩
μ([0, x)), x > 0,

0, x = 0,

−μ([x, 0)), x < 0,

(3.1.1)

on R. Observe that νμ is bounded if and only if μ is a finite measure, that the
derivative ν′μ of the nondecreasing function νμ exists m-almost everywhere, and
that

μ([x, y)) = νμ(y)− νμ(x), x < y. (3.1.2)

It is important to note that via (3.1.2) the function νμ induces a Lebesgue-Stieltjes
measure on R, which is a complete measure that coincides with the completion of
μ. In the following it is often more convenient to work with this completion, which
will also be denoted by μ, and the corresponding μ-measurable subsets of R.

The regular Borel measure μ has a Lebesgue decomposition with respect to
the Lebesgue measure m:

μ = μac + μs,

where the measure μac is absolutely continuous and the measure μs is singular,
each with respect to the Lebesgue measure. The singular measure μs is further
decomposed into the singular continuous part μsc and the pure point part μp, so
that

μ = μac + μsc + μp.

The corresponding nondecreasing, left-continuous functions νμac , νμsc , and νμp

defined via (3.1.1), are absolutely continuous, continuous with ν′μsc
= 0 m-almost

everywhere, and a step function, respectively, and

νμ = νμac
+ νμsc

+ νμp
.

Furthermore,

μac(B) =

∫
B

ν′μ(x) dm(x) (3.1.3)

for all Borel sets B, and hence the derivative ν′μ coincides with the Radon–
Nikodým derivative of μac m-almost everywhere.
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For x ∈ R the derivative μ′(x) of the Borel measure μ with respect to the
Lebesgue measure m is defined by

μ′(x) = lim
m(Ix) ↓ 0

{
μ(Ix)

m(Ix)
: Ix an interval containing x

}
, (3.1.4)

whenever the limit exists and takes values in [0,∞]. It can be shown that the sets

E0 =
{
x ∈ R : μ′(x) exists finitely

}
(3.1.5)

and

E =
{
x ∈ R : μ′(x) exists finitely or infinitely

}
(3.1.6)

are Borel sets, and for the set R \ E0 on which the derivative μ′ does not exist
finitely one has that

m(R \ E0) = 0, (3.1.7)

while for the set R\E on which the derivative μ′ does not exist finitely or infinitely
one has that

m(R \ E) = 0 and μ(R \ E) = 0; (3.1.8)

note that R \ E ⊂ R \ E0. Recall also that the derivative ν′μ of the function νμ
in (3.1.2) and the derivative μ′ in (3.1.4) of the measure μ coincide m-almost
everywhere.

A μ-measurable set S ⊂ R is called a support of μ if μ(R \ S) = 0. In
particular, this implies that μ(A) = μ(A ∩S) for all μ-measurable sets A ⊂ R. A
support S ⊂ R of μ is called minimal if for subsets S0 ⊂ S that are μ-measurable
and m-measurable, μ(S0) = 0 implies m(S0) = 0. A minimal support is not
uniquely defined. The next auxiliary lemma provides some useful properties of
minimal supports.

Lemma 3.1.1. Let μ be a Borel measure on R and let S,S′ ⊂ R be sets that are
measurable with respect to μ and m.

(i) If S and S′ are minimal supports for μ, then the symmetric difference SΔS′

satisfies μ(SΔS′) = 0 and m(SΔS′) = 0.

(ii) If S is a minimal support for μ while μ(S\S′) = 0 and m(S′ \S) = 0, then
S′ is a minimal support of μ. In particular, if S is a minimal support for μ
and S ⊂ S′ is such that m(S′ \S) = 0, then S′ is a minimal support of μ.

Proof. (i) Since SΔS′ ⊂ ((R \S)∪ (R \S′)) and both S and S′ are supports for
μ, one has

μ(SΔS′) ≤ μ(R \S) + μ(R \S′) = 0.

In particular, μ(S \S′) = 0. Now S \S′ ⊂ S is μ-measurable and m-measurable,
and sinceS is a minimal support, it follows thatm(S\S′) = 0. A similar argument
shows that m(S′ \S) = 0. Hence, m(SΔS′) = 0.
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(ii) From R \S′ = ((R \S) ∪ (S \S′)) \ (S′ \S) one concludes that

μ(R \S′) ≤ μ(R \S) + μ(S \S′).

Since S is a support of μ and it is assumed that μ(S \ S′) = 0, it follows that
μ(R \S′) = 0. Hence, S′ is a support of μ.

To prove that S′ is a minimal support for μ, let S0 ⊂ S′ be μ-measurable
and m-measurable, and assume that m(S0) > 0. Since

S0 = (S0 ∩S) ∪ (S0 ∩ (S′ \S)
)

(3.1.9)

and m(S′ \S) = 0 by assumption, it follows that m(S0 ∩S) = m(S0) > 0. As S
is a minimal support for μ, this implies μ(S0 ∩S) > 0. Therefore, (3.1.9) leads to

μ(S0) = μ(S0 ∩S) + μ
(
S0 ∩ (S′ \S)

) ≥ μ(S0 ∩S) > 0.

Thus, S′ is a minimal support for μ. �

Minimal supports for the parts of the spectrum in the Lebesgue decompo-
sition can be expressed in terms of the behavior of the derivative μ′; cf. [335,
Lemma 4] (see also [676, 682]).

Theorem 3.1.2. Let μ be a regular Borel measure on R. Then the following sets

(i) {x ∈ E : 0 < μ′(x) ≤ ∞};
(ii) {x ∈ E : 0 < μ′(x) < ∞};
(iii) {x ∈ E : μ′(x) = ∞};
(iv) {x ∈ E : μ′(x) = ∞, μ({x}) = 0};
(v) {x ∈ E : μ′(x) = ∞, μ({x}) > 0},
are minimal supports for μ, μac, μs, μsc, and μp, respectively.

For practical reasons the attention is now restricted to finite Borel measures
on R. The properties of such measures are reflected by the boundary behavior of
their so-called Borel transform in a sense to be made precise; cf. Appendix A.

Definition 3.1.3. Let μ be a finite Borel measure on R. Then the Borel transform
F of μ is the function F defined by

F (λ) =

∫
R

1

t− λ
dμ(t), λ ∈ C \ R. (3.1.10)

If for some x ∈ R the limit limy ↓ 0 F (x+ iy) exists and takes values in [0,∞],
it will be denoted by F (x + i0). The set of points in R where the limit of the
imaginary part of F exists and takes values in [0,∞] is denoted by

F =
{
x ∈ R : ImF (x+ i0) exists finitely or infinitely

}
. (3.1.11)
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It follows from the integral representation (3.1.10) that

yReF (x+ iy) =

∫
R

(t− x)y

(t− x)2 + y2
dμ(t),

y ImF (x+ iy) =

∫
R

y2

(t− x)2 + y2
dμ(t),

and hence, by dominated convergence,

lim
y ↓ 0

yReF (x+ iy) = 0 and lim
y ↓ 0

y ImF (x+ iy) = μ({x}) (3.1.12)

for all x ∈ R; cf. Lemma A.2.6. In particular,

lim
y ↓ 0

y F (x+ iy) = lim
y ↓ 0

iy ImF (x+ iy) (3.1.13)

for all x ∈ R. Note also that the Borel transform F is a Nevanlinna function (see
Definition A.2.3) and μ(R) = supy>0 y ImF (iy). Conversely, every Nevanlinna
function F with

sup
y>0

y ImF (iy) < ∞ and lim
y→∞F (iy) = 0

is the Borel transform of a finite Borel measure μ as in (3.1.10); cf. Proposi-
tion A.5.3.

An important observation concerning the boundary values ImF (x + i0) is
contained in the following theorem, which is formulated in terms of the symmetric
derivative

(Dμ)(x) = lim
ε ↓ 0

μ((x− ε, x+ ε))

2ε
(3.1.14)

of μ. Here the limit is assumed to take values in [0,∞]. Note that if for some x ∈ R
the derivative μ′(x) in (3.1.4) exists with values in [0,∞], then the same is true
for the symmetric derivative (Dμ)(x).

Theorem 3.1.4. Let μ be a finite Borel measure on R, let F be its Borel transform,
and let x ∈ R. If the symmetric derivative (Dμ)(x) exists with values in [0,∞],
then also ImF (x+ i0) exists with values in [0,∞] and

ImF (x+ i0) = π(Dμ)(x) (∈ [0,∞]). (3.1.15)

In particular, the following statements hold:

(i) ImF (x+ i0) and (Dμ)(x) exist simultaneously finitely m-almost everywhere
and (3.1.15) holds;

(ii) ImF (x+ i0) and (Dμ)(x) exist simultaneously finitely or infinitely μ-almost
everywhere and m-almost everywhere and (3.1.15) holds.

Proof. Assume first that the symmetric derivative (Dμ)(x) exists in [0,∞) for
some x ∈ R and choose c−, c+ ∈ R with c− < (Dμ)(x) < c+. From the definition
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(3.1.14) it follows that there exists δ > 0 such that

2c−ε ≤ μ(Iε) ≤ 2c+ε, Iε := (x− ε, x+ ε), (3.1.16)

holds for all ε ∈ (0, δ]. In the following set Ky(s) :=
y

s2+y2 for y > 0 and s ∈ R.
Then one has

ImF (x+ iy) =

∫
R

y

(x− t)2 + y2
dμ(t)

=

∫
R
Ky(x− t) dμ(t)

=

∫
Iδ

Ky(x− t) dμ(t) +

∫
R\Iδ

Ky(x− t) dμ(t)

(3.1.17)

for y > 0. First one estimates the second term on the right-hand side in (3.1.17).
Since t ∈ R \ Iδ, one has |t − x| ≥ δ, so that 0 ≤ Ky(t − x) ≤ Ky(δ). Then it is
clear that

0 ≤
∫
R\Iδ

Ky(x− t) dμ(t) ≤ Ky(δ)μ(R) → 0 (3.1.18)

for y ↓ 0. In order to estimate the first integral on the right-hand side in (3.1.17)
one uses the identity∫

Iδ

Ky(t− x) dμ(t) = μ(Iδ)Ky(δ)−
∫ δ

0

K ′
y(ε)μ(Iε) dε. (3.1.19)

To prove (3.1.19), observe that∫ δ

0

K ′
y(ε)μ(Iε) dε =

∫ δ

0

∫ x+ε

x−ε

K ′
y(ε) dμ(t) dε

=

∫ x

x−δ

∫ δ

x−t

K ′
y(ε) dε dμ(t) +

∫ x+δ

x

∫ δ

t−x

K ′
y(ε) dε dμ(t)

= μ(Iδ)Ky(δ)−
∫ x+δ

x−δ

Ky(t− x) dμ(t),

where Fubini’s theorem on the triangle in the (t, ε)-plane given by ε = t − x,
ε = x − t, with 0 ≤ ε ≤ δ, was used. Now integration by parts, the fact that
(3.1.16), −K ′

y(ε) ≥ 0 for ε, y > 0, and (3.1.19) give the estimate

2c− arctan(δ/y) = 2c−
∫ δ

0

Ky(ε) dε

= 2c−δKy(δ) + 2c−
∫ δ

0

(−εK ′
y(ε)) dε

≤ μ(Iδ)Ky(δ)−
∫ δ

0

K ′
y(ε)μ(Iε) dε

=

∫
Iδ

Ky(t− x) dμ(t).
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In the same way one verifies the estimate∫
Iδ

Ky(t− x) dμ(t) ≤ 2c+ arctan(δ/y).

It follows that

πc− ≤ lim inf
y ↓ 0

∫
Iδ

Ky(t− x) dμ(t) ≤ lim sup
y ↓ 0

∫
Iδ

Ky(t− x) dμ(t) ≤ πc+.

Now (3.1.18) and (3.1.17) imply

πc− ≤ lim inf
y ↓ 0

ImF (x+ iy) ≤ lim sup
y ↓ 0

ImF (x+ iy) ≤ πc+.

Letting c− ↑ (Dμ)(x) and c+ ↓ (Dμ)(x), one obtains

lim
y ↓ 0

ImF (x+ iy) = π(Dμ)(x).

Next the case where the symmetric derivative (Dμ)(x) exists and equals ∞
for some x ∈ R is discussed. In this situation the above reasoning leads to

πc− ≤ lim inf
y ↓ 0

ImF (x+ iy)

for all c− > 0. This yields limy↓0 ImF (x+ iy) = ∞.

It remains to show assertions (i) and (ii). Recall that if μ′(x) exists at some
point x ∈ R, then so does the symmetric derivative (Dμ)(x) and

μ′(x) = (Dμ)(x),

with equality in [0,∞]. For (ii) the above reasoning implies that the set E in (3.1.6)
is contained in the set F in (3.1.11) and hence μ(R \ F) = 0 and m(R \ F) = 0 by
(3.1.8). Assertion (i) follows in the same way from (3.1.5) and (3.1.7). �

It follows from Theorem 3.1.4 and (3.1.12) that Theorem 3.1.2 has a coun-
terpart expressing minimal supports in terms of the Borel transform of μ.

Theorem 3.1.5. Let μ be a finite Borel measure and let F be its Borel transform.
Then the sets

(i) {x ∈ F : 0 < ImF (x+ i0) ≤ ∞};
(ii) {x ∈ F : 0 < ImF (x+ i0) < ∞};
(iii) {x ∈ F : ImF (x+ i0) = ∞};
(iv) {x ∈ F : ImF (x+ i0) = ∞, limy↓0 y ImF (x+ iy) = 0};
(v) {x ∈ F : ImF (x+ i0) = ∞, limy↓0 y ImF (x+ iy) > 0},
are minimal supports for μ, μac, μs, μsc, and μp, respectively.
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Proof. Only statement (i) will be proved. The proofs of the other statements are
similar. Let

M =
{
x ∈ E : 0 < μ′(x) ≤ ∞},

and note that M is a Borel set. Recall that, by Theorem 3.1.2 (i), M is a minimal
support for μ. Now introduce the set

M′ =
{
x ∈ F : 0 < ImF (x+ i0) ≤ ∞},

which is also a Borel set, as ImF (x + iy), y > 0, and hence ImF (x + i0) are
Borel measurable functions in x. Then Theorem 3.1.4 shows that M ⊂ M′ and
furthermore one has

M′ \M ⊂ R \ E.
Since m(R\E) = 0 according to (3.1.8), it follows that m(M′\M) = 0 and as

M ⊂ M′, and M is a minimal support for μ, one concludes from Lemma 3.1.1 (ii)
that M′ is a minimal support for μ. �

Most of the results in this section have been stated in the context of finite
Borel measures on R and their Borel transforms. They will be applied to study the
spectrum of self-adjoint relations and operators in Section 3.6. However, it is also
useful for later references to have similar results in the more general context of
scalar Nevanlinna functions and the corresponding spectral functions; cf. Chapter 6
and Chapter 7. Let N be a scalar Nevanlinna function of the form

N(λ) = α+ βλ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dτ(t), λ ∈ C \ R, (3.1.20)

where α ∈ R, β ≥ 0, and τ is a Borel measure on R which satisfies∫
R

1

t2 + 1
dτ(t) < ∞; (3.1.21)

cf. Theorem A.2.5. Then the last condition implies that μ defined by

dμ(t) =
dτ(t)

t2 + 1
(3.1.22)

is a finite Borel measure on R. Let F be the Borel transform of μ:

F (λ) =

∫
R

1

t− λ
dμ(t), λ ∈ C \ R. (3.1.23)

The connection between N and F is given in the following lemma.

Lemma 3.1.6. The Nevanlinna function N in (3.1.20) and the Borel transform F
in (3.1.23) are connected by

N(λ) = a+ bλ+ (λ2 + 1)F (λ), λ ∈ C \ R, (3.1.24)
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where a, b ∈ R. If x ∈ R, then the limits ImN(x + i0) and ImF (x + i0) exist
simultaneously with values in [0,∞], and in that case

ImN(x+ i0) = (x2 + 1)ImF (x+ i0) (∈ [0,∞]). (3.1.25)

Moreover, for each x ∈ R,

lim
y ↓ 0

yReN(x+ iy) = 0 (3.1.26)

and
lim
y ↓ 0

y ImN(x+ iy) = (x2 + 1) lim
y ↓ 0

y ImF (x+ iy). (3.1.27)

Proof. It is an immediate consequence of the integral representation (3.1.20) that
N can be rewritten as

N(λ) = α+ λ

(
β +

∫
R
dμ(t)

)
+ (λ2 + 1)

∫
R

1

t− λ
dμ(t), λ ∈ C \ R;

cf. Theorem A.2.4. This leads to (3.1.24). Note that for λ = x+ iy one has

N(x+ iy) = a+ b(x+ iy) + ((x+ iy)2 + 1)F (x+ iy),

whence

ImN(x+ iy) = by + (x2 + 1− y2)ImF (x+ iy) + 2xyReF (x+ iy).

Now observe that for each x ∈ R one has limy↓0 yReF (x + iy) = 0 by (3.1.12).
Together with the previous identity this proves the assertion in (3.1.25). Further-
more, now one sees (3.1.27) directly; cf. (3.1.12). Finally, note that

ReN(x+ iy) = a+ bx+ (x2 + 1− y2)ReF (x+ iy)− 2xyImF (x+ iy),

which together with (3.1.12) leads to the identity (3.1.26). �

The next corollary deals with the existence of the limit limε↓0 N(x + iε) for
any scalar Nevanlinna function N .

Corollary 3.1.7. Let N be a scalar Nevanlinna function. Then the limit N(x+ i0)
exists finitely m-almost everywhere.

Proof. It is clear from (3.1.25) and Theorem 3.1.4 that limε ↓ 0 ImN(x+ iε) exists
finitely m-almost everywhere. Hence, it suffices to show that

lim
ε ↓ 0

ReN(x+ iε) (3.1.28)

exists finitely m-almost everywhere. Denote by
√· the branch of the square root

fixed by Im
√
λ > 0 for λ ∈ C\ [0,∞) and

√
λ ≥ 0 for λ ∈ [0,∞). Then it is easy to
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see that Im
√
N(λ) ≥ 0 and Im (i

√
N(λ)) ≥ 0 for λ ∈ C+ and hence λ �→√

N(λ)

and λ �→ i
√
N(λ) are scalar Nevanlinna functions when they are extended to C−

by symmetry. It follows from (3.1.25) and Theorem 3.1.4 that the limits

lim
ε ↓ 0

Im
√

N(x+ iε) and lim
ε ↓ 0

Re
√

N(x+ iε) = lim
ε ↓ 0

Im
(
i
√

N(x+ iε)
)

exist finitely m-almost everywhere. Since

ReN(x+ iε) =
(
Re
√
N(x+ iε)

)2 − (Im√N(x+ iε)
)2

it follows that the limit in (3.1.28) exists finitely m-almost everywhere. �

Let τ be the Borel measure on R in (3.1.20) which satisfies the condition
(3.1.21). It has the Lebesgue decomposition

τ = τac + τs, τs = τsc + τp,

where τac is absolutely continuous, τs is singular, τsc is singular continuous, and
τp is pure point. In the next corollary, which is a consequence of Theorem 3.1.5,
(3.1.22), and (3.1.25), minimal supports for these measures are expressed in terms
of the boundary behavior of N .

Corollary 3.1.8. Let N be a Nevanlinna function with the integral representation
(3.1.20). Then the sets

(i) {x ∈ F : 0 < ImN(x+ i0) ≤ ∞};
(ii) {x ∈ F : 0 < ImN(x+ i0) < ∞};
(iii) {x ∈ F : ImN(x+ i0) = ∞};
(iv) {x ∈ F : ImN(x+ i0) = ∞, limy↓0 y ImN(x+ iy) = 0};
(v) {x ∈ F : ImN(x+ i0) = ∞, limy↓0 y ImN(x+ iy) > 0},
are minimal supports for τ , τac, τs, τsc, and τp, respectively.

3.2 Growth points of finite Borel measures

Let μ be a finite Borel measure on R. In this section the set of its growth points
σ(μ), defined by

σ(μ) =
{
x ∈ R : μ

(
(x− ε, x+ ε)

)
> 0 for all ε > 0

}
, (3.2.1)

is studied. The growth points σ(μ) and the growth points σ(μac), σ(μs), and
σ(μsc) of the absolutely continuous, singular, and singular continuous part of μ
will be located by means of the minimal supports expressed in terms of the Borel
transform of μ.

There is an intimate connection between the set of growth points σ(μ) and
supports for μ.
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Lemma 3.2.1. Let μ be a finite Borel measure on R. Then the following statements
hold:

(i) If S ⊂ R is a support of μ, then σ(μ) ⊂ S.

(ii) The set σ(μ) is closed and it is a support of μ.

Proof. (i) Let S be a support of μ, so that μ(R \S) = 0. Assume that x ∈ σ(μ),
so that for any ε > 0 one has μ((x − ε, x + ε)) > 0. Since S is a support of μ, it
follows that

0 < μ
(
(x− ε, x+ ε)

)
= μ
(
(x− ε, x+ ε) ∩S

)
,

which implies that for any ε > 0 the set (x − ε, x + ε) ∩ S is nonempty. Hence,
there exists a sequence xn ∈ (x − 1/n, x + 1/n) ∩S converging to x from inside
S. This shows that σ(μ) ⊂ S.

(ii) In order to show that σ(μ) is closed, let xn ∈ σ(μ) converge to x ∈ R. Assume
that x 	∈ σ(μ). Then there is ε > 0 such that μ((x− ε, x+ ε)) = 0. For this ε there
exist n0 ∈ N and ε0 > 0 with (xn0

− ε0, xn0
+ ε0) ⊂ (x− ε, x+ ε), and hence

μ
(
(xn0

− ε0, xn0
+ ε0)

) ≤ μ
(
(x− ε, x+ ε)

)
= 0,

a contradiction, since xn0 ∈ σ(μ). Therefore, x ∈ σ(μ) and σ(μ) is closed.

Next it will be verified that σ(μ) is a support for μ. For each x ∈ R \ σ(μ)
there is εx > 0 such that μ((x − εx, x + εx)) = 0. Since the set σ(μ) is closed, it
follows that the open intervals (x−εx, x+εx), x ∈ R\σ(μ), form an open cover for
R \ σ(μ). Then there is a countable subcover of open intervals In with μ(In) = 0
for R \ σ(μ). It follows that

μ(R \ σ(μ)) ≤
∑
n

μ(In) = 0

and hence μ(R \ σ(μ)) = 0, that is, σ(μ) is a support for μ. �

For completeness it is noted that in general the set σ(μ) is not a minimal
support of μ. Observe also that, by Lemma 3.2.1, the set of growth points σ(μ)
has the following minimality property: each closed support S ⊂ R of μ satisfies
σ(μ) ⊂ S. Therefore, one has the next corollary.

Corollary 3.2.2. Let μ be a finite Borel measure on R. Then σ(μ) is the smallest
closed support of μ.

The set of growth points of μ will now be described by means of the Borel
transform of μ.

Theorem 3.2.3. Let μ be a finite Borel measure on R and let F be its Borel trans-
form. Then

σ(μ) =
{
x ∈ R : 0 < lim inf

y ↓ 0
ImF (x+ iy)

}
.
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Proof. With the notation

N =
{
x ∈ R : 0 < lim inf

y ↓ 0
ImF (x+ iy)

}
it will be proved that σ(μ) = N. Recall first that, by Theorem 3.1.5 (i), the set

M′ =
{
x ∈ F : 0 < ImF (x+ i0) ≤ ∞}

is a (minimal) support for μ. Since M′ ⊂ N, it follows that N is also a support
for μ. Hence, Lemma 3.2.1 (i) yields σ(μ) ⊂ N. For the inclusion N ⊂ σ(μ) it
suffices to show N ⊂ σ(μ), since σ(μ) is closed; cf. Lemma 3.2.1 (ii). Assume that
x 	∈ σ(μ). Then there exists ε > 0 such that μ((x − ε, x + ε)) = 0 and it follows
from

ImF (x+ iy) =

∫
R\(x−ε,x+ε)

y

(t− x)2 + y2
dμ(t)

that ImF (x+ i0) = 0. This implies x 	∈ N and hence N ⊂ σ(μ). �

Analogous to Theorem 3.2.3 there are also results for the parts of the finite
Borel measure μ on R in its Lebesgue decomposition. In order to describe these
results one needs the following notions of closure.

Definition 3.2.4. Let B ⊂ R be a Borel set. The absolutely continuous closure (or
essential closure) of B is defined by

closac(B) :=
{
x ∈ R : m

(
(x− ε, x+ ε) ∩B

)
> 0 for all ε > 0

}
.

The continuous closure of B is defined by

closc(B) :=
{
x ∈ R : (x− ε, x+ ε) ∩B is not countable for all ε > 0

}
.

In general, B is not a subset of closac(B) since, e.g., isolated points in B
are not contained in closac(B). Moreover, if B ⊂ B′ and m(B′ \ B) = 0, then
closac(B) = closac(B

′).

Lemma 3.2.5. Let B ⊂ R be a Borel set. Then the sets closac(B) and closc(B) are
both closed and

closac(B) ⊂ closc(B) ⊂ B. (3.2.2)

Moreover, the following statements hold:

(i) closac(B) = ∅ if and only if m(B) = 0;

(ii) closc(B) = ∅ if and only if B is countable.

Proof. First it will be shown that for any Borel set B ⊂ R both sets closac(B)
and closc(B) are closed.

In order to show that closac(B) is closed, let xn ∈ closac(B) converge to
x ∈ R. Assume that x 	∈ closac(B). Then there is ε > 0 such that

m
(
(x− ε, x+ ε) ∩B

)
= 0. (3.2.3)
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For this ε there is n0 ∈ N and ε0 > 0 with (xn0 − ε0, xn0 + ε0) ⊂ (x− ε, x+ ε). One
then concludes from (3.2.3) that m((xn0

− ε0, xn0
+ ε0) ∩B) = 0, a contradiction

as xn0
∈ closac(B). Therefore, x ∈ closac(B) and closac(B) is closed.

To show that closc(B) is closed, let xn ∈ closc(B) converge to x ∈ R. Assume
that x 	∈ closc(B). Then there is ε > 0 such that the set (x − ε, x + ε) ∩ B is
countable. For this ε there exist n0 ∈ N and ε0 > 0 with

(xn0 − ε0, xn0 + ε0) ⊂ (x− ε0, x+ ε0),

so that (
(xn0 − ε0, xn0 + ε0) ∩B

) ⊂ ((x− ε, x+ ε) ∩B
)

is countable, a contradiction, as xn0
∈ closc(B). Therefore, x ∈ closc(B) and

closc(B) is closed.

To see the first inclusion in (3.2.2) assume that x ∈ closac(B). Then one has
m((x−ε, x+ε)∩B) > 0 for all ε > 0 and hence for all ε > 0 the set (x−ε, x+ε)∩B
is not countable. This implies closac(B) ⊂ closc(B). Likewise, to see the second
inclusion assume that x ∈ closc(B) and that x 	∈ B. Then there is ε > 0 such that
(x− ε, x+ ε) ∩B = ∅, a contradiction. Hence, closc(B) ⊂ B.

(i) (⇒) Assume that closac(B) = ∅. This implies that for all x ∈ R there exists
εx > 0 such that m((x−εx, x+εx)∩B) = 0. First assume that B is compact. Then
for all x ∈ B the open sets (x− εx, x+ εx) form an open cover for B. Therefore,
there exists a finite subcover (xi − εi, xi + εi) of B such that

B ⊂
n⋃

i=1

(xi − εi, xi + εi) ∩B,

and hence

m(B) ≤
n∑

i=1

m
(
(xi − εi, xi + εi) ∩B

)
= 0.

For arbitrary Borel sets B the (inner) regularity of the Lebesgue measure implies
m(B) = 0.

(⇐) If m(B) = 0, then m((x − ε, x + ε) ∩ B) = 0 for all x ∈ R and all ε > 0.
Therefore, closac(B) = ∅.
(ii) (⇒) Assume that closc(B) = ∅. This implies that for all x ∈ R there exists
εx > 0 such that (x− εx, x+ εx) ∩B is countable; in particular, this holds for all
rational xi. The countable many open sets (xi − εxi , xi + εxi) form an open cover
for B and this implies that B is countable.

(⇐) If B is countable, then (x − ε, x + ε) ∩B is countable for all x ∈ R and all
ε > 0. Therefore, closc(B) = ∅. �

Here is the promised treatment of the absolutely continuous, singular, and
singular continuous parts of the Borel measure μ.
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Theorem 3.2.6. Let μ be a finite Borel measure on R and let F be its Borel trans-
form. Then the following statements hold:

(i) σ(μac) = closac
({x ∈ F : 0 < ImF (x+ i0) < ∞});

(ii) σ(μs) ⊂ {x ∈ F : ImF (x+ i0) = ∞};
(iii) σ(μsc) ⊂ closc

({x ∈ F : ImF (x+ i0) = ∞, limy↓0 yF (x+ iy) = 0}).
Proof. (i) Let

M′
ac :=

{
x ∈ F : 0 < ImF (x+ i0) < ∞}

and note that M′
ac is a Borel set. It is claimed that

σ(μac) = closac(M
′
ac). (3.2.4)

To verify the inclusion (⊂) in (3.2.4), assume that x 	∈ closac(M
′
ac). Then there

exists ε > 0 such that
m
(
(x− ε, x+ ε) ∩M′

ac

)
= 0.

As μac is absolutely continuous with respect to the Lebesgue measure m, also

μac

(
(x− ε, x+ ε) ∩M′

ac

)
= 0. (3.2.5)

Furthermore, by Theorem 3.1.5 (ii), the set M′
ac is a minimal support for μac and,

in particular, μac(R \M′
ac) = 0. Hence,

μac

(
(x− ε, x+ ε) \M′

ac

)
= 0 (3.2.6)

and from (3.2.5)–(3.2.6) one obtains μac((x − ε, x + ε)) = 0. Hence, x 	∈ σ(μac).
Thus, the inclusion (⊂) in (3.2.4) has been shown.

For the converse inclusion (⊃), let x 	∈ σ(μac). Then there exists ε > 0 such
that

0 = μac

(
(x− ε, x+ ε)

)
=

∫
(x−ε,x+ε)

(Dμ)(t) dm(t),

where in the last equality the Radon–Nikodým theorem was used; cf. (3.1.3) and
note that ν′μ = μ′ = Dμ m-almost everywhere. Due to Theorem 3.1.4 and the fact
that ImF (t+ i0) ≥ 0 for all t ∈ F, one concludes that

0 =
1

π

∫
(x−ε,x+ε)

ImF (t+ i0) dm(t)

=
1

π

∫
(x−ε,x+ε)∩M′

ac

ImF (t+ i0) dm(t).

This implies m((x−ε, x+ε)∩M′
ac) = 0 since ImF (t+i0) is positive on M′

ac. Hence,
x 	∈ closac(M

′
ac). Thus, the inclusion (⊃) in (3.2.4) has been shown. Therefore, the

equality (3.2.4) has been established, which gives the assertion (i).
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(ii) According to Theorem 3.1.5 (iii) the set {x ∈ F : ImF (x + i0) = ∞} is a
minimal support for the singular part μs of μ. Since σ(μs) is contained in the
closure of this set by Lemma 3.2.1 (i), the assertion follows.

(iii) By Theorem 3.1.5 (iv) and (3.1.13), the Borel set

M′
sc :=

{
x ∈ F : ImF (x+ i0) = ∞, lim

y ↓ 0
yF (x+ iy) = 0

}
is a minimal support for μsc and hence, in particular, μsc(R \ M′

sc) = 0. Let
closc(M

′
sc) be the continuous closure of M′

sc, which is a Borel set, as it is closed;
cf. Lemma 3.2.5. It will be shown that closc(M

′
sc) is a support for μsc, that is,

μsc

(
R \ closc(M′

sc)
)
= 0, (3.2.7)

since this implies that σ(μsc) ⊂ closc(M
′
sc); cf. Lemma 3.2.1 (i) and Lemma 3.2.5.

In fact, for x ∈ R \ closc(M
′
sc) by definition there exists ε > 0 such that

(x − ε, x + ε) ∩ M′
sc is countable; thus μsc((x − ε, x + ε) ∩ M′

sc) = 0, as μsc is
continuous. Consequently,

μsc((x− ε, x+ ε)) ≤ μsc

(
(x− ε, x+ ε) ∩M′

sc

)
+ μsc(R \M′

sc) = 0.

This yields μsc(K) = 0 for each compact set K ⊂ R \ closc(M
′
sc) and hence, by

the (inner) regularity of the finite measure μsc, (3.2.7) follows. �

3.3 Spectra of self-adjoint relations

The spectrum of a self-adjoint relation or operator in a Hilbert space will be
studied in terms of its spectral measure. In particular, a division of the spectrum
into absolutely continuous and singular spectra will be introduced based on the
Lebesgue decomposition of a finite Borel measure; cf. Section 3.1.

Let A be a self-adjoint relation in the Hilbert space H. Then σ(A) ⊂ R by
Theorem 1.5.5 and σr(A) = ∅, and hence σ(A) = σp(A) ∪ σc(A); cf. Proposi-
tion 1.4.4. The spectral measure E(·) of A satisfies

(A− λ)−1 =

∫
R

1

t− λ
dE(t), λ ∈ C \ R,

cf. (1.5.6). First the parts σp(A) and σc(A) of the spectrum σ(A) will be charac-
terized in terms of the spectral measure E(·). These results will play an important
role in the further development; cf. Section 3.5 and Section 3.6. The facts in Propo-
sition 3.3.1 are immediate consequences of the orthogonal decomposition

H = Hop ⊕ Hmul , A = Aop ⊕̂ Amul , (3.3.1)

where Hop = domA and Hmul = mulA, of the self-adjoint relation A (see Theo-
rem 1.5.1) and the properties of the spectral measure of Aop.
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Proposition 3.3.1. Let A be a self-adjoint relation in H with spectral measure E(·).
Then the following statements hold:

(i) λ ∈ ρ(A) ∩ R if and only if E((λ− ε, λ+ ε)) = 0 for some ε > 0;

(ii) λ ∈ σp(A) if and only if E({λ}) 	= 0, in which case Nλ(A) = ranE({λ}) and

N̂λ(A) =
{{E({λ})h, λE({λ})h} : h ∈ H

}
;

(iii) λ ∈ σc(A) if and only if E({λ}) = 0 and E((λ− ε, λ+ ε)) 	= 0 for all ε > 0.

A further subdivision of the spectrum will be introduced analogous to the
Lebesgue decomposition of a finite Borel measure on R; cf. Section 3.1. This re-
quires another description of the spectrum via the introduction of a collection of
finite Borel measures induced by the spectral function. Let A be a self-adjoint
relation in H with spectral measure E(·). For each h ∈ H, define μh by

μh = (E(·)h, h) = (Eop(·)Poph, Poph
)
, (3.3.2)

so that μh is a regular Borel measure on R. Note that μh = 0 for h ∈ Hmul . The
set of growth points σ(μh) of μh is given by

σ(μh) =
{
x ∈ R : μh((x− ε, x+ ε)) > 0 for all ε > 0

}
.

It will be shown that the spectrum of A is made up of the growth points of μh

for a dense set of elements h ∈ H. Furthermore, the statement in the following
proposition is in a local sense, namely, it concerns the spectrum of A relative to
an open interval Δ ⊂ R; cf. Definition 3.4.9.

Proposition 3.3.2. Let A be a self-adjoint relation in H, let Δ ⊂ R be an open
interval, and assume that DΔ is a subset of the closed subspace E(Δ)H such that

spanDΔ = E(Δ)H.

Then the following identities hold:

σ(A) ∩Δ =
⋃

h∈E(Δ)H

σ(μh) =
⋃

h∈DΔ

σ(μh). (3.3.3)

Proof. First it will be shown that

σ(A) ∩Δ ⊃
⋃

h∈E(Δ)H

σ(μh) ⊃
⋃

h∈DΔ

σ(μh). (3.3.4)

For this purpose assume that x /∈ σ(A) ∩Δ. Then there exists ε > 0 such that
(x− ε, x+ ε) ∩Δ contains no spectrum of A. By Proposition 3.3.1 (i), this yields

E
(
(x− ε, x+ ε) ∩Δ

)
= 0
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and for h ∈ E(Δ)H one obtains

μh

(
(x− ε, x+ ε)

)
=
(
E
(
(x− ε, x+ ε)

)
h, h
)

=
(
E
(
(x− ε, x+ ε)

)
E(Δ)h, h

)
=
(
E
(
(x− ε, x+ ε) ∩Δ

)
h, h
)

= 0.

Therefore, (x− ε, x+ ε) ∩ σ(μh) = ∅ for all h ∈ E(Δ)H, and thus

x 	∈
⋃

h∈E(Δ)H

σ(μh).

Hence, the inclusions (3.3.4) follow. Next it will be shown that⋃
h∈DΔ

σ(μh) ⊃ σ(A) ∩Δ,

which, together with (3.3.4), yields (3.3.3). For this purpose, assume that

x 	∈
⋃

h∈DΔ

σ(μh).

Then there exists ε > 0 such that (x− ε, x+ ε) ⊂ R\σ(μh) for all h ∈ DΔ, that is,∥∥E((x− ε, x+ ε)
)
h
∥∥2 = μh

(
(x− ε, x+ ε)

)
= 0 (3.3.5)

for all h ∈ DΔ, and hence for all h ∈ spanDΔ. Since by assumption spanDΔ is
dense in E(Δ)H, it follows that (3.3.5) holds for all h ∈ E(Δ)H and hence again
by Proposition 3.3.1 (i),

E
(
(x− ε, x+ ε) ∩Δ

)
h = E

(
(x− ε, x+ ε)

)
E(Δ)h = 0

for all h ∈ H. This shows that (x− ε, x+ ε) ∩Δ does not contain spectrum of A,
in particular, x /∈ σ(A) ∩Δ. �

The collection of Borel measures μh, h ∈ H, as defined in (3.3.2), is now used
to introduce a number of subspaces of H.

Definition 3.3.3. Let A be a self-adjoint relation in H. The pure point subspace, the
absolutely continuous subspace, and the singular continuous subspace correspond-
ing to Aop are defined by

Hp(Aop) =
{
h ∈ H : μh is pure point

}
,

Hac(Aop) =
{
h ∈ H : μh is absolutely continuous

}
,

Hsc(Aop) =
{
h ∈ H : μh is singular continuous

}
,

respectively.

In conjunction with the orthogonal decomposition (3.3.1), these subspaces
span the original Hilbert space and lead to invariant parts of the self-adjoint
relation, see, e.g., [649, Theorem VII.4] or [691, Proposition 9.3].
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Theorem 3.3.4. Let A be a self-adjoint relation in H. Then Hp(Aop), Hac(Aop),
and Hsc(Aop) are mutually orthogonal closed subspaces of H and

H = Hp(Aop)⊕ Hac(Aop)⊕ Hsc(Aop)⊕ Hmul .

Each of the Hilbert spaces Hp(Aop), Hac(Aop), and Hsc(Aop) is invariant for the
operator Aop, and the restrictions

Ap
op = Aop � Hp(Aop),

Aac
op = Aop � Hac(Aop),

Asc
op = Aop � Hsc(Aop),

are self-adjoint operators in Hp(Aop), Hac(Aop), and Hsc(Aop), respectively.

By means of these subspaces one defines, in analogy with the case of finite
Borel measures, the singular subspace and the continuous subspace corresponding
to Aop by

Hs(Aop) = Hp(Aop)⊕ Hsc(Aop) and Hc(Aop) = Hac(Aop)⊕ Hsc(Aop),

respectively. The restrictions of Aop to these subspaces are denoted by As
op and

Ac
op, respectively, and it follows that

As
op = Ap

op ⊕̂Asc
op and Ac

op = Aac
op ⊕̂Asc

op.

Definition 3.3.5. Let A be a self-adjoint relation in H. The absolutely continu-
ous spectrum σac(A), the singular continuous spectrum σsc(A), and the singular
spectrum σs(A) of A are defined by

σac(A) = σ
(
Aac

op

)
, σsc(A) = σ

(
Asc

op

)
, and σs(A) = σ

(
As

op

)
,

respectively.

Note that for the pure point part Ap
op one only has σp(A) = σ(Ap

op). The
spectral measures of the self-adjoint operators Aac

op, A
sc
op, and As

op in the Hilbert
spaces Hac(Aop), Hsc(Aop), and Hs(Aop), are given by the corresponding restric-
tions of the spectral measure E(·) of A. These spectral measures will be denoted
by Eac(·), Esc(·), and Es(·), respectively.

The following corollary relates the absolutely continuous, singular continuous,
and singular spectrum of A in an open interval Δ with the growth points of the
absolutely continuous, singular continuous, and singular parts of the measures μh.

Corollary 3.3.6. Let A be a self-adjoint relation in H, let Δ ⊂ R be an open
interval, and assume that DΔ is a subset of the closed subspace E(Δ)H such that

spanDΔ = E(Δ)H.
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Denote by μh,ac, μh,sc, and μh,s the absolutely continuous, singular continuous, and
singular part in the Lebesgue decomposition of the Borel measure μh in (3.3.2).
Then the following identity holds:

σi(A) ∩Δ =
⋃

h∈DΔ

σ(μh,i), i = ac, sc, s.

Proof. Observe first that the absolutely continuous, singular continuous, and sin-
gular part of the Borel measure μh, h ∈ H, are given by

μh,ac = μPach, μh,sc = μPsch, and μh,s = μPsh, (3.3.6)

respectively, where Pi denote the orthogonal projections onto the corresponding
Hilbert spaces Hi(Aop), i = ac, sc, s. This follows from the uniqueness of the
Lebesgue decomposition and Theorem 3.3.4. If μi

hi
= (Ei(·)hi, hi), hi ∈ Hi(Aop),

is the Borel measure defined with the help of the spectral measures Ei(·) of Ai
op,

i = ac, sc, s, then Definition 3.3.5, Proposition 3.3.2 and (3.3.6) yield

σi(A) ∩Δ =
⋃

hi∈PiDΔ

σ(μi
hi
) =

⋃
h∈DΔ

σ(μPih) =
⋃

h∈DΔ

σ(μh,i)

for i = ac, sc, s. Here it was also used that the linear span of the set PiDΔ is dense
in Ei(Δ)Hi(Aop) = PiE(Δ)H. �

Example 3.3.7. Let μ be a Borel measure on R and consider the maximal multi-
plication operator by the independent variable in L2

μ(R), given by

(Af)(t) = tf(t), domA =
{
f ∈ L2

μ(R) : t �→ tf(t) ∈ L2
μ(R)

}
.

The operator A is self-adjoint in L2
μ(R) and for every Borel set B ⊂ R the spectral

measure of A is given by

E(B)h = χBh, h ∈ L2
μ(R),

where χB denotes the characteristic function of B. For h ∈ L2
μ(R) the Borel

measure in (3.3.2) satisfies

μh(B) = (E(B)h, h)L2
μ(R) =

∫
B

|h(t)|2 dμ(t)

for all Borel sets B ⊂ R. It is not difficult to check that σ(A) = σ(μ). Furthermore,
the Lebesgue decomposition μ = μac + μs, where μs = μsc + μp, gives rise to the
orthogonal decompositions

L2
μ(R) = L2

μac
(R)⊕ L2

μs
(R) and L2

μs
(R) = L2

μsc
(R)⊕ L2

μp
(R).

For the spectral subspaces of A in Definition 3.3.3 one has Hi(A) = L2
μi
(R),

i = ac, sc, s, and this implies

σac(A) = σ(μac), σsc(A) = σ(μsc), and σs(A) = σ(μs).
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3.4 Simple symmetric operators

It will be shown that any closed symmetric relation in a Hilbert space can be
decomposed into the orthogonal componentwise sum of a closed simple, i.e., com-
pletely non-self-adjoint, symmetric operator, and a self-adjoint relation. Criteria
for the absence of the self-adjoint relation in this decomposition will be given, and
a local version of simplicity will be studied.

First some attention is paid to the notions of invariance and reduction. These
notions appeared already in the self-adjoint case in the previous section when
subdividing the spectrum, and are also important in the description of self-adjoint
extensions of symmetric relations. Let S be a closed symmetric relation in the
Hilbert space H. Decompose H as H = H′ ⊕ H′′, let P ′ and P ′′ be the orthogonal
projections onto H′ and H′′, and define

P̂ ′{f, g} = {P ′f, P ′g} and P̂ ′′{f, g} = {P ′′f, P ′′g}, f, g ∈ H.

The closed symmetric relation S gives rise to the restrictions

S′ = S ∩ (H′)2 ⊂ P̂ ′S and S′′ = S ∩ (H′′)2 ⊂ P̂ ′′S, (3.4.1)

which are closed symmetric relations and

S′ ⊕̂ S′′ ⊂ S. (3.4.2)

In order to describe when S′ and S′′ span S the following notions are useful.
The subspaces H′ and H′′ are called invariant under the symmetric relation S if
S′ = P̂ ′S or S′′ = P̂ ′′S, respectively. Clearly, the spaces H′ or H′′ are invariant
under S if

P̂ ′S ⊂ S or P̂ ′′S ⊂ S,

respectively. In the next lemma it turns out that H′ is invariant under S if and
only if H′′ is invariant under S; in which case S′ and S′′ can be orthogonally split
off from S, i.e., S = S′ ⊕̂ S′′.

Lemma 3.4.1. Let S be a closed symmetric relation in H = H′⊕H′′ and let S′ and
S′′ be as in (3.4.1). Then the following statements hold:

(i) S′ = P̂ ′S or, equivalently, S′′ = P̂ ′′S implies that S = S′ ⊕̂ S′′.

(ii) If S′ is self-adjoint in H′ or S′′ is self-adjoint in H′′, then S′ = P̂ ′S and

S′′ = P̂ ′′S.

Assume, in addition, that S is self-adjoint. Then

(iii) S′ = P̂ ′S or, equivalently, S′′ = P̂ ′′S implies that S′ and S′′ are self-adjoint
in H′ and H′′, respectively.
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Proof. (i) Assume that S′ = P̂ ′S. Since S′ ⊕̂ S′′ ⊂ S by (3.4.2), it suffices to
show that S ⊂ S′ ⊕̂ S′′. Let {f, f ′} ∈ S and decompose {f, f ′} with respect to
H = H′ ⊕ H′′ as

{f, f ′} = {h, h′}+ {k, k′}, h, h′ ∈ H′, k, k′ ∈ H′′.

Then {h, h′} ∈ P̂ ′S = S′ ⊂ S and therefore {k, k′} ∈ S ∩ (H′′)2 = S′′. Hence,
S = S′ ⊕̂ S′′, which implies that S′′ = P̂ ′′S.

(ii) Assume that S′ is self-adjoint in H′. To show that P̂ ′S ⊂ S′, let {f, f ′} ∈ S and

consider {P ′f, P ′f ′} ∈ P̂ ′S. Since S is symmetric it follows for all {h, h′} ∈ S′ ⊂ S
that

(P ′f ′, h)H′ − (P ′f, h′)H′ = (f ′, h)H − (f, h′)H = 0.

The assumption that S′ is self-adjoint in H′ implies {P ′f, P ′f ′} ∈ S′. Therefore,
P̂ ′S ⊂ S′. This implies S′ = P̂ ′S and (i) yields S′′ = P̂ ′′S.

(iii) According to (i), either of the conditions S′ = P̂ ′S or S′′ = P̂ ′′S implies that
S = S′ ⊕̂ S′′. Since S is self-adjoint, this shows that S′ is self-adjoint in H′ and
that S′′ is self-adjoint in H′′. �

Before introducing the notion of simplicity in Definition 3.4.3 below, the
following lemma on symmetric and self-adjoint extensions of symmetric relations
that contain a self-adjoint part is discussed.

Lemma 3.4.2. Let S be a closed symmetric relation in H whose defect numbers are
not necessarily equal and assume that there are orthogonal decompositions

H = H′ ⊕ H′′, S = S′ ⊕̂ S′′, (3.4.3)

such that S′ is closed and symmetric in H′ and S′′ is self-adjoint in H′′. Then every
closed symmetric (self-adjoint ) extension A of S in H admits the decomposition

A = A′ ⊕̂ S′′,

where A′ is a closed symmetric (self-adjoint ) extension of S′ in H′.

Proof. Observe that the inclusion S ⊂ A and the decomposition (3.4.3) imply that

S′′ = S ∩ (H′′)2 ⊂ A ∩ (H′′)2.

Therefore, the assumption that S′′ is self-adjoint in H′′ shows that the closed
symmetric relation A∩(H′′)2 is actually self-adjoint in H′′ and that S′′ = A∩(H′′)2.
Hence, by Lemma 3.4.1 (i)–(ii) the relation A decomposes as A = A′ ⊕̂ S′′, where
A′ = A ∩ (H′)2 is a symmetric extension of S′ in H′. Therefore,

S′ ⊕̂ S′′ ⊂ A′ ⊕̂ S′′.

If A is self-adjoint in H, then Lemma 3.4.1 (iii) implies that A′ = A ∩ (H′)2 is a
self-adjoint extension of S′ in H′. This completes the proof. �
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The notion of simplicity or complete non-self-adjointness is defined next.

Definition 3.4.3. Let S be a closed symmetric relation in H whose defect numbers
are not necessarily equal. Then S is simple if there is no orthogonal decomposition

S = S′ ⊕̂ S′′, where H = H′ ⊕ H′′, (3.4.4)

such that H′′ 	= {0} and S′′ is self-adjoint in H′′.

Every closed symmetric relation S in H has the orthogonal componentwise de-
composition S = Sop ⊕̂ Smul , where Smul is a purely multivalued self-adjoint rela-
tion in the closed subspace Hmul = mulS; cf. Theorem 1.4.11. Hence, a closed sim-
ple symmetric relation is necessarily an operator. A similar argument shows that a
closed simple symmetric relation does not have any eigenvalues; cf. Lemma 3.4.7.

Any closed symmetric relation S in H has a decomposition as in (3.4.4),
where S′ is simple in H′ and S′′ is self-adjoint in H′′. To see this, define the closed
subspace R ⊂ H by

R :=
⋂

λ∈C\R
ran (S − λ), (3.4.5)

and the closed subspace K = R⊥, so that

K = span
{
Nλ(S

∗) : λ ∈ C \ R}, Nλ(S
∗) = ker (S∗ − λ). (3.4.6)

It follows from Lemma 1.6.11 that the set C \ R in (3.4.6), and hence in the
intersection in (3.4.5), can be replaced by any subset of C \ R which has an accu-
mulation point in C+ and an accumulation point in C−.

Theorem 3.4.4. Let S be a closed symmetric relation in H whose defect numbers
are not necessarily equal. Let H be decomposed as H = K ⊕ R, where the closed
subspaces K and R are defined as in (3.4.5) and (3.4.6), and denote

S′ = S ∩ K2 and S′′ = S ∩R2. (3.4.7)

Then the relation S admits the orthogonal decomposition

S = S′ ⊕̂ S′′, (3.4.8)

where S′ is a closed simple symmetric operator in K and S′′ is a self-adjoint
relation in R.

Proof. Step 1. First it will be shown that R satisfies the following invariance
property: for any λ0 ∈ C \ R

(S − λ0)
−1R ⊂ R. (3.4.9)

To see this, let h ∈ R and h′ = (S − λ0)
−1h. Hence, {h′, h+ λ0h

′} ∈ S and thus

(h+ λ0h
′, fλ) = (h′, λfλ), {fλ, λfλ} ∈ S∗, λ ∈ C \ R.



3.4. Simple symmetric operators 191

Since h ∈ ran (S − λ) = (ker (S∗ − λ))⊥, λ ∈ C \ R, and fλ ∈ ker (S∗ − λ), this
implies

0 = (h, fλ) = (λ− λ0)(h
′, fλ),

that is, h′ ⊥ fλ for all λ ∈ C \ R, λ 	= λ0. Hence, h′ ∈ ran (S−λ) for all λ ∈ C \ R,
λ 	= λ0, and it follows from Lemma 1.6.11 that

h′ ∈
⋂

λ∈C\R, λ 
=λ0

ran (S − λ) =
⋂

λ∈C\R
ran (S − λ) = R,

which proves the inclusion in (3.4.9).

Step 2. Next it will be shown that the relation S ∩ R2 is self-adjoint. Fix some
λ0 ∈ C \ R and define the relation S′′ first by

S′′ =
{{(S − λ0)

−1h, (I + λ0(S − λ0)
−1)h} : h ∈ R

}
. (3.4.10)

It follows from (3.4.5) that R ⊂ ran (S − λ0), and hence Lemma 1.1.8 implies
S′′ ⊂ S, so that in particular S′′ is symmetric in H. It follows from (3.4.9) that
S′′ ⊂ R2. Therefore, S′′ ⊂ S ∩ R2. Next S ∩ R2 ⊂ S′′ will be verified. Let
{f, f ′} ∈ S ∩R2, so that by Lemma 1.1.8

{f, f ′} = {(S − λ0)
−1h, (I + λ0(S − λ0)

−1)h}
for some h ∈ ran (S − λ0). Since {f, f ′} ∈ R2, it follows that

(S − λ0)
−1h ∈ R and (I + λ0(S − λ0)

−1)h ∈ R.

Therefore, h ∈ R and hence {f, f ′} ∈ S′′, so that S ∩R2 ⊂ S′′. This leads to the
equality S′′ = S ∩R2 in (3.4.7); in particular, S′′ in (3.4.10) does not depend on
the choice of λ0 ∈ C \ R.

From S′′ ⊂ S it follows that S′′ is symmetric and from (3.4.10) one obtains
that ran (S′′−λ0) = R. Since S′′ is independent of the choice of λ0, it follows that
ran (S′′ − λ) = R holds for every λ ∈ C \ R. Hence, S′′ = S ∩R2 is a self-adjoint
relation in R by Theorem 1.5.5. Now Lemma 3.4.1 (i)–(ii) imply (3.4.8).

Step 3. In order to show that S′ = S ∩K2 is simple in the Hilbert space K, assume
that there is an orthogonal decomposition K = K1 ⊕ K2 and a corresponding
orthogonal decomposition S′ = S1 ⊕̂ S2 such that S2 is self-adjoint in K2. Then
ran (S2 − λ) = K2 for all λ ∈ C \ R and thus

K2 = ran (S2 − λ) ⊂ ran (S′ − λ) ⊂ ran (S − λ), λ ∈ C \ R.
According to (3.4.5), this implies K2 ⊂ R while K2 ⊂ K = R⊥. Thus, K2 = {0},
so that S′ is simple. �

Corollary 3.4.5. Let S be a closed symmetric relation in H. Then S is simple if
and only if

H = span
{
Nλ(S

∗) : λ ∈ C \ R}. (3.4.11)
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The set C \ R on the right-hand side can be replaced by any set U which has an
accumulation point in C+ and in C−.

Proof. It follows from Theorem 3.4.4 and the definition of K in (3.4.6) that the
equality (3.4.11) holds if and only if S is simple. The last assertion in the corollary
follows from Lemma 1.6.11. �

Corollary 3.4.6. Let S be a closed symmetric relation in H. Then the following
statements are equivalent:

(i) H = span
{
Nλ(S

∗) : λ ∈ C \ R}⊕mulS;

(ii) Sop is a closed simple symmetric operator in Hop = H�mulS.

The set C \ R on the right-hand side in (i) can be replaced by any set U which has
an accumulation point in C+ and in C−.

Proof. (i) ⇒ (ii) The assumption implies in the context of Theorem 3.4.4 that
R = mulS, so that

S′′ = S ∩R2 = {0} ×mulS,

which is a self-adjoint relation in mulS. Hence, by the decomposition S = S′ ⊕̂ S′′

in Theorem 3.4.4 it follows that S′ = Sop in Hop = H�mulS.

(ii) ⇒ (i) Recall that H = Hop ⊕ Hmul . By Corollary 3.4.5 one has

Hop = span
{
Nλ(S

∗
op ) : λ ∈ C \ R}.

From the decomposition S = Sop ⊕̂ ({0} × mulS) and Proposition 1.3.13 one
concludes that S∗ = S∗

op ⊕̂ ({0} × mulS). Hence, Nλ(S
∗) = Nλ(S

∗
op ), which

yields (i). �

Lemma 3.4.7. Let S be a closed simple symmetric relation in H. Then S is an
operator and it has no eigenvalues.

Proof. Indeed, it follows from Definition 3.4.3 that also S−x and (S−x)−1, x ∈ R,
are closed simple symmetric relations in H. In particular, (S−x)−1 is an operator;
cf. the discussion following Definition 3.4.3. This implies ker (S − x) = {0} for all
x ∈ R and hence S has no eigenvalues. �

In certain situations the assertion in Lemma 3.4.7 has a converse.

Proposition 3.4.8. Let S be a closed symmetric relation in H and assume that there
exists a self-adjoint extension A of S in H such that σ(A) = σp(A). If σp(S) = ∅,
then the operator part Sop of S is a closed simple symmetric operator in the Hilbert
space Hop = (mulS)⊥.

Proof. By Lemma 3.4.2 and Theorem 1.4.11, it suffices to consider the case where
S is a closed symmetric operator and A is a self-adjoint extension of S. Now assume
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that S is not simple, so that by Theorem 3.4.4 there are nontrivial decompositions
H = H′ ⊕ H′′ and S = S′ ⊕̂ S′′ with S′ closed, simple and symmetric in H′, and
S′′ self-adjoint in H′′. Then A decomposes accordingly as A = A′ ⊕̂ S′′ with A′

self-adjoint in H′ by Lemma 3.4.2. Now σ(A) = σp(A) implies that S′′ and thus S
has a nontrivial point spectrum, which gives a contradiction. �

The notion of simplicity of a closed symmetric relation S in H will now be
specified in a local sense. This will be done relative to a Borel set Δ ⊂ R and by
means of a self-adjoint extension A of S and its spectral measure E(·). Then H
admits the orthogonal decomposition

H = E(Δ)H⊕ (I − E(Δ))H,

which leads to the orthogonal componentwise decomposition of A into self-adjoint
components:

A =
[
A ∩ (E(Δ)H

)2] ⊕̂ [A ∩ ((I − E(Δ))H
)2]

.

Note that A∩ (E(Δ)H)2 is a self-adjoint operator in E(Δ)H which coincides with
Aop � Eop (Δ)Hop ; cf. Section 1.5.

Definition 3.4.9. Let S be a closed symmetric relation in H and let A be a self-
adjoint extension of S with spectral measure E(·). Let Δ ⊂ R be a Borel set. Then
S is said to be simple with respect to Δ ⊂ R and the self-adjoint extension A if

E(Δ)H = span
{
E(Δ)k : k ∈ Nλ(S

∗), λ ∈ C \ R}. (3.4.12)

In the next proposition this local notion and some of its consequences are
discussed.

Proposition 3.4.10. Let S be a closed symmetric relation in H and let A be a self-
adjoint extension of S with spectral measure E(·). Assume that S is simple with
respect to the Borel set Δ ⊂ R and the self-adjoint extension A. Then the following
statements hold:

(i) For every Borel set Δ′ ⊂ Δ one has

E(Δ′)H = span
{
E(Δ′)k : k ∈ Nλ(S

∗), λ ∈ C \ R}. (3.4.13)

(ii) There is no point spectrum of S in Δ:

Δ ∩ σp(S) = ∅.
(iii) If U is a subset of ρ(A) with an accumulation point in each connected com-

ponent of ρ(A), then

E(Δ)H = span
{
E(Δ)k : k ∈ Nλ(S

∗), λ ∈ U
}
. (3.4.14)

Proof. (i) First note that the inclusion (⊃) in (3.4.13) holds. To see the converse
inclusion, let f ∈ E(Δ′)H. As Δ′ ⊂ Δ, one has

E(Δ′)H ⊂ E(Δ)H,
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and hence f ∈ E(Δ)H. By assumption, the identity (3.4.12) holds and so, in the
linear span of {

E(Δ)k : k ∈ Nλ(S
∗), λ ∈ C \ R}

there exists a sequence (fn), that converges to f . Then (E(Δ′)fn) is a sequence
in the linear span of {

E(Δ′)k : k ∈ Nλ(S
∗), λ ∈ C \ R}

which converges to E(Δ′)f = f . This shows the inclusion (⊂) in (3.4.13).

(ii) Assume that {f, xf} ∈ S for some x ∈ Δ. Since S ⊂ A, it follows that
f ∈ E(Δ)H. Observe that for k ∈ Nλ(S

∗) with λ ∈ C \ R one has {k, λk} ∈ S∗

and hence (λk, f) = (k, xf). As x ∈ R and λ ∈ C \ R, it follows that (k, f) = 0.
Further, since f ∈ E(Δ)H, one concludes that

0 = (k, f) = (k,E(Δ)f) = (E(Δ)k, f)

for all k ∈ Nλ(S
∗) and λ ∈ C \ R. Hence, (3.4.12) implies that f ∈ E(Δ)H is

orthogonal to E(Δ)H, which shows that f = 0. Thus, S does not possess any
eigenvalues in Δ.

(iii) The inclusion (⊃) in (3.4.14) is clear. In order to prove the identity, fix μ ∈ U

and recall from Lemma 1.4.10 that the operator I+(λ−μ)(A−λ)−1 maps Nμ(S
∗)

bijectively onto Nλ(S
∗) for all λ ∈ C \ R. It suffices to verify that the vectors

E(Δ)k, k ∈ Nλ(S
∗), λ ∈ U, span a dense set in E(Δ)H. Suppose that E(Δ)f is

orthogonal to this set, that is,

0 =
(
E(Δ)(I + (λ− μ)(A− λ)−1)gμ, E(Δ)f

)
(3.4.15)

for all gμ ∈ Nμ(S
∗) and all λ ∈ U. Since for each gμ ∈ Nμ(S

∗) the function

λ �→ (
E(Δ)(I + (λ− μ)(A− λ)−1)gμ, E(Δ)f

)
is analytic on ρ(A), it follows from (3.4.15) and the assumption that U has an
accumulation point in each connected component of ρ(A) that this function is
identically equal to zero. Hence, (E(Δ)k,E(Δ)f) = 0 for all k ∈ Nλ(S

∗) and
λ ∈ C \ R. Now (3.4.12) yields E(Δ)f = 0 and (iii) follows. �

The connection with the global notion of simplicity is given in the following
corollary.

Corollary 3.4.11. Let S be a closed symmetric relation in H and let A be a self-
adjoint extension of S with spectral measure E(·). Then S is simple if and only if
S is simple with respect to any Borel set Δ ⊂ R and the self-adjoint extension A.

Proof. Assume that S is simple. Then (3.4.11) holds and hence (3.4.12) holds with
Δ = R. Then Proposition 3.4.10 (i) implies that S is simple with respect to any
Borel set Δ ⊂ R and the self-adjoint extension A. Conversely, if (3.4.12) holds for
any Borel set Δ ⊂ R, then (3.4.12) also holds for Δ = R, and hence reduces to
(3.4.11), that is, S is simple. �
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In the following lemma the eigenspace of A corresponding to an eigenvalue
x is described in the case where x is not an eigenvalue of S. In particular, this
observation leads to a characterization of local simplicity if the Borel set Δ ⊂ R
in Definition 3.4.9 is a singleton; cf. Corollary 3.4.13.

Lemma 3.4.12. Let S be a closed symmetric relation in H, let A be a self-adjoint
extension of S with spectral measure E(·), and let x ∈ R. Then

E({x})H = E({x})Nλ(S
∗) (3.4.16)

for some, and hence for all λ ∈ C \ R, if and only if x 	∈ σp(S).

Proof. Assume first that (3.4.16) holds for some fixed λ ∈ C \ R. Assume that
{f, xf} ∈ S, which implies {f, xf} ∈ A and hence f ∈ E({x})H. Moreover, one
has (xf, kλ) = (f, λkλ) for all kλ ∈ Nλ(S

∗) as {kλ, λkλ} ∈ S∗. It follows that(
xf,E({x})kλ

)
= (xf, kλ) = (f, λkλ) =

(
f, λE({x})kλ

)
and hence (f,E({x})kλ) = 0 for all kλ ∈ Nλ(S

∗). Now (3.4.16) and f ∈ E({x})H
yield f = 0, which implies x 	∈ σp(S).

Conversely, assume that x 	∈ σp(S) and let λ ∈ C \ R. The inclusion (⊃) in
(3.4.16) is clear and since both subspaces in (3.4.16) are closed, it suffices to verify
that E({x})Nλ(S

∗) is dense in E({x})H. Suppose that there exists f ∈ E({x})H
such that (

f,E({x})kλ
)
= 0, kλ ∈ Nλ(S

∗).

As f ∈ E({x})H, this implies (f, kλ) = 0 and hence f ∈ ran (S − λ). Choose
{g, g′} ∈ S such that g′ − λg = f . Then

g = (S − λ)−1f = (A− λ)−1f =
1

x− λ
f

and

g′ = f + λg = f +
λ

x− λ
f =

x

x− λ
f,

and it follows that {f, xf} ∈ S. Since x 	∈ σp(S) by assumption this yields f = 0.
Hence, E({x})Nλ(S

∗) is dense in E({x})H and therefore (3.4.16) holds. �

The above lemma together with Proposition 3.4.10 (ii) implies that S is
simple with respect to a point x ∈ R if and only if x is not an eigenvalue of S.

Corollary 3.4.13. Let S be a closed symmetric relation in H, let A be a self-adjoint
extension of S with spectral measure E(·), and let x ∈ R. Then

E({x})H = span
{
E({x})k : k ∈ Nλ(S

∗), λ ∈ C \ R}
holds if and only if x 	∈ σp(S).
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3.5 Eigenvalues and eigenspaces

Let S be a closed symmetric relation in a Hilbert space H and let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and corresponding γ-field γ and Weyl
function M . The purpose of the present section is to characterize eigenvalues
and the associated eigenspaces of the self-adjoint relation A0 by means of the
corresponding Weyl function M .

Recall that the Weyl function M can be expressed in terms of the γ-field and
the resolvent of the self-adjoint relation A0; cf. Proposition 2.3.6 (v). In particular,
for λ = x+ iy, y > 0, and λ0 ∈ ρ(A0) one has

M(x+ iy) = ReM(λ0) + γ(λ0)
∗[(x+ iy − Reλ0)

+ (x+ iy − λ0)(x+ iy − λ0)
(
A0 − (x+ iy)

)−1]
γ(λ0).

(3.5.1)

This formula will be used to study the behavior of the Weyl function M at a point
x ∈ R. In the next proposition it turns out that the strong limit of iyM(x + iy),
y ↓ 0, is closely connected with the eigenspace of A0 at x. Here the spectral measure
E of A0 is not used explicitly in the assertion; the orthogonal projection onto the
eigenspace Nx(A0) = ker (A0 − x) is denoted by PNx(A0) instead of E({x}).
Proposition 3.5.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, let M and γ be the corresponding Weyl
function and γ-field, and let x ∈ R. Then for each λ0 ∈ ρ(A0) and all ϕ ∈ G one
has

lim
y ↓ 0

iyM(x+ iy)ϕ = −|x− λ0|2γ(λ0)
∗PNx(A0) γ(λ0)ϕ. (3.5.2)

Proof. For x ∈ R and λ0 ∈ ρ(A0), it follows from (3.5.1) that

iyM(x+ iy) = iyReM(λ0) + iyγ(λ0)
∗(x+ iy − Reλ0)γ(λ0)

+ iy γ(λ0)
∗(x+ iy − λ0)(x+ iy − λ0)

(
A0 − (x+ iy)

)−1
γ(λ0).

As the first and second terms on the right-hand side tend to 0 as y ↓ 0, one obtains

lim
y ↓ 0

iyM(x+ iy)ϕ = |x− λ0|2γ(λ0)
∗[ lim

y ↓ 0
iy
(
A0 − (x+ iy)

)−1 ]
γ(λ0)ϕ (3.5.3)

for all ϕ ∈ G. Since x ∈ R is fixed and y ↓ 0, one has that

iy

t− (x+ iy)
→ −1x(t), t ∈ R,

where the approximating functions are uniformly bounded by 1. The spectral
calculus for the self-adjoint relation A0 in Lemma 1.5.3 yields

lim
y ↓ 0

iy
(
A0 − (x+ iy)

)−1
γ(λ0)ϕ = −PNx(A0)γ(λ0)ϕ, ϕ ∈ G.

Now the assertion follows from (3.5.3). �
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Definition 3.5.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M be the corresponding Weyl
function. For x ∈ R the operator Rx : G → G is defined as the strong limit

Rxϕ = lim
y ↓ 0

iyM(x+ iy)ϕ, ϕ ∈ G.

Observe that Rx in Definition 3.5.2 is a well-defined operator in B(G); indeed,
this is clear from the identity (3.5.2). It also follows from (3.5.2) that Rx = 0 when
x ∈ ρ(A0) ∩ R.

Remark 3.5.3. If x ∈ R is an isolated singularity of the function M , then x is
a pole of first order of M ; cf. Corollary 2.3.9. Moreover, in a sufficiently small
punctured disc Bx \ {x} centered at x such that M is holomorphic in Bx \ {x},
one has a norm convergent Laurent series expansion of the form

M(λ) =
M−1

λ− x
+

∞∑
k=0

Mk(λ− x)k, M−1,M0,M1, . . . ∈ B(G).

It follows that Rx coincides with the residue of M at x, i.e.,

Rx =
1

2πi

∫
C

M(λ) dλ = M−1,

where C denotes the boundary of Bx.

In the following let x ∈ R and recall that the corresponding eigenspaces of S
and A0 are given by

N̂x(S) =
{{f, xf} : f ∈ Nx(S)

}
, Nx(S) = ker (S − x),

and
N̂x(A0) =

{{f, xf} : f ∈ Nx(A0)
}
, Nx(A0) = ker (A0 − x).

The main interest will be in the closed linear subspace N̂x(A0) � N̂x(S), which is

the orthogonal complement of N̂x(S) in N̂x(A0). Similarly, the orthogonal com-
plement of Nx(S) in Nx(A0) is denoted by Nx(A0) � Nx(S).

Lemma 3.5.4. Let λ0 ∈ ρ(A0), let x ∈ R, and let Px be the orthogonal projection
from H onto Nx(A0) � Nx(S). Then the operator Rx has the representation

Rxϕ = (λ0 − x)Γ1

{
Pxγ(λ0)ϕ, xPxγ(λ0)ϕ

}
, ϕ ∈ G. (3.5.4)

Proof. First, recall from Corollary 2.3.3 that for x ∈ R and {h, xh} ∈ A0 one has

Γ1{h, xh} = (x− λ0)γ(λ0)
∗h, λ ∈ ρ(A0).

Now let ϕ ∈ G and consider

h = (λ0 − x)PNx(A0) γ(λ0)ϕ ∈ ker (A0 − x).
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According to Proposition 3.5.1 and Definition 3.5.2,

Rxϕ = −|x− λ0|2γ(λ0)
∗PNx(A0) γ(λ0)ϕ

= (x− λ0)γ(λ0)
∗h

= Γ1{h, xh}
= (λ0 − x)Γ1

{
PNx(A0)γ(λ0)ϕ, xPNx(A0)γ(λ0)ϕ

}
.

(3.5.5)

Now observe that for ϕ ∈ G

PNx(A0)γ(λ0)ϕ = Pxγ(λ0)ϕ+ PNx(S)γ(λ0)ϕ.

Since {PNx(S)γ(λ0)ϕ, xPNx(S)γ(λ0)ϕ} ∈ S and S = ker Γ0 ∩ ker Γ1 by Proposi-
tion 2.1.2 (ii), it follows that

Γ1

{
PNx(S)γ(λ0)ϕ, xPNx(S)γ(λ0)ϕ

}
= 0

and hence (3.5.5) leads to (3.5.4). �

In the following theorem the eigenvalue x ∈ R and the corresponding eigen-
space of A0 are characterized by means of the Weyl function M and the operator
Rx. Later it will be shown how to distinguish between isolated and embedded
eigenvalues of A0; cf. Theorem 3.6.1.

Theorem 3.5.5. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, let M and γ be the corresponding Weyl
function and γ-field, and let x ∈ R. Then the mapping

τ : N̂x(A0)� N̂x(S) → ranRx, f̂ �→ Γ1f̂ , (3.5.6)

is an isomorphism. In particular,

x ∈ σp(A0) and N̂x(A0)� N̂x(S) 	= {0} ⇔ Rx 	= 0.

Proof. Let x ∈ R and define Kx = N̂x(A0)� N̂x(S). The mapping Γ1 : S∗ → G is
continuous and, in particular, its restriction to Kx ⊂ S∗ is continuous. The proof
consists of three steps. In Step 1 it will be shown that the restriction of Γ1 to Kx

is injective and in Step 2 it will be shown that it has closed range. Then it follows
from Step 3 that τ in (3.5.6) is an isomorphism.

Step 1. The restriction of the mapping Γ1 to Kx is injective. Indeed, let f̂ ∈ Kx

with Γ1f̂ = 0. The assumption f̂ ∈ Kx implies that f̂ ∈ A0 and hence Γ0f̂ = 0.
Therefore, f̂ ∈ ker Γ0 ∩ ker Γ1 = S. Since f̂ = {f, xf} ∈ N̂x(A0) � N̂x(S), this

implies f̂ = 0.

Step 2. The range of the restriction of Γ1 to Kx is closed. In fact, let (ϕn) be a
sequence in ran (Γ1 � Kx) such that ϕn → ϕ ∈ G. Then there exists a sequence
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(f̂n) in Kx such that Γ1f̂n = ϕn and as f̂n ∈ A0 one has Γ0f̂n = 0. Therefore,

Γf̂n = {0, ϕn} → {0, ϕ}. Recall from Proposition 2.1.2 that the restriction of Γ

to S∗ � S is an isomorphism onto G × G. It follows that f̂n converge to some
element f̂ , which belongs to the closed subspace Kx. This yields Γ1f̂ = ϕ and
hence ran (Γ1 � Kx) is closed.

Step 3. The linear space{{Pxγ(λ0)ϕ, xPxγ(λ0)ϕ} : ϕ ∈ G
}

is dense in the Hilbert space Kx = N̂x(A0) � N̂x(S). To see this, let f̂ ∈ Kx

be orthogonal to all {Pxγ(λ0)ϕ, xPxγ(λ0)ϕ}, ϕ ∈ G. Then, since f̂ = {f, xf},
Corollary 2.3.3 shows that for all ϕ ∈ G one has

0 =
(
f̂ , {Pxγ(λ0)ϕ, xPxγ(λ0)ϕ}

)
= (f, Pxγ(λ0)ϕ) + (xf, xPxγ(λ0)ϕ)

= (1 + x2)(f, γ(λ0)ϕ)

= (1 + x2)(γ(λ0)
∗f, ϕ)

= (1 + x2)(x− λ0)
−1(Γ1f̂ , ϕ),

so that Γ1f̂ = 0, and hence f̂ = 0 by Step 1.

Step 4. The mapping in (3.5.6) is an isomorphism. To see this, observe that

ranRx ⊂ ran (Γ1 � Kx) ⊂ ranRx. (3.5.7)

The first inclusion in (3.5.7) follows directly from (3.5.4). From the same identity
one also sees that

Γ1

{
Pxγ(λ0)ϕ, xPxγ(λ0)ϕ

}
=

1

λ0 − x
Rxϕ ∈ ranRx ⊂ ranRx.

Hence, the second inclusion in (3.5.7) follows from Step 3 and the boundedness of
Γ1. It is clear from (3.5.7) and Step 2 that

ran (Γ1 � Kx) = ranRx,

and hence, due to Step 1, the mapping in (3.5.6) is an isomorphism. �

The statement of Theorem 3.5.5 can be simplified if x is not an eigenvalue of
the symmetric relation S, that is, S satisfies a local simplicity condition at x ∈ R;
cf. Corollary 3.4.13.

Corollary 3.5.6. Assume that x is not an eigenvalue of the closed symmetric rela-
tion S in Theorem 3.5.5. Then

x ∈ σp(A0) ⇔ Rx 	= 0.
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Now the behavior of M at ∞ will be considered and the multivalued part of
A0 will be described. First recall that the self-adjoint relation A0 is decomposed
into the orthogonal sum

A0 = A0,op ⊕̂ A0,mul, (3.5.8)

where A0,op is a self-adjoint operator in the Hilbert space

Hop = (mulA0)
⊥ = domA0 (3.5.9)

and A0,mul is the purely multivalued self-adjoint relation in Hmul = mulA0. Then
the resolvent of A0 has the form

(A0 − λ)−1 =

(
(A0,op − λ)−1 0

0 0

)
, λ ∈ ρ(A0), (3.5.10)

with respect to the decomposition H = Hop ⊕ Hmul ; cf. (1.5.1).

The representation (3.5.1) of M in terms of A0 gives for λ0 ∈ ρ(A0) and
x = 0 that

M(iy) = ReM(λ0)

+ γ(λ0)
∗[iy − Reλ0 + (iy − λ0)(iy − λ0)(A0 − iy)−1

]
γ(λ0).

(3.5.11)

In order to use this formula for large y decompose the term γ(λ0)
∗γ(λ0) as

γ(λ0)
∗γ(λ0) = γ(λ0)

∗(I − Pop)γ(λ0) + γ(λ0)
∗ιopPopγ(λ0),

where Pop denotes the orthogonal projection from H onto Hop, ιop is the canonical
embedding of Hop into H, and I −Pop is viewed as an orthogonal projection in H.
From the representation of the resolvent of A0 in terms of the resolvent of A0,op

in (3.5.10) it follows that (3.5.11) may be rewritten as

M(iy) = ReM(λ0) + (iy − Reλ0) γ(λ0)
∗(I − Pop)γ(λ0)

+ γ(λ0)
∗ιop
[
iy − Reλ0 + (iy − λ0)(iy − λ0)(A0,op − iy)−1

]
Popγ(λ0)

(3.5.12)

for all y > 0. This formula will be used to study the behavior of M at ∞. It
turns out that the strong limit 1

iyM(iy), y → +∞, is closely connected with the
multivalued part of A0.

Proposition 3.5.7. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Then for each λ0 ∈ ρ(A0) and ϕ ∈ G one has

lim
y→+∞

1

iy
M(iy)ϕ = γ(λ0)

∗(I − Pop)γ(λ0)ϕ. (3.5.13)
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Proof. It follows from (3.5.12) with λ0 ∈ ρ(A0) that

1

iy
M(iy) =

1

iy
ReM(λ0) +

iy − Reλ0

iy
γ(λ0)

∗(I − Pop)γ(λ0)

+
1

iy
γ(λ0)

∗ιop
[
iy − Reλ0 + (iy − λ0)(iy − λ0)(A0,op − iy)−1

]
Popγ(λ0).

It suffices to show that the first and the third term on the right-hand side converge
to 0 strongly. This is obvious for the first term on the right-hand side. For the third
term note that for y → +∞ one has

iy − Reλ0

iy
+

(iy − λ0)(iy − λ0)

iy

1

t− iy
→ 0, t ∈ R,

and hence the spectral calculus for A0,op shows that for y → +∞
1

iy
γ(λ0)

∗ιop
[
iy − Reλ0 + (iy − λ0)(iy − λ0)(A0,op − iy)−1

]
Popγ(λ0)ϕ

tends to zero for all ϕ ∈ G; cf. Lemma 1.5.3. This leads to (3.5.13). �

Definition 3.5.8. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M be the corresponding Weyl
function. The operator R∞ : G → G is defined as the strong limit

R∞ϕ = lim
y→+∞

1

iy
M(iy)ϕ, ϕ ∈ G.

It follows from Proposition 3.5.7 that R∞ ∈ B(G). For the following proper-
ties of R∞ recall the notations

N̂∞(S) =
{{0, f} : f ∈ N∞(S)

}
, N∞(S) = mulS,

and
N̂∞(A0) =

{{0, f} : f ∈ N∞(A0)
}
, N∞(A0) = mulA0.

The next lemma can be viewed as a variant of Lemma 3.5.4 for x = ∞. Here the
main interest is in the closed subspace N̂∞(A0) � N̂∞(S), that is, the orthogonal

complement of N̂∞(S) in N̂∞(A0).

Lemma 3.5.9. Let λ0 ∈ ρ(A0) and let P∞ be the orthogonal projection from H onto
N∞(A0) � N∞(S). Then the operator R∞ has the representation

R∞ϕ = Γ1

{
0, P∞γ(λ0)ϕ

}
, ϕ ∈ G. (3.5.14)

Proof. First recall from Corollary 2.3.3 that for {0, h′} ∈ A0 one has

Γ1{0, h′} = γ(λ0)
∗h′, λ0 ∈ ρ(A0).
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Now let ϕ ∈ G and consider h′ = (I − Pop)γ(λ0)ϕ ∈ mulA0. According to Propo-
sition 3.5.7,

R∞ϕ = γ(λ0)
∗(I − Pop)γ(λ0)ϕ = γ(λ0)

∗h′ = Γ1{0, h′}
= Γ1

{
0, (I − Pop)γ(λ0)ϕ

}
.

(3.5.15)

Now observe that for ϕ ∈ G

(I − Pop)γ(λ0)ϕ = P∞γ(λ0)ϕ+ PN∞(S)γ(λ0)ϕ.

Since {0, PN∞(S)γ(λ0)ϕ} ∈ S and S = ker Γ0 ∩ ker Γ1 by Proposition 2.1.2 (ii), it
follows that

Γ1

{
0, PN∞(S)γ(λ0)ϕ

}
= 0

and hence (3.5.15) leads to (3.5.14). �

In the next theorem the multivalued part of A0 is characterized by means of
the Weyl function M and the operator R∞.

Theorem 3.5.10. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Then the mapping

τ : N̂∞(A0)� N̂∞(S) → ranR∞, f̂ �→ Γ1f̂ , (3.5.16)

is an isomorphism. In particular,

mulA0 �mulS 	= {0} ⇔ R∞ 	= 0.

Proof. The proof follows a strategy similar to the one used in the proof of Theo-
rem 3.5.5. To simplify notation, set

K∞ := N̂∞(A0)� N̂∞(S) =
{{0, f ′} : f ′ ∈ mulA0 �mulS

}
.

The mapping Γ1 : S∗ → G is continuous and, in particular, its restriction to
K∞ ⊂ S∗ is continuous.

Step 1. The restriction of the mapping Γ1 to K∞ is injective. Indeed, let f̂ ∈ K∞
with Γ1f̂ = 0. The assumption f̂ ∈ K∞ implies that f̂ ∈ A0 and hence Γ0f̂ = 0.
Therefore, f̂ ∈ ker Γ0 ∩ ker Γ1 = S. Since f̂ = {0, f ′} ∈ N̂∞(A0) � N̂∞(S), this

implies f̂ = 0.

Step 2. The range of the restriction of Γ1 to K∞ is closed. In fact, let (ϕn) be a

sequence in ran (Γ1 � K∞) such that ϕn → ϕ ∈ G. Then there exist (f̂n) in K∞ such

that Γ1f̂n = ϕn and as f̂n ∈ A0 one has Γ0f̂n = 0. Thus, Γf̂n = {0, ϕn} → {0, ϕ},
and since the restriction of Γ to S∗ � S is an isomorphism onto G× G, it follows
that f̂n converge to some element f̂ , which belongs to the closed subspace K∞.
Therefore, Γ1f̂ = ϕ and hence ran (Γ1 � K∞) is closed.
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Step 3. The linear space {{0, P∞γ(λ0)ϕ} : ϕ ∈ G
}

is dense in the Hilbert space K∞ = N̂∞(A0)� N̂∞(S). To see this, let f̂ ∈ K∞ be

orthogonal to all elements {0, P∞γ(λ0)ϕ}, ϕ ∈ G. Then it follows from f̂ = {0, f ′}
and Corollary 2.3.3 that for all ϕ ∈ G one has

0 =
(
f̂ , {0, P∞γ(λ0)ϕ}

)
= (f ′, P∞γ(λ0)ϕ) = (γ(λ0)

∗f ′, ϕ) = (Γ1f̂ , ϕ),

so that Γ1f̂ = 0, and hence f̂ = 0 by Step 1.

Step 4. The mapping in (3.5.16) is an isomorphism. To see this, observe that

ranR∞ ⊂ ran (Γ1 � K∞) ⊂ ranR∞. (3.5.17)

The first inclusion in (3.5.17) follows from (3.5.14). From the same identity one
also sees that

Γ1{0, P∞γ(λ0)ϕ} = R∞ϕ ∈ ranR∞ ⊂ ranR∞.

Hence, the second inclusion in (3.5.17) follows from Step 3 and the boundedness
of Γ1. It is clear from (3.5.17) and Step 2 that

ran (Γ1 � K∞) = ranR∞,

and hence, due to Step 1, the mapping in (3.5.16) is an isomorphism. �

Corollary 3.5.11. Assume that the closed symmetric relation S in Theorem 3.5.10
is an operator. Then A0 is an operator if and only if R∞ = 0.

An equivalent statement is that A0 is an operator if and only if for all ϕ ∈ G

lim
y→+∞

1

iy
M(iy)ϕ = 0. (3.5.18)

3.6 Spectra and local minimality

As in Section 3.5, let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and corresponding γ-field γ and Weyl
function M . The spectrum of the self-adjoint extension A0 and its division into
absolutely continuous and singular spectra (cf. Section 3.3) will now be discussed
in detail in terms of the boundary behavior of M . For this purpose it is assumed
that S either is simple or satisfies a local simplicity condition with respect to an
open interval Δ ⊂ R and the self-adjoint extension A0; see Definition 3.4.9 for the
notion of local simplicity.

The following theorem describes the point spectrum and the continuous spec-
trum of A0 in terms of the boundary behavior of the Weyl function M ; cf. Propo-
sition 3.3.1.
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Theorem 3.6.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, let M and γ be the corresponding Weyl
function and γ-field, and let Rx = limy↓0 iyM(x + iy), x ∈ R, be the operator in
Definition 3.5.2. Let Δ ⊂ R be an open interval and assume that the condition

E(Δ)H = span
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
(3.6.1)

is satisfied, where E(·) is the spectral measure of A0. Then the following statements
hold for each x ∈ Δ:

(i) x ∈ ρ(A0) if and only if M can be continued analytically to x;

(ii) x ∈ σc(A0) if and only if Rx = 0 and M cannot be continued analytically to
x;

(iii) x is an eigenvalue of A0 if and only if Rx 	= 0;

(iv) x is an isolated eigenvalue of A0 if and only if x is a pole (of first order ) of
M ; in this case Rx is the residue of M at x.

Proof. (i) Recall first that by Proposition 2.3.6 (iii) or (v) the function λ �→ M(λ)
is holomorphic on ρ(A0), which proves the implication (⇒). In order to verify the
other implication assume that M can be continued analytically to some x ∈ Δ.
Then there exists an open neighborhood O of x in C with O ∩ R ⊂ Δ to which
M can be continued analytically. Choose a, b ∈ R with x ∈ (a, b), [a, b] ⊂ O, and
a, b /∈ σp(A0). The spectral projection E((a, b)) of A0 corresponding to the interval
(a, b) is given by Stone’s formula (1.5.7)

E((a, b)) = lim
δ ↓ 0

1

2πi

∫ b

a

(
(A0 − (t+ iδ))−1 − (A0 − (t− iδ))−1

)
dt,

where the integral on the right-hand side is understood in the strong sense. For
ν ∈ C \ R and ϕ ∈ G this implies

‖E((a, b))γ(ν)ϕ‖2 =
(
γ(ν)∗E((a, b))γ(ν)ϕ,ϕ

)
= lim

δ ↓ 0

1

2πi

∫ b

a

((
γ(ν)∗(A0 − (t+ iδ))−1γ(ν)ϕ,ϕ

)
− (γ(ν)∗(A0 − (t− iδ))−1γ(ν)ϕ,ϕ

))
dt

(3.6.2)

and the identities

γ(ν)∗
(
A0 − (t± iδ)

)−1
γ(ν)

=
M(t± iδ)

|t± iδ − ν|2 +
M(ν)

(ν − (t± iδ))(ν − ν)
+

M(ν)

(ν − (t± iδ))(ν − ν)

from Proposition 2.3.6 (vi) (with λ = t ± iδ and μ = ν) together with the holo-
morphy of M in O yield that the integral on the right-hand side of (3.6.2) is zero.
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Hence, E((a, b))γ(ν)ϕ = 0 for all ν ∈ C \ R and ϕ ∈ G. On the other hand, since
(a, b) ⊂ Δ, the assumption (3.6.1) and Proposition 3.4.10 (i) yield

E((a, b))H = span
{
E((a, b))γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
,

and hence one concludes from E((a, b))γ(ν)ϕ = 0 for ν ∈ C \ R and ϕ ∈ G that
E((a, b)) = 0. In particular, x ∈ ρ(A0) by Proposition 3.3.1 (i).

(ii)–(iii) According to Proposition 3.4.10 (ii), the condition (3.6.1) implies that S
does not have eigenvalues in Δ. Hence, items (ii) and (iii) follow immediately from
item (i) and Corollary 3.5.6.

(iv) Assume that x ∈ Δ is an isolated eigenvalue of A0. Then by Proposition 2.3.6
(iii) or (v) there exists an open neighborhood O of x such thatM is holomorphic on
O \ {x}. Since x 	∈ σp(S) by Proposition 3.4.10 (ii), it follows from Corollary 3.5.6
that there exists ϕ ∈ G such that

Rxϕ = lim
y ↓ 0

iyM(x+ iy)ϕ 	= 0. (3.6.3)

This implies that M has a pole at x, which is of first order; cf. Corollary 2.3.9. By
Remark 3.5.3 the residue of M at x is given by Rx. Conversely, if M has a pole
(of first order) at x, then (3.6.3) holds for some ϕ ∈ G. Thus, x is an eigenvalue
of A0 by Corollary 3.5.6 and from item (i) it follows that there exists an open
neighborhood O of x in C such that O\{λ} ⊂ ρ(A0). Hence, x is an isolated point
in the spectrum of A0. �

Under the condition that S is simple the spectrum of A0 can be described
completely in terms of the Weyl function M .

Corollary 3.6.2. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Assume that S is simple. Then the assertions (i)–(iv)
in Theorem 3.6.1 hold for all x ∈ R.

To describe the absolutely continuous, singular, and singular continuous parts
of the spectrum of A0 in terms of the boundary behavior of the Weyl function M ,
some preliminary lemmas are needed.

Lemma 3.6.3. Let λ0 ∈ ρ(A0), x ∈ R, and ϕ ∈ G. Then the (possibly improper )
limits

Im (M(x+ i0)ϕ,ϕ) and Im
(
(A0 − (x+ i0))−1γ(λ0)ϕ, γ(λ0)ϕ

)
exist simultaneously, and they satisfy

Im (M(x+ i0)ϕ,ϕ) = |x− λ0|2 Im
(
(A0 − (x+ i0))−1γ(λ0)ϕ, γ(λ0)ϕ

)
.



206 Chapter 3. Spectra, Simple Operators, and Weyl Functions

Proof. It is no restriction to assume that x 	= λ0, as otherwise λ �→ M(λ) and
λ �→ (A0 − λ)−1 are both holomorphic at x = λ0 ∈ ρ(A0) ∩ R, so that the above
limits are zero and the identities hold.

For x 	= λ0 it follows from (3.5.1) that

Im (M(x+ iy)ϕ,ϕ) = y‖γ(λ0)ϕ‖2

+
(|x− λ0|2 − y2

)
Im
((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
+ 2(x− Reλ0) yRe

((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
.

The first term on the right-hand side clearly goes to 0 as y ↓ 0. For the third term
on the right-hand side, observe that for y ↓ 0 one has

yRe

(
1

t− (x+ iy)

)
=

y(t− x)

(t− x)2 + y2
→ 0, t ∈ R,

and since the approximating functions are uniformly bounded, the spectral calcu-
lus for A0 (see Lemma 1.5.3) yields

lim
y ↓ 0

yRe
(
(A0 − (x+ iy))−1γ(λ0)ϕ, γ(λ0)ϕ

)
= 0.

Hence, also the third term on the right-hand side goes to 0 as y ↓ 0. Furthermore,
|x− λ0|2 − y2 → |x− λ0|2 > 0 as y ↓ 0. Therefore, Im (M(x+ iy)ϕ,ϕ) converges
as y ↓ 0 if and only if

Im
(
(A0 − (x+ iy))−1γ(λ0)ϕ, γ(λ0)ϕ

)
converges as y ↓ 0. In addition, it is clear that the identity in the lemma for the
limits is satisfied. �

Recall that the self-adjoint extension A0 generates a collection of finite Borel
measures on R: for each h ∈ H the finite Borel measure μh in (3.3.2) is defined by
μh = (E(·)h, h), where E is the spectral measure of A0. Now the interest is in the
Borel transform Fh of μh = (E(·)h, h), that is

Fh(λ) =

∫
R

1

t− λ
d(E(t)h, h), λ ∈ C \ R;

cf. Definition 3.1.3. In particular, if λ = x+ iy, where x ∈ R and y > 0, then one
has

ImFh(x+ iy) = Im
(
(A0 − (x+ iy))−1h, h

)
(3.6.4)

and
yFh(x+ iy) = y

(
(A0 − (x+ iy))−1h, h

)
. (3.6.5)

By means of Lemma 3.6.3 the boundary values of the Borel transform Fh for
a class of elements h ∈ H are expressed in terms of the boundary values of the
Weyl function M .
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Lemma 3.6.4. Let Δ ⊂ R be an open interval and let λ0 ∈ C \ R. Then for elements
of the form h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, the following statements hold:

(i) If x ∈ Δ, then the (possibly improper ) limits

ImFh(x+ i0) and Im (M(x+ i0)ϕ,ϕ)

exist simultaneously, and

ImFh(x+ i0) = |x− λ0|−2Im (M(x+ i0)ϕ,ϕ).

(ii) If x 	∈ Δ, then ImFh(x+ i0) = |x− λ0|−2Im (M(x+ i0)ϕ,ϕ) = 0.

Proof. It follows from (3.6.4) that for all h ∈ H the (possibly improper) limits
ImFh(x + i0) and Im ((A0 − (x + i0))−1h, h) exist simultaneously and coincide.
For the choice h = γ(λ0)ϕ, ϕ ∈ G, it follows from Lemma 3.6.3 that the (possibly
improper) limits ImFh(x+ i0) and Im (M(x+ i0)ϕ,ϕ) exist simultaneously, and

ImFh(x+ i0) = Im
((
A0 − (x+ i0)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 Im (M(x+ i0)ϕ,ϕ).

If h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, then for x ∈ Δ the spectral calculus implies

ImFh(x+ i0) = Im
((
A0 − (x+ i0)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= Im

((
A0 − (x+ i0)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 Im (M(x+ i0)ϕ,ϕ),

while for x 	∈ Δ it follows that

ImFh(x+ i0) = Im
((
A0 − (x+ i0)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= 0.

This shows the assertions in (i) and (ii). �

Now the absolutely continuous spectrum, the singular spectrum, and the sin-
gular continuous spectrum (cf. Section 3.3) of A0 can be described in terms of the
boundary behavior of the Weyl function M , still under the assumption of local sim-
plicity. The results are essentially consequences of Theorem 3.2.3, Theorem 3.2.6,
and Corollary 3.3.6.

Theorem 3.6.5. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Let Δ ⊂ R be an open interval and assume that the
condition

E(Δ)H = span
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
(3.6.6)
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is satisfied, where E(·) is the spectral measure of A0. Then the absolutely contin-
uous spectrum of A0 in Δ is given by

σac(A0) ∩Δ =
⋃
ϕ∈G

closac
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) < ∞}). (3.6.7)

If S is simple, then (3.6.7) holds for every open interval Δ, including Δ = R.

Proof. By assumption, the span of the set

DΔ :=
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
is dense in E(Δ)H and hence Corollary 3.3.6 implies the identity

σac(A0) ∩Δ =
⋃

h∈DΔ

σ(μh,ac).

According to Theorem 3.2.6 (i) (where the set F was replaced by R),

σ(μh,ac) = closac
({x ∈ R : 0 < ImFh(x+ i0) < ∞}),

which for h = E(Δ)γ(ν)ϕ ∈ DΔ is equivalent to

σ(μh,ac) = closac
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) < ∞}
by Lemma 3.6.4. This yields (3.6.7). �

The next corollary gives a necessary and sufficient condition for the absence
of absolutely continuous spectrum.

Corollary 3.6.6. Let A0 and M be as in Theorem 3.6.5 and let Δ ⊂ R be an open
interval such that the condition (3.6.6) is satisfied. Then

σac(A0) ∩Δ = ∅
if and only if for all ϕ ∈ G and for almost all x ∈ Δ

Im (M(x+ i0)ϕ,ϕ) = 0.

If S is simple, then the assertion holds for every open interval Δ, including Δ = R.

Proof. Since closac(B) = ∅ if and only if m(B) = 0 for any Borel set B ⊂ R by
Lemma 3.2.5 (i), it is clear that for ϕ ∈ G

closac
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) < ∞}) = ∅ (3.6.8)

if and only if

m
({

x ∈ Δ : 0 < Im (M(x+ i0)ϕ,ϕ) < ∞}) = 0. (3.6.9)

Assume first that σac(A0) ∩Δ = ∅. Then (3.6.7) yields (3.6.8) for all ϕ ∈ G, and
hence (3.6.9) holds for all ϕ ∈ G. Moreover, for h = γ(λ0)ϕ, λ0 ∈ C \ R, and x ∈ R
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one has

Im (M(x+ i0)ϕ,ϕ) = |x− λ0|2ImFh(x+ i0)

by Lemma 3.6.4 (with Δ = R), and according to Theorem 3.1.4 (i) this limit exists
and is finite for m-almost all x ∈ R. Hence, (3.6.9) implies Im (M(x+ i0)ϕ,ϕ) = 0
for all ϕ ∈ G and m-almost all x ∈ Δ. For the converse implication assume that
Im (M(x + i0)ϕ,ϕ) = 0 for all ϕ ∈ G and for m-almost all x ∈ Δ. Then (3.6.9)
and hence also (3.6.8) hold for all ϕ ∈ G. Thus, (3.6.7) yields σac(A0)∩Δ = ∅. �

The next lemma is of similar nature as Lemma 3.6.4. Here the limits exist
for all x ∈ R by (3.1.12)–(3.1.13) and Proposition 3.5.1.

Lemma 3.6.7. Let Δ ⊂ R be an open interval and let λ0 ∈ C \ R. Then for elements
of the form h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, one has

lim
y ↓ 0

yFh(x+ iy) =

{
|x− λ0|−2 limy↓0 y(M(x+ iy)ϕ,ϕ), x ∈ Δ,

0, x 	∈ Δ.

Proof. For h = γ(λ0)ϕ, ϕ ∈ G, it follows from (3.6.5) and (3.5.1) (cf. (3.5.3) in the
proof of Proposition 3.5.1) that

lim
y ↓ 0

yFh(x+ iy) = lim
y ↓ 0

y
((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 lim

y ↓ 0
y(M(x+ iy)ϕ,ϕ)

for all x ∈ R. If h = E(Δ)γ(λ0)ϕ, ϕ ∈ G, then for x ∈ Δ the spectral calculus
shows that

lim
y ↓ 0

yFh(x+ iy) = lim
y ↓ 0

y
((
A0 − (x+ iy)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= lim

y ↓ 0
y
((
A0 − (x+ iy)

)−1
γ(λ0)ϕ, γ(λ0)ϕ

)
= |x− λ0|−2 lim

y ↓ 0
y(M(x+ iy)ϕ,ϕ),

while for x 	∈ Δ one has

lim
y ↓ 0

yFh(x+ iy) = lim
y ↓ 0

y
((
A0 − (x+ iy)

)−1
E(Δ)γ(λ0)ϕ,E(Δ)γ(λ0)ϕ

)
= 0.

This completes the proof. �

Next some inclusions for the singular and singular continuous spectra of A0

will be shown.

Theorem 3.6.8. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗ with A0 = ker Γ0, and let M and γ be the correspond-
ing Weyl function and γ-field. Let Δ ⊂ R be an open interval and assume that
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the condition

E(Δ)H = span
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
(3.6.10)

is satisfied, where E(·) is the spectral measure of A0. Then the following statements
hold:

(i) The singular spectrum of A0 in Δ satisfies(
σs(A0) ∩Δ

) ⊂ ⋃
ϕ∈G

{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) = ∞}.

(ii) The singular continuous spectrum of A0 in Δ, i.e., σsc(A0)∩Δ, is contained
in the set⋃
ϕ∈G

closc
({

x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) = ∞, lim
y ↓ 0

y(M(x+ iy)ϕ,ϕ) = 0
})

.

If S is simple, then (i) and (ii) hold for every open interval Δ, including Δ = R.

Proof. By assumption, the span of the set

DΔ :=
{
E(Δ)γ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
is dense in E(Δ)H.

(i) Recall that by Corollary 3.3.6 one has

σs(A0) ∩Δ =
⋃

h∈DΔ

σ(μh,s) (3.6.11)

and according to Theorem 3.2.6 (ii) (with F replaced by R)

σ(μh,s) ⊂ {x ∈ R : ImFh(x+ i0) = ∞}.
For h = E(Δ)γ(ν)ϕ ∈ DΔ this gives, via Lemma 3.6.4,

σ(μh,s) ⊂
{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) = ∞}.

Hence, the set σs(A0) ∩Δ in (3.6.11) is contained in⋃
h∈DΔ

{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) = ∞}

=
⋃

h∈DΔ

{
x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) = ∞},

which yields the assertion in (i).

(ii) Likewise, Corollary 3.3.6 implies

σsc(A0) ∩Δ =
⋃

h∈DΔ

σ(μh,sc). (3.6.12)
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By Theorem 3.2.6 (iii) (again with F replaced by R),

σ(μh,sc) ⊂ closc
({

x ∈ R : ImFh(x+ i0) = ∞, lim
y ↓ 0

yFh(x+ iy) = 0
})

,

and for h = E(Δ)γ(ν)ϕ ∈ DΔ this gives, via Lemma 3.6.4 and Lemma 3.6.7, that
σ(μh,sc) is contained in

closc
({

x ∈ Δ : Im (M(x+ i0)ϕ,ϕ) = ∞, lim
y ↓ 0

y(M(x+ iy)ϕ,ϕ) = 0
})

.

Hence, the assertion follows from (3.6.12). �

An immediate corollary of the previous theorem and Lemma 3.2.5 (ii) is a
sufficient condition for the absence of the singular continuous spectrum in terms
of the limit behavior of the function M .

Corollary 3.6.9. Let A0 and M be as in Theorem 3.6.8 and let Δ ⊂ R be an open
interval such that the condition (3.6.10) is satisfied. Assume that for each ϕ ∈ G

there exist at most countably many x ∈ Δ such that

Im (M(x+ iy)ϕ,ϕ) → ∞ and y(M(x+ iy)ϕ,ϕ) → 0 as y ↓ 0.

Then

σsc(A0) ∩Δ = ∅.
If S is simple, then the assertion holds for every open interval Δ, including Δ = R.

As a further corollary of the theorems of this section sufficient conditions
are provided for the spectrum of A0 to be purely absolutely continuous or purely
singularly continuous, respectively, in some set.

Corollary 3.6.10. Let A0 and M be as in Theorem 3.6.5 or Theorem 3.6.8 and let
Δ ⊂ R be an open interval such that the condition (3.6.6) or (3.6.10) is satisfied.
Assume that for all ϕ ∈ G and all x ∈ Δ

lim
y ↓ 0

yM(x+ iy)ϕ = 0. (3.6.13)

Then the following statements hold:

(i) If for each ϕ ∈ G there exist at most countably many x ∈ Δ such that
Im (M(x+ i0)ϕ,ϕ) = ∞, then σ(A0) ∩Δ = σac(A0) ∩Δ.

(ii) If Im (M(x + i0)ϕ,ϕ) = 0 holds for all ϕ ∈ G and almost all x ∈ Δ, then
σ(A0) ∩Δ = σsc(A0) ∩Δ.

If S is simple and Δ is an open interval such that (3.6.13) holds for all ϕ ∈ G and
all x ∈ Δ, then (i) and (ii) are satisfied.
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Proof. Note first that the assumption (3.6.13) yields σp(A0) ∩Δ = ∅; this follows
immediately from Corollary 3.5.6 and the fact that the condition (3.6.6) or (3.6.10)
implies σp(S) ∩ Δ = ∅; cf. Proposition 3.4.10 (ii). The assumption in (i) and
Corollary 3.6.9 imply σsc(A0) ∩ Δ = ∅ and hence σ(A0) ∩ Δ = σac(A0) ∩ Δ.
Similarly, the assumption in (ii) and Corollary 3.6.6 imply σac(A0) ∩Δ = ∅ and
hence σ(A0) ∩Δ = σsc(A0) ∩Δ follows. �

3.7 Limit properties of Weyl functions

Let S be a closed symmetric relation in a Hilbert space H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M be the corresponding Weyl
function. The aim of this section is to relate limit properties of the imaginary part
ImM of the Weyl function with defect elements in domA0 and dom |A0| 12 , and
ran (A0 − x) and ran |A0 − x| 12 , x ∈ R, respectively, where

A0 = A0,op ⊕̂ A0,mul and |A0| = |A0,op | ⊕̂ A0,mul (3.7.1)

with respect to the usual decomposition H = Hop ⊕ Hmul . This also leads to
necessary and sufficient conditions for S to be a densely defined operator in terms
of the Weyl function.

The first result connects limit properties of the Weyl function at ∞ with
elements in domA0 ∩ ker (S∗ − λ) and dom |A0| 12 ∩ ker (S∗ − λ) for λ ∈ ρ(A0).

Although the decomposition S∗ = A0 +̂ N̂λ(S
∗) is direct for all λ ∈ ρ(A0), it

may happen that domA0 ∩ ker (S∗ − λ) 	= {0} if S∗ is multivalued. In fact, if
f ∈ domA0 ∩ ker (S∗ − λ), f 	= 0, then {f, f ′} ∈ A0 for some f ′ and hence
{0, f ′ − λf} ∈ S∗. Since λ ∈ ρ(A0), this yields mulS∗ 	= {0}.

The representation (3.5.12) of the Weyl function M in terms of the extension
A0 = ker Γ0 will now be used; cf. (3.5.8)–(3.5.9). For simplicity one takes λ0 = i
in (3.5.12), which leads to the representation

M(iy) = ReM(i) + iy γ(i)∗(I − Pop)γ(i)

+ γ(i)∗ιop
[
iy + (1− y2)(A0,op − iy)−1

]
Popγ(i)

(3.7.2)

for all y > 0. The spectral calculus for the self-adjoint operator A0,op applied to
(3.7.2) shows that for ϕ ∈ G and y > 0

Im (M(iy)ϕ,ϕ) = y‖(I − Pop)γ(i)ϕ‖2

+ y

∫
R

t2 + 1

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
.

(3.7.3)

Proposition 3.7.1. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0, and let M and γ be the corresponding
Weyl function and γ-field. Then the following statements hold for ϕ ∈ G:
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(i) γ(λ)ϕ ∈ domA0 for some, and hence for all λ ∈ ρ(A0) if and only if

lim
y→+∞ y Im (M(iy)ϕ,ϕ) < ∞;

(ii) γ(λ)ϕ ∈ dom |A0| 12 for some, and hence for all λ ∈ ρ(A0) if and only if∫ ∞

1

Im (M(iy)ϕ,ϕ)

y
dy < ∞. (3.7.4)

Proof. (i) It suffices to prove the assertion for λ = i, since by Proposition 2.3.2 (ii)

γ(λ) =
(
I + (λ− i)(A0 − λ)−1

)
γ(i),

γ(i) =
(
I + (i− λ)(A0 − i)−1

)
γ(λ)

(3.7.5)

for λ ∈ ρ(A0) and hence γ(i)ϕ ∈ domA0 if and only if γ(λ)ϕ ∈ domA0. Note first
that (3.7.3) yields

yIm (M(iy)ϕ,ϕ) = y2‖(I − Pop)γ(i)ϕ‖2

+

∫
R

y2(t2 + 1)

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
.

(3.7.6)

It is clear that the left-hand side of (3.7.6) has a finite limit for y → +∞ if and
only if (I − Pop)γ(i)ϕ = 0 and∫

R
t2 d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
< ∞,

which follows from the monotone convergence theorem. In other words, the left-
hand side of (3.7.6) has a finite limit for y → +∞ if and only if γ(i)ϕ ∈ domA0.

(ii) As in the proof of (i), it suffices to verify the assertion for λ = i. In fact, if

γ(i)ϕ ∈ dom |A0| 12 , then γ(i)ϕ = (|A0| 12 − μ)−1g for some μ ∈ C \ R and g ∈ H.
The first identity in (3.7.5) and the functional calculus for the self-adjoint operator
A0,op or self-adjoint relation A0 (see Section 1.5) show

γ(λ)ϕ =
(
I + (λ− i)(A0 − λ)−1

)
(|A0| 12 − μ)−1g

= (|A0| 12 − μ)−1
(
I + (λ− i)(A0 − λ)−1

)
g ∈ dom |A0| 12 .

The same argument and the second identity in (3.7.5) show that γ(λ)ϕ∈dom|A0| 12
implies γ(i)ϕ ∈ dom |A0| 12 .

It follows from (3.7.3) that

Im (M(iy)ϕ,ϕ)

y
= ‖(I − Pop)γ(i)ϕ‖2

+

∫
R

t2 + 1

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
.
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Hence, (3.7.4) holds if and only if (I − Pop)γ(i)ϕ = 0 and∫ ∞

1

(∫
R

t2 + 1

t2 + y2
d
(
Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

))
dy < ∞.

Change the order of integration in the last integral, note that

(t2 + 1)

∫ ∞

1

1

t2 + y2
dy = (t2 + 1)

1

|t|
(
π

2
− arctan

1

|t|
)
, t 	= 0,

and observe that for large |t| one has

(t2 + 1)
1

|t|
(
π

2
− arctan

1

|t|
)

∼ |t|

and that on compact subsets of R the function

t �→ (t2 + 1)
1

|t|
(
π

2
− arctan

1

|t|
)

is bounded. Hence, (3.7.4) holds if and only if (I − Pop)γ(i)ϕ = 0 and∫
R
|t| d(Eop(t)Popγ(i)ϕ, Popγ(i)ϕ

)
< ∞.

In other words, (3.7.4) holds if and only if γ(i)ϕ ∈ dom |A0| 12 . �

The following result is essentially a consequence of Proposition 3.7.1 (i).

Corollary 3.7.2. Let S, A0, and M be as in Proposition 3.7.1. Then domS is dense
in domA0 if and only if

lim
y→+∞ y Im (M(iy)ϕ,ϕ) = ∞ for all ϕ ∈ G, ϕ 	= 0.

Proof. Let λ ∈ ρ(A0) and note that f ∈ (domS)⊥ if and only if for all {h, h′} ∈ S

0 = (f, h) =
(
f, (A0 − λ)−1(h′ − λh)

)
=
(
(A0 − λ)−1f, h′ − λh

)
.

Hence, f ∈ (domS)⊥ if and only if (A0 − λ)−1f ∈ ker (S∗ − λ) = ran γ(λ).
Furthermore, (A0 − λ)−1f 	= 0 if and only if f 	∈ mulA0 = (domA0)

⊥.
Now assume that domS is not dense in domA0. Then there exists a nontrivial

f ∈ domA0 such that f ∈ (domS)⊥, and hence

(A0 − λ)−1f ∈ ker (S∗ − λ).

Since f ∈ domA0 it follows that (A0−λ)−1f = γ(λ)ϕ for a nontrivial ϕ ∈ G. This
means γ(λ)ϕ ∈ domA0, and hence

lim
y→+∞ y Im (M(iy)ϕ,ϕ) < ∞ (3.7.7)
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by Proposition 3.7.1 (i). Conversely, if (3.7.7) holds for some nontrivial ϕ ∈ G,
then by Proposition 3.7.1 (i) it follows that γ(λ)ϕ ∈ domA0. Hence, there exists
a nontrivial f ∈ domA0 such that γ(λ)ϕ = (A0 − λ)−1f . Therefore, one sees that
f ∈ (domS)⊥ and hence domS is not dense in domA0. �

Corollary 3.7.3. Let S, A0, and M be as in Proposition 3.7.1. Then S is a densely
defined operator if and only if the following conditions hold:

(i) lim
y→+∞

1

iy
(M(iy)ϕ,ϕ) = 0 for all ϕ ∈ G;

(ii) limy→+∞ y Im (M(iy)ϕ,ϕ) = ∞ for all ϕ ∈ G, ϕ 	= 0.

In this case, S∗ is an operator and all intermediate extensions of S are operators.

Proof. Note that Proposition 3.5.7 and the fact that γ(λ0)
∗(I − Pop )γ(λ0) in

(3.5.13) is a nonnegative operator in G show that condition (i) is equivalent to the
condition

lim
y→+∞

1

iy
M(iy)ϕ = 0, ϕ ∈ G.

By (3.5.18), this condition is necessary and sufficient for A0 to be an operator,
which is the case if and only if domA0 = H. Moreover, according to Corollary 3.7.2,
the condition (ii) is necessary and sufficient for the equality domS = domA0 to
hold. Therefore, domS = H if and only if conditions (i) and (ii) hold. �

In the next result, which is parallel to Proposition 3.7.1, the limit properties
of the Weyl function at x ∈ R will be connected with elements in

ker (S∗ − λ) ∩ ran (A0 − x) and ker (S∗ − λ) ∩ ran |A0 − x| 12 .
For this reason the representation (3.5.1) expressing the Weyl function M in terms
of the self-adjoint relation A0 = ker Γ0 will be used. For simplicity one takes
λ0 ∈ C \ R such that Reλ0 = x in (3.5.1), which leads to

M(x+ iy) = ReM(λ0)

+ γ(λ0)
∗[iy + (|Imλ0|2 − y2)

(
A0 − (x+ iy)

)−1]
γ(λ0).

(3.7.8)

It follows by means of the spectral calculus applied to (3.7.8) that for x ∈ R and
ϕ ∈ G one has

Im (M(x+ iy)ϕ,ϕ)

y
= ‖γ(λ0)ϕ‖2

+
(|Imλ0|2 − y2

) ∫
R

1

(t− x)2 + y2
d(E(t)γ(λ0)ϕ, γ(λ0)ϕ).

(3.7.9)

Proposition 3.7.4. Let S be a closed symmetric relation in H, let {G,Γ0,Γ1} be a
boundary triplet for S∗, let A0 = ker Γ0 be decomposed as in (3.7.1), and let M and
γ be the corresponding Weyl function and γ-field. Then the following statements
hold for x ∈ R and ϕ ∈ G:
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(i) γ(λ)ϕ ∈ ran (A0 − x) for some, and hence for all λ ∈ ρ(A0) if and only if

lim
y ↓ 0

Im (M(x+ iy)ϕ,ϕ)

y
< ∞; (3.7.10)

(ii) Popγ(λ)ϕ ∈ ran |A0,op − x| 12 for some, and hence for all λ ∈ ρ(A0) if and
only if ∫ 1

0

Im (M(x+ iy)ϕ,ϕ)

y
dy < ∞. (3.7.11)

Proof. (i) It will first be shown that for λ, λ0 ∈ ρ(A0) one has γ(λ)ϕ ∈ ran (A0−x)
if and only if γ(λ0)ϕ ∈ ran (A0 − x). Assume that γ(λ0)ϕ ∈ ran (A0 − x). Then
there is {f, f ′} ∈ A0 such that γ(λ0)ϕ = f ′ − xf . As{

f ′ − xf, (A0 − λ)−1(f ′ − xf)
} ∈ (A0 − λ)−1,

it follows that{
(A0 − λ)−1(f ′ − xf), f ′ − xf + (λ− x)(A0 − λ)−1(f ′ − xf)

} ∈ A0 − x.

Hence, f ′ − xf + (λ− x)(A0 − λ)−1(f ′ − xf) ∈ ran (A0 − x) and

(A0 − λ)−1(f ′ − xf) ∈ ran (A0 − x).

From the identity γ(λ) = (I + (λ − λ0)(A0 − λ)−1)γ(λ0), established in Proposi-
tion 2.3.2 (ii), one finds that

γ(λ)ϕ = f ′ − xf + (λ− λ0)(A0 − λ)−1(f ′ − xf) ∈ ran (A0 − x).

Thus, γ(λ0)ϕ ∈ ran (A0 − x) implies that γ(λ)ϕ ∈ ran (A0 − x). Since λ0 and λ in
the above argument can be interchanged, it is clear that γ(λ)ϕ ∈ ran (A0 − x) if
and only if γ(λ0)ϕ ∈ ran (A0 − x).

To verify the remaining assertion in (i) with λ = λ0, note first that the limit
as y ↓ 0 in (3.7.10) is finite if and only if the limit of the integral in the second term
in (3.7.9) is finite. An application of the monotone convergence theorem shows that
the limit as y ↓ 0 of the integral in the second term in (3.7.9) is finite if and only
if ∫

R

1

(t− x)2
d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) < ∞,

that is, if and only if∫
R

1

(t− x)2
d(Eop (t)Pop γ(λ0)ϕ, Pop γ(λ0)ϕ) < ∞,

where the definition of the spectral measure E(·) of A0 via the spectral measure
Eop (·) of A0,op was used. Therefore, the limit as y ↓ 0 in (3.7.10) is finite if and
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only if Pop γ(λ0)ϕ ∈ dom (A0,op − x)−1 = ran (A0,op − x), that is, if and only if
γ(λ0)ϕ ∈ ran (A0 − x).

(ii) As in (i), it will first be shown that Popγ(λ)ϕ ∈ ran |A0,op − x| 12 if and only if

Popγ(λ0)ϕ ∈ ran |A0,op − x| 12 for λ, λ0 ∈ ρ(A0). Assume that

Popγ(λ0)ϕ = |A0,op − x| 12 f
for some f ∈ dom |A0,op − x| 12 . It follows from the functional calculus for un-
bounded self-adjoint operators that

(A0,op − λ)−1|A0,op − x| 12 = |A0,op − x| 12 (A0,op − λ)−1

= |A0,op − x| 12 (A0,op − λ)−1

and hence, since γ(λ) = (I + (λ− λ0)(A0 − λ)−1)γ(λ0), one has that

Popγ(λ)ϕ = Popγ(λ0)ϕ+ (λ− λ0)(A0,op − λ)−1Popγ(λ0)ϕ

= |A0,op − x| 12 f + (λ− λ0)(A0,op − λ)−1|A0,op − x| 12 f
= |A0,op − x| 12 f + (λ− λ0)|A0,op − x| 12 (A0,op − λ)−1f,

that is, Popγ(λ)ϕ ∈ ran |A0,op − x| 12 . Thus, Popγ(λ0)ϕ ∈ ran |A0,op − x| 12 im-

plies Popγ(λ)ϕ ∈ ran |A0,op − x| 12 . Since λ0 and λ in the above argument can be

interchanged, it is clear that Popγ(λ0)ϕ ∈ ran |A0,op − x| 12 holds if and only if

Popγ(λ)ϕ ∈ ran |A0,op − x| 12 holds.

To verify the remaining assertion in (ii), it is convenient to fix λ = λ0 ∈ C \ R
such that |Imλ0| > 1. One then concludes from (3.7.9) that the integral in (3.7.11)
converges if and only if the integral∫ 1

0

(∫
R

1

(t− x)2 + y2
d(E(t)γ(λ0)ϕ, γ(λ0)ϕ)

)
dy

converges. Changing the order of integration in the last integral and observing
that ∫ 1

0

1

(t− x)2 + y2
dy =

1

|t− x| arctan
1

|t− x| , t 	= x,

one sees that the integral in (3.7.11) converges if and only if∫
R

1

|t− x| arctan
1

|t− x| d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) < ∞. (3.7.12)

Since the integrand in (3.7.12) is bounded on R \ (x− 1, x+1), it follows that the
integral in (3.7.11) converges if and only∫ x+1

x−1

1

|t− x| d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) < ∞,
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which is equivalent to∫
R

1

|t− x| d(E(t)γ(λ0)ϕ, γ(λ0)ϕ) < ∞

and to ∫
R

1

|t− x| d(Eop (t)Pop γ(λ0)ϕ, Pop γ(λ0)ϕ) < ∞.

Therefore, (3.7.11) holds if and only if

Pop γ(λ0)ϕ ∈ dom |A0,op − x|− 1
2 = ran |A0,op − x| 12 ,

that is, if and only if γ(λ0)ϕ ∈ ran |A0 − x| 12 . �

3.8 Spectra and local minimality for
self-adjoint extensions

In this section the results on eigenvalues, eigenspaces, continuous, absolutely con-
tinuous and singular continuous spectra from Section 3.5 and Section 3.6 will be
explicitly formulated for arbitrary self-adjoint extensions of a symmetric relation.

Let S be a closed symmetric relation in H and let {G,Γ0,Γ1} be a boundary
triplet for S∗ with γ-field γ and Weyl function M . Consider a self-adjoint extension

AΘ =
{
f̂ ∈ S∗ : Γf̂ ∈ Θ

}
= ker

(
Γ1 −ΘΓ0

)
(3.8.1)

of S in H, where Θ = Θ∗ is a self-adjoint relation in G. Recall from Corollary 1.10.9
that there exist operators A,B ∈ B(G) with the properties

A∗B = B∗A, AB∗ = BA∗, A∗A+B∗B = I = AA∗ +BB∗,

such that

Θ =
{{Aϕ,Bϕ} : ϕ ∈ G

}
=
{{ψ,ψ′} ∈ G2 : A∗ψ′ = B∗ψ

}
.

According to Section 2.2, the self-adjoint extensions AΘ in (3.8.1) can also be
written in the form

AΘ =
{
f̂ ∈ S∗ : A∗Γ1f̂ = B∗Γ0f̂

}
.

In order to describe the spectrum of AΘ consider the boundary triplet {G,Γ′
0,Γ

′
1},

where (
Γ′
0

Γ′
1

)
=

(
B∗ −A∗

A∗ B∗

)(
Γ0

Γ1

)
; (3.8.2)

cf. Corollary 2.5.11. Then one has

AΘ = ker Γ′
0, (3.8.3)
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and the corresponding Weyl function and γ-field will be denoted by MΘ and γΘ.
For λ ∈ ρ(AΘ) ∩ ρ(A0) they are given by

MΘ(λ) =
(
A∗ +B∗M(λ)

)(
B∗ −A∗M(λ)

)−1
(3.8.4)

and
γΘ(λ) = γ(λ)

(
B∗ −A∗M(λ)

)−1
,

respectively; cf. (2.5.17) and (2.5.18). From (3.8.3) it is clear that the spectrum
of AΘ can be described by means of the Weyl function MΘ. Therefore, the earlier
results expressing the spectrum of A0 in terms of the Weyl function M (and the
γ-field γ) can now be simply translated to the present context. The main results
will be listed below; it is left to the reader to formulate analogs of the results in
Section 3.7 in the present setting.

First the analogs of Theorem 3.5.5 and Theorem 3.5.10 will be described. For
this purpose define the operators RΘ

x , x ∈ R, and RΘ
∞ similar to Definition 3.5.2

and Definition 3.5.8:

RΘ
x ϕ = lim

y ↓ 0
iyMΘ(x+ iy)ϕ, ϕ ∈ G,

and

RΘ
∞ϕ = lim

y→+∞
1

iy
MΘ(iy)ϕ, ϕ ∈ G.

As in Section 3.5, one has that RΘ
x ,R

Θ
∞ ∈ B(G). In terms of the boundary triplet

{G,Γ′
0,Γ

′
1} in (3.8.2) and the corresponding Weyl function MΘ in (3.8.4), Theo-

rem 3.5.5 and Corollary 3.5.6 read as follows.

Corollary 3.8.1. Let S, AΘ, and MΘ be as above and let x ∈ R. Then the mapping

τ : N̂x(AΘ)� N̂x(S) → ranRΘ
x , f̂ �→ A∗Γ0f̂ +B∗Γ1f̂ ,

is an isomorphism. In particular,

x ∈ σp(AΘ) and N̂x(AΘ)� N̂x(S) 	= {0} ⇔ RΘ
x 	= 0,

and if x 	∈ σp(S), then x ∈ σp(AΘ) if and only if RΘ
x 	= 0.

Similarly, Theorem 3.5.10 and Corollary 3.5.11 take the following form.

Corollary 3.8.2. Let S, AΘ, and MΘ be as above. Then the mapping

τ : N̂∞(AΘ)� N̂∞(S) → ranRΘ
∞, f̂ �→ A∗Γ0f̂ +B∗Γ1f̂ ,

is an isomorphism. In particular,

mulAΘ �mulS 	= {0} ⇔ RΘ
∞ 	= 0,

and if mulS = {0}, then AΘ is an operator if and only if RΘ
∞ = 0.
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For the next results the local simplicity condition appearing in many of the
results in Section 3.6 has to be reformulated with respect to AΘ. According to
Definition 3.4.9, the closed symmetric relation S is simple with respect to Δ ⊂ R
and the self-adjoint extension AΘ if

EΘ(Δ)H = span
{
EΘ(Δ)γΘ(ν)ϕ : ν ∈ C \ R, ϕ ∈ G

}
, (3.8.5)

where EΘ(·) is the spectral measure of AΘ.

Then Theorem 3.6.1 yields the following statement.

Corollary 3.8.3. Let S, AΘ, and MΘ be as above, let Δ ⊂ R be an open interval, and
assume that the local simplicity condition (3.8.5) is satisfied. Then the following
statements hold for each x ∈ Δ:

(i) x ∈ ρ(AΘ) if and only if MΘ can be continued analytically to x;

(ii) x ∈ σc(AΘ) if and only if RΘ
x = 0 and MΘ cannot be continued analytically

to x;

(iii) x is an eigenvalue of AΘ if and only if RΘ
x 	= 0;

(iv) x is an isolated eigenvalue of AΘ if and only if x is a pole (of first order ) of
MΘ; in this case RΘ

x is the residue of MΘ at x.

If S is simple, then the statements (i)–(iv) hold for all x ∈ R.

Finally, the corresponding results for the absolutely continuous, singular, and
singular continuous spectra will be formulated; it is left to the reader to state the
analogs of Corollaries 3.6.6, 3.6.9, and 3.6.10.

In the present situation Theorem 3.6.5 reads as follows.

Corollary 3.8.4. Let S, AΘ, and MΘ be as above, let Δ ⊂ R be an open interval, and
assume that the local simplicity condition (3.8.5) is satisfied. Then the absolutely
continuous spectrum of AΘ in Δ is given by

σac(AΘ) ∩Δ =
⋃
ϕ∈G

closac
({

x ∈ Δ : 0 < Im (MΘ(x+ i0)ϕ,ϕ) < ∞}). (3.8.6)

If S is simple, then (3.8.6) holds for every open interval Δ, including Δ = R.

For the singular and singular continuous spectra one obtains the following
version of Theorem 3.6.8.

Corollary 3.8.5. Let S, AΘ, and MΘ be as above, let Δ ⊂ R be an open interval, and
assume that the local simplicity condition (3.8.5) is satisfied. Then the following
statements hold:

(i) The singular spectrum of AΘ in Δ satisfies(
σs(AΘ) ∩Δ

) ⊂ ⋃
ϕ∈G

{
x ∈ Δ : Im (MΘ(x+ i0)ϕ,ϕ) = ∞}.
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(ii) The singular continuous spectrum of AΘ in Δ, σsc(AΘ) ∩Δ, is contained in
the set⋃
ϕ∈G

closc
({

x ∈ Δ : Im (MΘ(x+ i0)ϕ,ϕ) = ∞, lim
y ↓ 0

y(MΘ(x+ iy)ϕ,ϕ) = 0
})

.

If S is simple, then (i) and (ii) hold for every open interval Δ, including Δ = R.

Finally, the special case where the self-adjoint relation Θ in (3.8.1) is a
bounded self-adjoint operator will be briefly discussed. In this situation there is
a more natural choice of the transformed boundary triplet {G,Γ′

0,Γ
′
1} above. In

fact, if S is a closed symmetric relation, {G,Γ0,Γ1} is a boundary triplet for S∗

with γ-field γ and Weyl function M , and Θ ∈ B(G) is self-adjoint, then, by Corol-
lary 2.5.7, the mappings

Γ′
0 = Γ1 −ΘΓ0 and Γ′

1 = −Γ0

lead to a boundary triplet {G,Γ′
0,Γ

′
1} for S∗ such that

ker Γ′
0 = ker

(
Γ1 −ΘΓ0

)
= AΘ.

For λ ∈ ρ(A0) ∩ ρ(AΘ) the corresponding γ-field γΘ and the Weyl function MΘ

are given by

γΘ(λ) = −γ(λ)
(
Θ−M(λ)

)−1
and MΘ(λ) =

(
Θ−M(λ)

)−1
, (3.8.7)

respectively. Then the above results in Corollaries 3.8.1–3.8.5 remain valid with
the functionMΘ in (3.8.7) and the mapping f̂ �→ A∗Γ0f̂+B∗Γ1f̂ in Corollary 3.8.1

and Corollary 3.8.2 replaced by f̂ �→ −Γ0f̂ .
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