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Abstract. We show how to combine a fully-homomorphic encryption
scheme with linear decryption and a linearly-homomorphic encryption
schemes to obtain constructions with new properties. Specifically, we
present the following new results.
(1) Rate-1 Fully-Homomorphic Encryption: We construct the first

scheme with message-to-ciphertext length ratio (i.e., rate) 1 − σ for
σ = o(1). Our scheme is based on the hardness of the Learning with
Errors (LWE) problem and σ is proportional to the noise-to-modulus
ratio of the assumption. Our building block is a construction of a new
high-rate linearly-homomorphic encryption.
One application of this result is the first general-purpose secure func-
tion evaluation protocol in the preprocessing model where the com-
munication complexity is within additive factor of the optimal inse-
cure protocol.

(2) Fully-Homomorphic Time-Lock Puzzles: We construct the first time-
lock puzzle where one can evaluate any function over a set of puz-
zles without solving them, from standard assumptions. Prior work
required the existence of sub-exponentially hard indistinguishability
obfuscation.
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1 Introduction

Fully-homomorphic encryption (FHE) allows one to evaluate any function over
encrypted data. Since the breakthrough result of Gentry [15], the development of
FHE schemes has seen a rapid surge [1,6–8,19,32] and by now FHE has become
a well-established cryptographic primitive. An FHE scheme gives an elegant
solution to the problem of secure function evaluation: One party publishes the
encryption of its input under its own public key Enc(pk, x) while the other eval-
uates some function f homomorphically, returning c = Enc(pk, f(x)). The first
party can recover the output by simply decrypting c. The crucial property of this
approach is that its communication complexity is proportional to the size of the
input and of the output, but does not otherwise depend on the size of f . This
distinguishing feature is essential for certain applications, such as private infor-
mation retrieval [10], and has motivated a large body of work on understanding
FHE and related notions [2,29].

Unfortunately, our understanding in secure computation protocol with opti-
mal communication complexity is much more limited. Typically, FHE schemes
introduce a polynomial blowup factor (in the security parameter) to the ciphere-
text size, thereby affecting the overall communication rate of the protocol. Given
the current state-of-the-art FHE schemes, the only class of functions we can eval-
uate without communication blowup are linear functions [12]. An FHE scheme
with optimal rate, i.e., with a message-to-ciphertext ratio approaching 1, would
immediately give us a general-purpose tool to securely evaluate any function
(with sufficiently large inputs and outputs) with asymptotically optimal com-
munication complexity. Motivated by this objective, this work seeks to answer
the following question:

Can we construct an FHE scheme with rate 1 from standard
assumptions?

We also consider the related problem of constructing fully-homomorphic time-
lock puzzles (FH-TLP), a primitive recently introduced in [22] to address the
computational burden of classical time-lock puzzles [31]. Time-lock puzzles
encapsulate secrets for a pre-determined amount of time, and FH-TLP allow
one to evaluate functions over independently generated puzzles. The key feature
of FH-TLPs is that after a function has been homomorphically evaluated on
a (possibly large) number of input TLPs, only a single output TLP has to be
solved to recover the function result. Consequently, FH-TLP can be used in the
very same way as TLPs, but the solver is spared from solving a large number of
TLPs (in parallel) and only needs to solve a single TLP which encapsulates the
function result.

FH-TLP have been shown to be a very versatile tool and have several appli-
cations, ranging from coin-flipping to fair contract signing [22]. In [22] FH-TLPs
were constructed from probabilistic iO [9] and scheme from standard assump-
tions were limited to restricted classes of functions (e.g., linear functions). Moti-
vated by this gap, the second question that we ask is:
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Can we construct an FH-TLP scheme (ideally with rate 1) from standard
assumptions?

1.1 Our Results

In this work, we answer both questions in the affirmative. Specifically, we present
the following new results:

(1) Our main result is the construction of an FHE which allows compressing
many ciphertexts into a compressed ciphertext which has rate 1 − 1/λ. In
fact, we show that for any a-priori block size � = poly(λ), we can construct
a scheme where the ciphertext length is at most � + τ(λ), where τ is a fixed
polynomial (which does not depend on �). Setting � = λ ·τ(λ), the rate claim
follows.
To prove security of this scheme, we only need to assume the hardness of
the Learning With Errors (LWE) [30] problem with polynomial modulus-to-
noise ratio.1

(2) We provide a construction of a fully-homomorphic time-lock puzzle from
multi-key FHE and linearly homomorphic time-lock puzzles. The security
of the former can be based on the hardness of LWE with superpolyno-
mial modulus-to-noise ratio, whereas the latter can be constructed from
the sequential squaring assumption [31] in groups of unknown order.

On a technical level, both of our main results are tied together by the common
idea of combining an FHE with a linear decryption algorithm with a linearly-
homomorphic encryption (time-lock puzzle, respectively) of optimal rate. The
hybrid scheme inherits the best of both worlds and gives us a rate-optimal FHE
scheme or an FH-TLP from standard assumptions, depending on the building
block that we use. Our techniques are reminiscent of the chimeric scheme of
Gentry and Halevi [16], with a new twist to how to encode information without
inflating the size of the ciphertexts. Somewhat interestingly, our construction of
rate-1 linearly homomorphic encryption from LWE leverages ideas which were
originally conceived in the context spooky FHE [13], homomorphic secret shar-
ing [3] and private-information retrieval [14].

Concurrent Work. In a concurrent work, Gentry and Halevi [17] constructed
rate-1 FHE schemes using similar ideas as in our work. While the goal of their
work is realizing practically efficient high-rate private information retrieval pro-
tocols, our constructions are more general and designed to achieve the best
possible asymptotic rate.

1.2 Applications

We outline a few interesting implications of our results. We stress that the tools
that we develop in this work are of general purpose and we expect them to find
more (possibly indirect) applications in the near future.
1 We note that the modulus-to-noise ratio does depend (linearly) on �.
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(1) Secure Function Evaluation: FHE yields a very natural protocol for secure
function evaluation (SFE) where one party encrypts its input and the other
computes the function homomorphically. Given that the input and the out-
put are sufficiently large, rate-1 FHE yields a (semi-honest) SFE scheme
where the communication complexity is within additive factor from that of
the best possible insecure protocol.

(2) Encrypted Databases with Updates: Using rate-1 FHE, it is possible to out-
source an encrypted database to an untrusted (semi-honest) cloud provider,
without suffering additional storage overhead due to ciphertext expansion.
While FHE hybrid encryption (using a non-rate-1 FHE) allows to store a
static database without additional storage requirements, as soon as database
entries are homomorphically updated they become FHE-ciphertexts and con-
sequently their size grows substantially. Keeping the database encrypted
under a rate-1 FHE scheme enables the cloud provider to perform updates
on the database, while not increasing the size of the encrypted data.

(3) Malicious Circuit Privacy: Instantiating the generic compiler of Ostrovsky et
al. [25] with our rate-1 FHE scheme gives the first maliciously circuit-private
FHE scheme with rate-1. A maliciously circuit-private scheme does not leak
any information to the decrypter about the homomorphically evaluated func-
tions (beyond the function output) for any choice of the public parameters.
Among others, a rate-1 scheme implies a maliciously statistically sender-
private oblivious transfer [4] with the same rate. Previous works [14] were
able to achieve rate 1 only for oblivious transfer and only in the semi-honest
setting. The prior best known rate in the malicious setting was ≤1/2.

(4) Sealed Bid Auctions: One of the motivating applications of time-lock puz-
zles is to construct fair sealed bid auctions, where each bid is encrypted in a
time-lock puzzle whose opening can be forced by the auctioneer in case the
bidder refuses to disclose it. This however involves a computational effort
proportional to the number of unopened bids, which can be used as a vec-
tor for denial-of-service attacks. Homomorphic time-lock puzzles solve this
problem by allowing the auctioneer to homomorphically compute the winner
of the auction and only solve a single puzzle. Since this computation cannot
be expressed as a linear function, our work provides the first solution from
standard assumptions.

1.3 Technical Outline

We present a detailed technical outline of our results in the following. As far as
rate-1 FHE is concerned, our focus is on techniques to compress post-evaluation
ciphertexts. Compressed ciphertexts can be further expanded (and homomor-
phically evaluated) via standard bootstrapping techniques.

Schematically, our method for achieving rate-1 FHE is as follows. We consider
the “batched-Regev” LWE based encryption scheme (which appears explicitly
in the literature, e.g., in [5,28]). This scheme has much better rate than “plain”
Regev, but the rate is still asymptotically 0 (i.e., o(1)). It can be shown that
it is possible to convert plain-Regev ciphertexts into batched-Regev, essentially
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using the key-switching technique that is frequently used in the FHE literature
(see, e.g., [7]). We then show that batched-Regev ciphertexts can be compressed
in a way that increases the rate to 1− o(1), but maintains (perfect) decryptabil-
ity. We do this by combining rounding techniques that appeared previously in
the literature [3,13,14] with new techniques that we develop and allow to main-
tain high rate, perfect correctness, and modest LWE modulus simultaneously.
We note that in order to apply key-switching, we need to use batched-Regev in
its non-compressed form, and only apply the compression after the switching is
complete. This transformation, maintains decryptability but homomorphic capa-
bilities are lost. As mentioned above, these can be restored using bootstrapping
in a generic way.

Leveraging Linear Decryption. Our starting point is the observation that, for
essentially any FHE construction in literature, decryption (or rather noisy
decryption) is a linear function in the secret key. More specifically, we can write
the decryption operation as a function Lc(s), which is linear in s, the secret
key. Typically things are set up in a way such that it holds for correctly formed
ciphertexts c that Lc(s) = q

2 · m + e, where m is the plaintext and e is a small
noise term. We can then recover m from Lc(s) via rounding.

For many FHE schemes, the choice of the factor q/2 is not hardwired into
the scheme, but can be provided as an explicit input to the decryption function.
More specifically, it holds that

Lα,c(s) = α · m + e,

where Lα,c(·) is a linear function and e is a small noise term. Assume in the
following that |e| < B for some bound B. We refer to this operation as linear
decrypt-and-multiply. In fact, Micciancio [23] observed that any FHE scheme
with linear decryption can be transformed into a scheme which supports linear
decrypt-and-multiply.

Equipped with a linear decrypt-and-multiply FHE, our main idea to con-
struct a rate-1 FHE scheme is to run the linear decrypt-and-multiply operation
of the FHE scheme inside a high rate linearly homomorphic scheme. Consider
an FHE scheme whose secret keys are vectors over Zq, and a rate-1 linearly
homomorphic scheme HE with plaintext space Zq. Assume we are given as “com-
pression key” the encryption ck = Enc(pk, s) of the FHE secret key s under the
linearly homomorphic scheme HE. Given an FHE ciphertext c encrypting a mes-
sage m ∈ {0, 1}, we can transform c into an encryption of m under the linearly
homomorphic scheme by homomorphically evaluating the linear function Lα,c(·)
on ck, i.e. we compute HE.Eval(Lα,c(·), ck). By homomorphic correctness, this
results in an encryption of α ·m+ e under the linearly homomorphic scheme HE.

So far, we have not gained anything in terms of rate, as we still have a large
ciphertext encrypting only a single bit m. However, we have not yet taken advan-
tage of the fact that we can choose α freely and that the scheme HE has rate 1.
Our idea to increase the rate is to pack many FHE ciphertexts (c1, . . . , c�), each
encrypting a single bit mi, into a single ciphertext of the high-rate linearly homo-
morphic scheme HE. More specifically, for given FHE ciphertexts (c1, . . . , c�) and
a parameter t, consider the function L∗(x) defined as
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L∗(x) =
�∑

i=1

L2t+i,ci(x).

Note that, although we define L∗ as a sum of functions, this is not how we
compute it. Since L∗ is a linear function, we can obtain a matrix-representation
of it by, e.g., evaluating it on a basis and then later use the matrix representation
to compute the function. By correctness of the FHE scheme it holds that

L∗(s) =
�∑

i=1

L2t+i,ci(s)

=
�∑

i=1

2t+i · mi + e,

where e =
∑�

i=1 ei is an �B-bounded noise term. Consequently, by homomor-
phically evaluating L∗ on ck, we obtain an encryption c̃ of

∑�
i=1 2t+i · mi + e

under the high-rate scheme HE. Given that 2t > �B, the noise e does not inter-
fer with the encodings of the message bits mi and they can be recovered during
decryption.

The main effect that works in our favor here is that we can distribute the mes-
sage bits mi into the high order bits by multiplying them with appropriate powers
of 2, whereas the decryption noise piles up in the low order bits. Consequently, the
noise occupies only the lower ≈ log(�) + log(B) bits, whereas the remaining bits
of the message space can be packed with message bits. Choosing q as q ≈ (�B)1/ε

for a parameter ε > 0 we achieve an encoding rate of log(q)−log(�B)
log(q) = 1−ε. Given

that the linearly homomorphic encryption scheme has a similarly high rate, we
obtain an overall rate of 1−O(ε). Consequently, this construction yields an FHE
scheme with rate 1 − O(1/λ) using, e.g., the Damg̊ard-Jurik cryptosystem or a
variant of Regev encryption as linearly homomorphic scheme, where the LWE
modulus-to-noise ratio is with (sub-)exponential [28].

Towards a Scheme from Standard LWE. Our next goal is to achieve the same
(asymptotic) rate assuming only LWE with polynomial modulus-to-noise ratio.
Recall that our packing strategy consisted in encoding the message vector
m = (m1, . . . ,m�) into the high-order bits of a Zq-element by homomorphi-
cally computing t� · m, where t� = (2t+1, . . . , 2t+�). However, this is not the
only possible strategy. More generally, linear decrypt-and-multiply enables us
to homomorphically pack messages (m1, . . . ,m�) into an encoded vector T · m
for some packing matrix T ∈ Z

k×�
q . Since linear decryption is inherently noisy,

we will require some error correcting properties from such an encoding, i.e., we
need to be able to reconstruct m from T · m + e, for short noise terms e. With
this observation in mind, our next step will be to construct an ad-hoc high-
rate linearly homomorphic encryption and pair it with an appropriate packing
strategy.
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Linearly Homomorphic Encryption with Ciphertext Shrinking. We now discuss
new constructions of linearly homomorphic encryption schemes from LWE which
allow asymptotically optimal ciphertext sizes. To avoid confusion with our FHE
ciphertext compression technique, we will refer to this technique as ciphertext
shrinking. Our starting point is Regev encryption and its variants. Let q be
a modulus. In Regev encryption a ciphertext c consists of two parts, a vector
c1 ∈ Z

n
q and a scalar c2 ∈ Zq. The secret key is a vector s ∈ Z

n
q . Decryption for

this scheme is linear, and it holds that

c2 − s� · c1 =
q

2
· m + e

︸ ︷︷ ︸
m̂

,

where e with |e| < B for some bound B is a decryption noise term. We obtain
the plaintext m by rounding m̂, i.e., by computing

�m̂�2 = �m̂ · 2/q�
=

⌈(q

2
· m + e

)
· 2/q

⌋

= �m + 2e/q� = m,

given that q > 4B. We first show how to shrink the component c2 of the cipher-
text into a single bit at the expense of including an additional ring element
r ∈ Zq in the ciphertext. Although this procedure does not actually shrink the
ciphertext (in fact it increases its size by one Zq element), we will later amortize
the cost of r across multiple components. The main idea is to delegate a part
of the rounding operation from the decrypter to a public operation Shrink and
it is inspired by recent works on spooky encryption [13], homomorphic secret
sharing [3], and private-information retrieval [14].

The algorithm Shrink takes as input the ciphertext c = (c1, c2) where c2 ∈ Zq

and proceeds as follows. It first chooses an r ∈ Zq such that c2 + r /∈ [q/4 −
B, q/4+B]∪ [3/4 ·q−B, 3/4 ·q+B], then it computes w = �c2+r�2 and outputs
a compressed ciphertext c̃ = (c1, r, w). Given a shrunk ciphertext c̃ = (c1, r, w)
and the secret key s, the decrypter computes

m′ = (w − �s�c1 + r�2) mod 2.

We claim that m′ is identical to Dec(s, c) = �c2 − s� · c1�2. To see this, note that
since c2 − s� · c1 = q

2m + e, we can write

c2 − e = s� · c1 +
q

2
· m.

Now, since r is chosen such that c2+r /∈ [q/4−B, q/4+B]∪[3/4·q−B, 3/4·q+B]
and e ∈ [−B,B], it holds that

�c2 + r�2 = �c2 + r − e�2.
Using the above this implies that

w = �c2 + r�2 = �c2 + r − e�2 =
⌈
s� · c1 + r +

q

2
· m

⌋
2

= (�s� · c1 + r�2 + m) mod 2.
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It follows that m = (w − �s�c1 + r�2) mod 2. Note that after shrinking cipher-
texts, we can no longer perform homomorphic operations (unless one is willing to
run a bootstrapped ciphertext expansion). As a consequence, in our applications
we will only perform the shrinking operation after all homomorphic operations
have been computed.

What is left to be shown is how to amortize the cost of including r by
shrinking many c2 components for the same c1. To achieve this, instead of using
basic Regev encryption, we use batched Regev encryption. In batched Regev
encryption, ciphertexts consist of a vector c1 ∈ Z

n
q and ring elements c2,i ∈ Zq

for i ∈ [�]. To decrypt the i-th message component mi, we compute

mi = �c2,i − s�
i · c1�2.

where si is the secret key for the i-th component. Consequently, we can use the
same shrinking strategy as above for every c2,i. However, now each c2,i imposes a
constraint on r, namely that c2,i +r /∈ [q/4−B, q/4+B]∪ [3/4 ·q−B, 3/4 ·q+B].

Fortunately, given that q is sufficiently large, namely q > 4�B, there exists an
r which fulfills all constraints simultaneously. To find such an r, we compute a
union of all forbidden intervals modulo q, and pick an r outside of this set. Notice
that this procedure can be efficiently implemented even if q is super-polynomially
large. The rate of the resulting scheme is

�

(n + 1) log(q) + �
= 1 − (n + 1) log(q)

(n + 1) log(q) + �
.

For q ≈ 4�B and a sufficiently large � = Ω(λ · (n + 1) log(q)) = poly(λ), we
achieve rate 1 − O(1/λ).

Notice that while basic Regev encryption is only additively homomorphic, we
need a scheme that supports homomorphic evaluation of linear functions. Fortu-
nately, this can be achieved by a very simple modification. Instead of encrypting
a message m, encrypt the messages 2i · m for all i ∈ [log(q)]. Further details are
deferred to the main body (Sect. 3.3).

Back to Rate-1 FHE. Returning to our main objective of rate-1 FHE, if we
instantiate our generic construction from above with the packed Regev scheme
that allows ciphertext shrinking, note that there is a slight mismatch. Recall
that our rate 1 FHE construction assumed a linearly homomorphic encryption
scheme with plaintext space Zq or Zk

q , whereas our Regev scheme with shrinking
has a plaintext space {0, 1}�.

Towards resolving this issue, it is instructive to consider Regev encryption
without message encoding and decryption without rounding. That is, we consider
only the linear part of decryption where a ciphertext c = (c1, c2) decrypts to

Dec(s, c) = c2 − s� · c1 = m∗ + e′

where s is the secret key and the message m∗ is an element of Zq. The important
observation is that in the construction above the message m∗ is the result of a



Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 415

linear decrypt-and-multiply operation. This means that m∗ already contains a
certain amount of decryption noise and the actual message contained in m∗ has
already been encoded by the linear decrypt-and-multiply operation.

Assuming for simplicity that m∗ = L q
2 ,c∗(s∗), where c∗ is an FHE ciphertext

encrypting a message m and s∗ the corresponding FHE secret key, we have that

Dec(s, c) = c2 − s� · c1 = L q
2 ,c∗(s∗) + e′

=
q

2
· m + e′ + e′′,

where e′′ is a small noise term which is introduced by the inner FHE decryption.
Note that above we only had to deal with noise e′′ coming from the inner FHE
decryption, whereas now we have an additional noise term e′ coming from the
decryption of the linearly homomorphic scheme. Given that the compound noise
e = e′+e′′ is sufficiently small, our shrinking technique for the ciphertext (c1, c2)
still works. The only condition we need for the shrinking technique to work is
that c2 − s� · c1 is of the form q

2 · m + e for a B-bounded error e.
To sum things up, all we need to ensure is that the encrypted message is

well-formed before ciphertext shrinking via the Shrink procedure. To stay with
the notation from above, for this scheme the packing matrix T which is used
to encode plaintexts during the homomorphic decrypt-and-multiply step will be
q
2 · I, where I is the identity matrix.

Fully Homomorphic Time-Lock Puzzles. We finally show how ideas from our
rate-1 FHE construction can be used to obtain fully homomorphic time-lock
puzzles (FH-TLP) from standard assumptions. Very recently, Malavolta and
Thyargarajan [22] introduced the notion of homomorphic time-lock puzzles and
proposed an efficient construction of linearly homomorphic timelock puzzles (LH-
TLP) from the sequential squaring assumption [31]. An LH-TLP allows for eval-
uations of linear functions on messages encrypted in time-lock puzzles. A key
aspect here is that the time-lock puzzles may be independently generated by
different players.

The basic idea underlying our construction of FH-TLP is to replace the
linearly homomorphic encryption scheme in our rate-1 FHE construction above
by an LH-TLP. More concretely, fix an LH-TLP scheme where the message-
space is Zq and an FHE scheme for which the secret keys are Z

n
q vectors. We

will describe how to generate a puzzle for a message m and time parameter T .
First, generate an FHE public key pk together with a secret key s ∈ Z

n
q . Next,

create a puzzle Z with time parameter T for the LH-TLP scheme encrypting the
FHE secret key s. Finally, encrypt the message m under the FHE public key pk
obtaining a ciphertext c. The time-lock puzzle consists of (pk, c,Z) and can be
solved by recovering the secret key s and then decrypting the message m.

While this simple idea allows us to perform homomorphic computations
on a single message m, it fails at our actual goal of allowing homomorphic
computations on puzzles generated by different puzzle generators. The reason
being that every time we generate a new puzzle, we generate a fresh FHE key,
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and generally homomorphic computations across different keys are not possi-
ble. To overcome this issue, we instead use a multi-key FHE scheme, which
enables homomorphic computations across different public keys. More specifically,
given � puzzles (pk1, c1,Z1), . . . , (pk�, c�,Z�), encrypting messages (m1, . . . ,m�),
and an � input function f , we can homomorpically compute a ciphertext c∗ =
Eval(pk1, . . . , pk�, f, (c1, . . . , c�)) which encrypts the messagem∗ = f(m1, . . . ,m�).

We have, however, still not solved the main problem. In order to recover
f(m1, . . . ,m�) from c∗, we first have to recover all secret keys (s1, . . . , s�) from
the LH-TLPs (Z1, . . . ,Z�). Thus, the workload is proportional to that of solving
� time-lock puzzles, which is identical to the trivial construction. The final idea
is to use a multi-key FHE scheme with linear decryption: If c∗ is a (homomor-
phically evaluated) ciphertext which encrypts a message m∗ under public keys
pk1, . . . , pk�, we can decrypt c∗ using a function Lc∗(s1, . . . , s�) which is linear
in the secret keys s1, . . . , s�. As before, this decryption operation is noisy, i.e.,

Lc∗(s1, . . . , s�) =
q

2
· m∗ + e,

where e with |e| < B is a small noise term. This allows us to homomorphi-
cally evaluate the linear function Lc∗ over the time-lock puzzles (Z1, . . . ,Z�)
(recall the Zi encrypts the secret key si) and obtain a time-lock puzzle Z∗ =
Eval(Lc∗ , (Z1, . . . ,Z�)) encrypting Lc∗(s1, . . . , s�) = q

2 · m∗ + e. To recover the
computation result m∗ we only have to solve Z∗. Note that the final puzzle Z∗

is a single compact puzzle for the LH-TLP scheme, thus the overhead to solve
this puzzle is that of solving a single LH-TLP and therefore independent of �.

We remark that both multi-key FHE from standard assumptions [11,24] and
LH-TLP from standard assumptions [22] need a setup. Consequently, our FH-
TLP construction inherits this property. Finally, techniques that we develop to
construct rate-1 FHE also apply to our FH-TLP construction.

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl(·) is
negligible if it vanishes faster than any polynomial. Given a set S, we denote by
s ←$ S the uniform sampling from S. We say that an algorithm is PPT if it can be
implemented by a probabilistic machine running in time poly(λ). We abbreviate
the set {1, . . . , n} as [n]. Matrices are denoted by M and vectors are denoted by
v. We use the infinity norm of a vector ‖v‖∞, since it behaves conveniently with
rounding. For a given modulus q, we define the rounding function �x�2 = �x·2/q�
mod 2.

2.1 Learning with Errors

The (decisional) learning with errors (LWE) problem was introduced by Regev
[30]. The LWE problem is parametrized by a modulus q, positive integers n,m
and an error distribution χ. An adversary is either given (A, s� ·A+e) or (A,u)
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and has to decide which is the case. Here, A is chosen uniformly from Z
n×m
q , s is

chosen uniformly from Z
n
q , u is chosen uniformly from Z

m
q and e is chosen from

χm. The matrix version of this problem asks to distinguish (A,S · A + E) from
(A,U), where the dimensions are accordingly. It follows from a simple hybrid
argument that the matrix version is as hard as the standard version.

As shown in [27,30], for any sufficiently large modulus q the LWE problem
where χ is a discrete Gaussian distribution with parameter σ = αq ≥ 2

√
n

(i.e. the distribution over Z where the probability of x is proportional to
e−π(|x|/σ)2), is at least as hard as approximating the shortest independent vector
problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lat-
tices. We refer to α = σ/q as the modulus-to-noise ratio, and by the above
this quantity controls the hardness of the LWE instantiation. Hereby, LWE
with polynomial α is (presumably) harder than LWE with super-polynomial
or sub-exponential α. We can truncate the discrete gaussian distribution χ to
σ · ω(

√
log(λ)) while only introducing a negligible error. Consequently, we omit

the actual distribution χ but only use the fact that it can be bounded by a
(small) value B.

2.2 Homomorphic Encryption

We recall the definition of homomorphic encryption in the following.

Definition 1 (Homomorphic Encryption). A homomorphic encryption
scheme consists of the following efficient algorithms.

KeyGen(1λ) : On input the security parameter 1λ, the key generation algorithm
returns a key pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

Eval(pk, f, (c1, . . . , c�)) : On input the public key pk, an �-argument function f ,
and a vector of ciphertexts (c1, . . . , c�), the evaluation algorithm returns an
evaluated ciphertext c.

Dec(sk, c) : On input the secret key sk and a ciphertext c, the decryption algorithm
returns a message m.

We say that a scheme is fully-homomorphic (FHE) if it is homomorphic for
all polynomial-size circuits. We also consider a restricted class of homomor-
phism that supports linear functions and we refer to such a scheme as linearly-
homomorphic encryption. We characterize correctness of a single function eval-
uation. This can be extended to the more general notion of multi-hop correct-
ness [18] if the condition specified below is required to hold for arbitrary com-
positions of functions.

Definition 2 (Correctness). A homomorphic encryption scheme (KeyGen,
Enc,Eval,Dec) is correct if for all λ ∈ N, all �-argument functions f in the sup-
ported family, all inputs (m1, . . . ,m�), all (sk, pk) in the support of KeyGen(1λ),
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and all ci in the support of Enc(pk,mi) there exists a negligible function negl(·)
such that

Pr [Dec(sk,Eval(pk, f, (c1, . . . , c�))) = f(m1, . . . ,m�)] ≥ 1 − negl(λ).

We require a scheme to be compact in the sense that the size of the ciphertext
should not grow with the size of the evaluated function.

Definition 3 (Compactness). A homomorphic encryption scheme (KeyGen,
Enc,Eval,Dec) is compact if there exists a polynomial poly(·) such that for all λ ∈
N, all �-argument functions f in the supported family, all inputs (m1, . . . ,m�),
all (sk, pk) in the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi)
it holds that

|Eval(pk, f, (c1, . . . , c�))| = poly(λ, |f(m1, . . . ,m�)|) .

The notion of security is standard for public-key encryption [20].

Definition 4 (Semantic Security). A homomorphic encryption scheme
(KeyGen,
Enc,Eval,Dec) is semantically secure if for all λ ∈ N and for all PPT adver-
saries A = (A0,A1) there exists a negligible function negl(·) such that

Pr

⎡

⎢⎢⎣b = A1(c, st)

∣∣∣∣∣∣∣∣

(sk, pk) ← KeyGen(1λ)
(m0,m1, st) ← A0(pk)
b ←$ {0, 1}
c ← Enc(pk,mb)

⎤

⎥⎥⎦ =
1
2

+ negl(λ) .

Finally we define the rate of an encryption scheme as the asymptotic message-
to-ciphertext size ratio.

Definition 5 (Rate). We say that a homomorphic encryption scheme
(KeyGen,Enc,Eval,Dec) has rate ρ = ρ(λ), if it holds for all pk in the support of
KeyGen(1λ), all supported functions f with sufficiently large output size, all mes-
sages (m1, . . . ,m�) in the message space, and all ci in the support of Enc(pk,mi)
that |f(m1, . . . ,m�)|

|Eval(pk, f, (c1, . . . , c�))| ≥ ρ.

We also say that a scheme has rate 1, if it holds that

lim inf
λ→∞

ρ(λ) = 1.

Note that in Definition 5 we need to restrict ourselves to a class of supported
functions for which the output size |f(m1, . . . ,m�)| is sufficiently large. E.g., if a
function output f(m1, . . . ,m�) is just one bit, we cannot hope to achieve a good
rate. Consequently we will only consider functions with a large output domain.
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2.3 Multi-key Homomorphic Encryption

A multi-key homomorphic encryption supports the evaluation of functions over
ciphertexts computed under different (possibly independently sampled) keys.
The result of the computation can then be decrypted using all of the corre-
sponding secret keys. Formally, this introduces a few syntactical modifications.
Most notably and in contrast with the single-key variant, multi-key schemes
might need a setup which generates public parameters shared across all users.

Definition 6 (Multi-Key Homomorphic Encryption). A multi-key homo-
morphic encryption scheme consists of the following efficient algorithms.

Setup(1λ) : On input the security parameter 1λ, the setup algorithm returns the
public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm
returns a key pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

Eval((pk1, . . . , pk�), f, (c1, . . . , c�)) : On input a vector of public keys
(pk1, . . . , pk�), an �-argument function f , and a vector of ciphertexts
(c1, . . . , c�), the evaluation algorithm returns an evaluated ciphertext c.

Dec((sk1, . . . , sk�), c) : On input a vector of secret keys (sk1, . . . , sk�) and a cipher-
text c, the decryption algorithm returns a message m.

As before, we say that the scheme is fully-homomorphic (MK-FHE) if it is homo-
morphic for P/poly. The definition of correctness is adapted to the multi-key
settings.

Definition 7 (Multi-Key Correctness). A multi-key homomorphic encryp-
tion scheme (Setup,KeyGen,Enc,Eval,Dec) is correct if for all λ ∈ N, all �
polynomial in λ, all �-argument functions f in the supported family, all inputs
(m1, . . . ,m�), all pp in the support of Setup, all (ski, pki) in the support of
KeyGen(pp), and all ci in the support of Enc(pki,mi) there exists a negligible
function negl(·) such that

Pr [Dec((sk1, . . . , sk�),Eval((pk1, . . . , pk�), f, (c1, . . . , c�))) = f(m1, . . . ,m�)]
≥ 1 − negl(λ) .

Compactness is unchanged except that the ciphertext may grow with the number
of keys.

Definition 8 (Multi-Key Compactness). A multi-key homomorphic encryp-
tion scheme (Setup,KeyGen,Enc,Eval,Dec) is compact if there exists a polyno-
mial poly(·) such that for all λ ∈ N, all � polynomial in λ, all �-argument func-
tions f in the supported family, all inputs (m1, . . . ,m�), all (ski, pki) in the sup-
port of KeyGen(1λ), and all ci in the support of Enc(pki,mi) it holds that

|Eval((pk1, . . . , pk�), f, (c1, . . . , c�))| = poly(λ, �, |f(m1, . . . ,m�)|) .

The definition of semantic security is identical to that of single-key schemes.
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2.4 Linear Decrypt-and-Multiply

To construct our schemes we will need FHE schemes with a more fine-grained
correctness property. More specifically, we will require an FHE scheme where for
which decryption is a linear function in the secret key. Furthermore, we require
that this linear decryption function outputs a the product of the plaintext with
a constant ω (which is provided as input to the decryption algorithm). We will
refer to such schemes as linear decrypt-and-multiply schemes.

The output of this function may contain some (short) noise, thus we also need
an upper bound on amount of noise linear decrypt-and-multiply introduces. This
property was explicitly characterized in an oral presentation of Micciancio [23]
where he showed that schemes from the literature already satisfy this notion [1,19]
and discussed some applications. A formal definition is given in the following.

Definition 9 (Decrypt-and-Multiply). We call a homomorphic encryption
scheme (KeyGen,Enc,Eval,Dec) a decrypt-and-multiply scheme, if there exists
bounds B = B(λ) and Q = Q(λ) and an algorithm Dec&Mult such that the
following holds. For every q ≥ Q, all (sk, pk) in the support of KeyGen(1λ, q),
every �-argument functions f (in the class supported by the scheme), all inputs
(m1, . . . ,m�), all ci in the support of Enc(pk,mi) and every ω ∈ Zq that

Dec&Mult(sk,Eval(pk, f, (c1, . . . , c�)), ω) = ω · f(m1, . . . ,m�) + e mod q

where Dec&Mult is a linear function in sk over Zq and |e| ≤ B with all but
negligible probability.

We also consider decrypt-and-multiply for multi-key schemes and we extend the
definition below. We note that schemes with such a property were previously
considered in the context of Spooky Encryption [13].

Definition 10 (Multi-Key Decrypt-and-Multiply). We call a multi-key
homomorphic encryption scheme (Setup,KeyGen,Enc,Eval,Dec) a decrypt-and-
multiply scheme, if there exists bounds B = B(λ) and Q = Q(λ) and an algo-
rithm Dec&Mult such that the following holds. For every q ≥ Q, all pp in the sup-
port of Setup(1λ; q), all (ski, pki) in the support of KeyGen(1λ), every �-argument
functions f (in the class supported by the scheme), all inputs (m1, . . . ,m�), all
ci in the support of Enc(pki,mi) and every ω ∈ Zq that

Dec&Mult((sk1, . . . , sk�),Eval((pk1, . . . , pk�), f, (c1, . . . , c�)), ω)
= ω · f(m1, . . . ,m�) + e mod q

where Dec&Mult is a linear function in the vector (sk1, . . . , sk�) over Zq and
|e| ≤ B with all but negligible probability.

An aspect we have omitted so far is to specify over which domain we require
decryption to be linear. For essentially all FHE schemes in the literature, decryp-
tion is a linear function over a ring Zq, which also requires that secret keys are
vectors over Zq. As mentioned before, the main idea behind our constructions
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will be to perform linear decrypt-and-multiply under a linearly homomorphic
encryption scheme. Consequently, we need to match the plaintext space of the
linearly homomorphic scheme with the secret key-space of the fully homomor-
phic scheme. As for some linearly homomorphic schemes we consider, we will
need a way to connect the two. Luckily, for essentially all FHE schemes in the
literature, the modulus q does not depend on any secret but depends only on
the security parameter. Moreover, LWE-based FHE schemes can be instantiated
with any (sufficiently large) modulus q without affecting the worst-case hardness
of the underlying LWE problem [27].

Consequently, we can consider the modulus q as a system parameter for the
underlying FHE scheme. In abuse of notation, we will provide the modulus q as
an explicit input to the FHE key generation algorithm.

Schemes with Linear Decrypt-and-Multiply. Micciancio [23] has recently
shown that any FHE scheme with linear decryption always admits an efficient
linear decrypt-and-multiply algorithm. Notable examples of constructions that
support linear decrypt-and-multiply right away are GSW-based schemes [19],
e.g., [1,8,11,13,24].

In these schemes, ciphertexts are of the form C = A · R + m · G, where
A ∈ Z

n×m
q is a matrix specified in the public key, R is a matrix with small

entries and G is the so-called gadget matrix. The secret key is a vector s, for
which the last component sn = 1, which has the property that s� · A = e�, for
a vector e� with small entries. For a vector v let G−1(v) be a binary vector
with the property that G ·G−1(v) = v (G−1(·) is a non-linear function). For an
ω ∈ Zq let ω ∈ Z

n
q be a vector which is 0 everywhere but ω in the last component.

We can perform the linear decrypt-and-multiply operation by computing

s� · C · G−1(ω) = s� · A · R · G−1(ω) + m · s� · G · G−1(ω)

= e� · R · G−1(ω) + m · s� · ω

= ω · m + e′,

where e′ = e� · R · G−1(ω) is a short noise vector. The second equality holds
as s� · A = e�, and the third one holds as s� · ω = ω. We remark that the
scheme of Brakerski and Vaikunthanatan [8] satisfies these constraints with a
polynomial modulus-to-noise ratio, by exploiting the asymmetric noise growth
in the GSW scheme and a specific way to homomorphically evaluate functions.

Since we need a multi-key FHE scheme in our construction of fully homomor-
phic time-lock puzzles, we briefly discuss a linear decrypt-and-multiply procedure
for the MK-FHE construction of Mukherjee and Wichs [24], which in turn is a
simplified version of the scheme from Clear and McGoldrick [11]. Recall that the
scheme shown in [11,24] is secure against the Learning with Errors problem (with
super-polynomial modulo-to-noise ratio) and satisfies the following properties:

(1) The construction is in the common random string model and all parties have
access to a uniform matrix A ←$Z

(n−1)×m
q .
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(2) For any fixed depth parameter d, the scheme supports multi-key evaluation
of depth-d circuits using public keys of size d · poly(λ), while secret keys are
vectors s ←$Z

n
q , regardless of the depth parameter. More concretely, there

exists an efficient algorithm MK-FHE.Eval that is given as input:
(a) Parameters (�, d) ∈ N, where � is the number of public keys that perform

depth-d computation.
(b) A depth-d circuit that computes an �-argument Boolean function f :

{0, 1}∗ → {0, 1}.
(c) A vector of public keys (pk1, . . . , pk�) and a fresh (bit-by-bit) encryption

of each argument xi under pki, denoted by ci ← MK-FHE.Enc(pki, xi).
Then MK-FHE.Eval outputs a matrix C ∈ Z

n�×m�
q such that

s̃ · C · G−1 (ω) = ω · f(x1, . . . , x�) + e (mod q)

where s̃ is the row concatenation of (s1, . . . , s�), ω is the vector (0, . . . , 0, ω) ∈
Z

n�
q , and G−1 is the bit-decomposition operator. Furthermore, it holds that

|e| ≤ β · (m4 + m)(m� + 1)d = β · 2O(d·log(λ))

where β is a bound on the absolute value of the noise of fresh ciphertexts.
(3) By further making a circular-security assumption, MK-FHE.Eval supports

the evaluation of circuits of any depth without increasing the size of the
public keys. In this case the bound on the noise is |e| ≤ β · 2O(dDec·log(λ)),
where dDec is the depth of the decryption circuit, which is poly-logarithmic
in λ.

Note that that by setting � = 1 we recover the FHE scheme of [19] except
that for the latter we can give a slightly better bound for the noise, namely
|e| ≤ β · m2(m + 1)d. The important observation here is that C · G−1 (ω) does
not depend on the secret key and therefore defining

Dec&Mult(s̃,C, ω) = s̃ · C · G−1 (ω)

gives a syntactically correct linear decrypt-and-multiply algorithm and B = |e|
is the corresponding noise bound. Finally we remark that the MK-FHE scheme
does not impose any restriction on the choice of q (except for its size) so we can
freely adjust it to match the modulus of the companion time-lock puzzle.

2.5 Homomorphic Time-Lock Puzzles

Homomorphic time-lock puzzles generalize the classical notion of time-lock puz-
zles [31] by allowing one to publicly manipulate puzzles to evaluate functions
over the secrets. They were introduced in a recent work [22] and we recall the
definition in the following.

Definition 11 (Homomorphic Time-Lock Puzzles). A homomorphic time-
lock puzzle consists of the following efficient algorithms.
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Setup(1λ, T ) : On input the security parameter 1λ and a time parameter T , the
setup algorithm returns the public parameters pp.

PuzGen(pp, s) : On input the public parameters pp and a secret s, the puzzle
generation algorithm returns a puzzle Z.

Eval(pp, f, (Z1, . . . ,Z�)) : On input the public parameters pp, an �-argument func-
tion f , and a vector of puzzles (Z1, . . . ,Z�), the evaluation algorithm returns
an evaluated puzzle Z.

Solve(pp,Z) : On input the public parameters pp and a puzzle Z, the solving
algorithm returns a secret s.

By convention, we refer to a puzzle as fully-homomorphic (FHTLP) if it is homo-
morphic for all circuits. We now give the definition of (single-hop) correctness.

Definition 12 (Correctness). A homomorphic time-lock puzzle (Setup,
PuzGen,Eval,Solve) is correct if for all λ ∈ N, all T ∈ N, all �-argument func-
tions f in the supported family, all inputs (s1, . . . , s�), all pp in the support of
Setup(1λ, T ), and all Zi in the support of PuzGen(pp, si) the following two con-
ditions are satisfied:

(1) There exists a negligible function negl(·) such that

Pr [Solve(pp,Eval(pp, f, (Z1, . . . ,Z�))) = f(s1, . . . , s�)] = 1 − negl(λ) .

(2) The runtime of Solve(pp,Z), where Z ← Eval(pp, f, (Z1, . . . ,Z�)), is bounded
by poly(λ, T ), for some fixed polynomial poly(·).

In this work we consider the stronger notion of security where time is counted
starting from the moment the puzzle is generated (as opposed to the moment
where the public parameters of the scheme are generated). This is termed secu-
rity with reusable setup in [22] and we henceforth refer to it simply as security.

Definition 13 (Security). A homomorphic time-lock puzzle (Setup,PuzGen,
Eval,Solve) is secure if for all λ ∈ N, all T ∈ N, all PPT adversaries A =
(A0,A1) such that the depth of A1 is bounded by T , there exists a negligible
function negl(·) such that

Pr

⎡

⎢⎢⎣b = A1(Z, st)

∣∣∣∣∣∣∣∣

pp ← Setup(1λ, T )
(s0, s1, st) ← A0(pp)
b ←$ {0, 1}
Z ← PuzGen(pp, sb)

⎤

⎥⎥⎦ =
1
2

+ negl(λ) .

3 Shrinking Linearly Homomorphic Encryption

In the following section we introduce the useful abstraction of linearly homomor-
phic encryption with compressing ciphertexts and we discuss several concrete
instantiations.
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3.1 Definitions

We start by providing relaxed correctness definitions for linearly homomorphic
encryption. As discussed before, for Regev-like encryption schemes decryption
is a linear operation which, unavoidably, introduces noise. This noise is dealt
with by encoding the message accordingly and decoding the result of linear
decryption, usually by applying a rounding function. In this section we provide
definitions for linearly homomorphic encryption which account for noise, and
allow to treat encoding and decoding of the message separately. We assume
that a linearly homomorphic encryption scheme is described by four algorithms
(KeyGen,Enc,Dec,Eval) with the usual syntax. We further assume that each
public key pk specifies a message space of the form Z

k
q .

Definition 14 (Relaxed Correctness). Let HE = (KeyGen,Enc,Dec,Eval) be
a linearly homomorphic encryption scheme. Let B = B(λ) and � = poly(λ). We
say that HE is correct with B-noise, if it holds for every (pk, sk) in the support
of KeyGen(1λ), where pk specifies a message space Z

k
q , every linear function

f : (Zk
q )� → Z

k
q , all messages (m1, . . . ,m�) ∈ Z

k
q that

Dec(sk,Eval(pk, f, (Enc(pk,m1), . . . ,Enc(pk,m�)))) = f(m1, . . . ,m�) + e,

where e ∈ Z
k is a noise term with ‖e‖∞ ≤ �B.

Notice that we allow the amount of noise to depend linearly on the parameter
�. We also consider linearly homomorphic encryption schemes which allow for
shrinking post-evaluation ciphertexts. Such schemes will have two additional
algorithms Shrink and ShrinkDec defined below.

Shrink(pk, c) : Takes as input a public key pk and an evaluated ciphertext c and
outputs a shrunk ciphertext c̃.

ShrinkDec(sk, c̃) : Takes as input a secret key sk and a shrunk ciphertext c̃ and
outputs a message m.

Furthermore, for such schemes we assume that the public key pk contains
an encoding matrix T ∈ Z

k×�
q . The encoding matrix T will specifies how binary

messages are supposed to be encoded in the message space Z
k
q . We can now define

the notion of shrinking correctness for a homomorphic encryption scheme HE.

Definition 15 (Shrinking Correctness). Let HE = (KeyGen,Enc,Dec,Eval)
be a linearly homomorphic encryption scheme with additional algorithms
(Shrink,ShrinkDec). Let K = K(λ). We say that HE is correct up to K-noise,
if the following holds. For every (pk, sk) in the support of KeyGen(1λ), where pk
specifies a message space Z

k
q and an encoding matrix T ∈ Z

k×�
q , and every c with

Dec(sk, c) = T · m + e,

where m ∈ {0, 1}� and ‖e‖ ≤ K, it holds that

ShrinkDec(sk,Shrink(pk, c)) = m.
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In our main construction, we will set the bounds B (in the Definition 14)
and K (in Definition 15) in such a way that the amount of noise K tolerated
by shrinking correctness is substantially higher than the noise B introduced
by decryption. Finally, we remark that the notion of shrinking correctness also
applies to non-homomorphic encryption, albeit it seems not very useful in this
context, as optimal rate can be achieved via hybrid encryption.

3.2 A Ciphertext Shrinking Algorithm

We discuss a ciphertext shrinking technique which applies to a broad class of
encryption schemes. Let (KeyGen,Enc,Dec,Eval) be an encryption scheme where
the public key specifies a message space Z

�
q, the secret key S is a matrix in Z

�×n
q ,

(evaluated) ciphertexts are of the form (c1, c2), and (noisy) decryption computes

Dec(S, (c1, c2)) = F (c2) − S · H(c1),

where F (c2) ∈ Z
�
q, H(c1) ∈ Z

n
q . Here the two functions F and H are part of the

description of the scheme and publicly known. Assume in the following that q is
even. We describe a general method to shrink ciphertexts of schemes that satisfy
these conditions. Consider the following algorithms Shrink and ShrinkDec.

Shrink(pk, (c1, c2)) : Compute F (c2) and parse it as (y1, . . . , y�) ∈ Z
�
q. Compute

the union of intervals

U =
�⋃

i=1

([q/4 − yi − B, q/4 − yi + B] ∪ [−q/4 − yi − B,−q/4 − yi + B]) ⊆ Zq.

Pick any r ∈ Zq\U . For i = 1, . . . , � compute wi = �yi + r�2. Output c̃ =
(r, c1, w1, . . . , w�).

ShrinkDec(S, c̃ = (r, c1, w1, . . . , w�)) : Compute v = S · H(c1) and parse v =
(v1, . . . , v�). For i = 1, . . . , � set m′

i = (wi − �vi + r�2) mod 2. Output m′ =
(m′

1, . . . ,m
′
�).

The encoding matrix T for this scheme is defined to be T = q
2 · I, where

I ∈ Z
�×�
q is the identity matrix. We now state the conditions under which the

modified scheme has shrinking correctness.

Lemma 1. Let HE = (KeyGen,Enc,Dec,Eval) be an encryption scheme as
above, let (Shrink,ShrinkDec) be as above and let K = K(λ). Let pk be a pub-
lic key for HE specifying a message space Z

�
q with a corresponding secret key

S ∈ Z
�×n
q . Then given that q > 4� ·K the scheme has shrinking correctness up to

noise K.

Proof. Let (c1, c2) be a ciphertext under pk for which it holds that F (c2) − S ·
H(c1) = q

2 ·m+ z for a z with ‖z‖ ≤ K. Let y = F (c2), v = S · H(c1) and parse
y = (y1, . . . , y�) and v = (v1, . . . , v�). I.e., it holds that y − v = q

2 · m + z. Fix
an index i ∈ [�] and write yi − vi = q

2 · mi + zi, for a zi ∈ [−K,K]. This implies
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that yi = vi + zi + q
2 · mi. Note that given that yi + r /∈ [q/4 − B, q/4 + B],

yi + r /∈ [−q/4 − B,−q/4 + B] and zi ∈ [−B,B], it holds that

�yi + r�2 = �yi + r − zi�2
= �vi + r +

q

2
· mi�2

= (�vi + r�2 + mi) mod 2.

Consequently, it holds that (�yi + r�2 − �vi + r�2) mod 2 = mi.
Thus, given that it holds for all i ∈ [�] that yi + r /∈ [q/4 − B, q/4 + B]

and yi + r /∈ [−q/4 − B,−q/4 + B] then decryption of all mi will succeed.
We will now argue that under the given parameter choice such an r always
exists. For every index i ∈ [�] it holds that yi + r /∈ [q/4 − B, q/4 + B] and
yi + r /∈ [−q/4−B,−q/4+B], if and only if r /∈ [q/4− yi −B, q/4− yi +B] and
r /∈ [−q/4 − yi − B,−q/4 − yi + B]. I.e., for every index i there are two intervals
[q/4 − yi − B, q/4 − yi + B] and [−q/4 − yi − B,−q/4 − yi + B] of forbidden
choices of r. Given that the set of all forbidden choices

U =
�⋃

i=1

([q/4 − yi − B, q/4 − yi + B] ∪ [−q/4 − yi − B,−q/4 − yi + B])

has less than q elements, we can find an r ∈ Zq which satisfies all constraints.
By a union bound it holds that |U | ≤ � · 4B. Consequently, since q > 4�B, it
holds that Zq\U �= ∅, and the compression algorithm will find an r such that
decryption will recover every mi correctly.

3.3 Packed Regev Encryption

We briefly recall the linearly homomorphic packed Regev encryption and aug-
ment it with the shrinking procedures provided in the last section. This will
give use a linearly homomorphic scheme with rate 1 − O(1/λ). Let q = 2q′ be a
k-bit modulus, let (n,m, �) be positive integers and let χ be a B-bounded error
distribution defined on Z. Let Gi ∈ Z

�×k
q be a matrix which is zero everywhere,

but its i-th row is g� = (1, 2, . . . , 2i, . . . , 2k). For a y ∈ Zq let g−1(y) ∈ {0, 1}k

be the binary expansion of y, i.e., it holds that g� · g−1(y) = y.

KeyGen(1λ) : Choose A ←$Z
n×m
q uniformly at random. Choose S ←$Z

�×n
q uni-

formly at random and sample E ←$ χ�×m. Set B = S ·A+E. Set pk = (A,B)
and sk = S.

Enc(pk = (A,B), (m1, . . . ,m�)) : Choose a random matrix R ←$ {0, 1}m×k and
set C1 = A · R and. C2 = B · R + ·∑�

i=1 mi · Gi. Output c = (C1,C2).
Eval((f1, . . . , ft), (c1, . . . , ct)) : Parse ci = (C1,i,C2,i). Compute c1 =

∑t
i=1 C1,i ·

g−1(fi) and c2 =
∑t

i=1 C2,i · g−1(fi). Output c = (c1, c2).
Dec(sk = S, c = (c1, c2): Compute and output c2 − S · c1.
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First notice that under the LWE assumption, the matrix B in the public key
is pseudorandom. Consequently, given that m > (n + �) · log(q) + ω(log(λ)),
we can call the leftover-hash lemma [21] to argue that ciphertexts (C1,C2) are
statistically close to uniform [30] and we obtain semantic security.

We now consider the homomorphic correctness of the scheme. Let f =
(f1, . . . , ft) ∈ Z

t
q define a linear function and let (x1, . . . ,xt) ∈ Z

t
q. For i ∈ [t]

let ci = (C1,i,C2,i) = Enc(pk,mi), i.e., it holds that c1,i = A · Ri and
c2,i = B · Ri +

∑�
j=1 xi,j · Gj . A routine calculation shows that

Dec(S, c∗) =
t∑

j=1

fjxj + z

where z = E · ∑t
j=1 Rj · g−1(fj). We can bound ‖z‖∞ by

‖z‖∞ ≤ t · k · m · B.

Consequently, the scheme HE is correct with t · k · m · B-noise. Since HE fulfills
the structural criteria of Lemma 1 we can augment the scheme with algorithms
Shrink and ShrinkDec and the resulting scheme has shrinking correctness up to
K-noise, given that q > 4� · K.

Rate. We finally analyze the rate of the scheme for some K = poly(λ) and q ≈
4�K. Shrunk ciphertexts generated by Shrink have the form (c1, r, w1, . . . , w�),
where c1 ∈ Z

n
q , r ∈ Zq and wi ∈ {0, 1} for i ∈ [�]. Consequently, the ciphertext

length is (n+1) log(q)+ �. Given that q = poly(λ), we can conservatively bound
log(q) ≤ (log(λ))2 and observe that indeed the ciphertext is only additively
longer than the plaintext. In terms of ratio, we achieve

ρ =
�

(n + 1) log(q) + �
≥ 1 − (n + 1) log(q)

�
,

which translates to 1 − 1/λ for � ≥ n · λ · (log(λ))2.

4 Rate-1 Fully-Homomorphic Encryption

The following section is devoted to the presentation of our main result, an FHE
scheme with optimal rate.

4.1 Definitions

Before presenting the construction of our rate 1 FHE scheme, we will augment
the syntax of an FHE scheme by adding a compression algorithm and an addi-
tional decryption procedure for compressed ciphertexts. This will facilitate the
exposition of our scheme.
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Definition 16 (Compressible FHE). Let FHE = (KeyGen,Enc,Dec,Eval)
be an FHE scheme and let � = �(λ) = poly (λ). We say that FHE supports
�-ciphertext compression if there exist two algorithms Compress and CompDec
with the following syntax.

Compress(pk, c1, . . . , c�) : Takes as input a public key pk and � ciphertexts
(c1, . . . , c�) and outputs a compressed ciphertext c∗

CompDec(sk, c∗) : Takes as input a secret key sk and a compressed ciphertext c∗

and outputs � messages (m1, . . . ,m�).

In terms of correctness we require the following: Let (pk, sk) be a key pair in
the support of KeyGen(1λ) and let c1, . . . , c� be valid ciphertexts (i.e., freshly
encrypted ciphertext or ciphertexts that are the result of a homomorphic evalu-
ation) such that for all i ∈ [�] it holds mi = Dec(sk, ci). Then it holds that

CompDec(sk,Compress(pk, c1, . . . , c�)) = (m1, . . . ,m�).

For compressible FHE schemes, we say a scheme has rate ρ = ρ(λ) if it
holds for all (pk, sk) in the support of KeyGen(1λ), all messages m1, . . . ,m� and
all ciphertexts c1, . . . , c� with Dec(sk, ci) = mi (for i ∈ [�]) that

|(m1, . . . ,m�)|
|Compress(pk, (c1, . . . , c�))| ≥ ρ.

Note that this rate definition is compatible with Definition 5 when we con-
sider functions f which produce � (bits of) outputs.

4.2 Construction

In the following we describe a compressible FHE scheme which can be instan-
tiated such that compressed ciphertexts achieve rate 1. We assume the exis-
tence of an FHE with linear decrypt-and-multiply (and any rate) and a rate-1
linearly-homomorphic encryption scheme. In this scheme, compressed cipher-
texts no longer support homomorphic operations, i.e., the scheme is single-hop
homormorphic. Later, we briefly discuss how this scheme can be converted into
a multi-hop levelled or fully homomorphic scheme.

Notation. Since the linearly homomorphic scheme HE may work with k parallel
slots, we need some notation on how to address specific slots. If f is a linear
function taking as input a row vector x we can canonically extend f to take as
input matrices X, where the function f is applied to each row individually. In
fact, if the function f is represented by a column vector f , we can evaluate f
on X by computing X · f . Moreover, for a column vector a and a row vector b
we let a · b denote the outer product of a and b. This allows us to put a row
vector x into a certain slot i by computing bi ·x, where bi is the i-th unit vector.
Consequently, this lets us conveniently write f(bi · x) = bi · f(x), where f is a
linear function taking row vectors as inputs as above. For a linearly homomorphic
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scheme HE with message space Z
k
q , we denote inputs as column vectors. We can

encrypt a message m into the i-th slot by computing HE.Enc(pk2,m · bi), where
bi ∈ Z

k
q is the i-th unit column vector.

Let FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec) be a
(somewhat or fully) homomorphic encryption scheme with lin-
ear decrypt-and-multiply and plaintext space {0, 1}. Let further
HE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec,HE.Shrink,HE.ShrinkDec)
be a packed linearly homomorphic encryption scheme with relaxed correct-
ness in which we can pack � message bits. In abuse of notation we assume
that the key-generation algorithm FHE.KeyGen(1λ, q) takes the modulus q
as an explicit input.

FHE.KeyGen(1λ) : On input the security parameter 1λ, the key generation
algorithm samples

(pk2, sk2) ← HE.KeyGen(1λ).

Let q be the modulus of the plaintext space corresponding to pk2. Com-
pute

(sk1, pk1) ← FHE.KeyGen(1λ, q).

Let sk1 = (s1, . . . , sn) ∈ Z
n
q . For i = 1, . . . , k and j = 1, . . . , n compute

cki,j ← HE.Enc(pk2, sj · bi),

Set cki = (cki,1, . . . , cki,n) for i ∈ [k] and set the compression key to
ck = (ck1, . . . , ckk).
Return pk = (pk1, pk2, ck) as the public key and sk = (sk1, sk2) as the
secret key.

FHE.Enc(pk,m) : On input the public key pk = (pk1, pk2, ck) and a message
m ∈ {0, 1}, compute and output c ← FHE.Enc(pk1,m).

FHE.Eval(pk, f, (c1, . . . , c�)) : On input the public key pk = (pk1, pk2, ck),
a function f and ciphertexts (c1, . . . , c�), compute and output
FHE.Eval(pk1, f, (c1, . . . , c�)).

FHE.Dec(sk, c) : On input the secret key sk = (sk1, sk2) and a ciphertext c,
compute and output m ← FHE.Dec(sk1, c).

FHE.Compress(pk, (c1, . . . , c�)) : On input a public key pk = (pk1, pk2, ck),
where the compression key is of the form ck = (ck1, . . . , ckk), and cipher-
texts (c1, . . . , c�) proceed as follows. Let T = (tij) be the encoding matrix
corresponding to the public key pk. First construct a linear function f
which computes

f(x1, . . . ,xk) =
k∑

i=1

�∑

j=1

Dec&Mult (xi, cj , tij) .
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Note that the function f is specified by the matrix T = (tij) and the
ciphertexts (c1, . . . , c�).
Compute and output c̃ = HE.Shrink(pk2,HE.Eval(pk2, f, ck1, . . . , ckk)).

FHE.CompDec(sk, c̃) : On input the secret key sk = (sk1, sk2) and a com-
pressed ciphertext c̃, compute and output m = HE.ShrinkDec(sk2, c̃).

4.3 Analysis

The security of our scheme is shown in the following. Recall that for LWE-based
FHE schemes, e.g., [1,19,24], the LWE modulus is a system parameter which
can be provided as an input to the KeyGen algorithm. By [27] that worst-case
hardness of the underlying LWE problem is not affected.

Theorem 1 (Semantic Security). Assume that FHE and HE are semanti-
cally secure encryption schemes, then the scheme FHE as described above is also
semantically secure.

Proof (Sketch). Let A be a PPT adversary against the semantic security of FHE.
Consider a hybrid experiment where we compute the compression key by

cki ← HE.Enc(pk2, 0)

for all i ∈ [k]. By the semantic security of HE the adversary A will not detect
this change. In a second hybrid modification, we replace the challenge ciphertext
by an encryption of 0. It follows from the semantic security of FHE that the
advantage of A in this hybrid is at most a negligible amount smaller than in the
last hybrid. Since the advantage of A in this final experiment is 0, it follows that
A’s advantage is negligible.

The more interesting aspects of this construction is its correctness.

Theorem 2 (Correctness). Assume the FHE scheme FHE has decryption
noise at most BFHE, the HE scheme has decryption noise at most BHE and that
HE has shrinking correctness for noise up to K ≥ � ·BFHE + k ·n ·BHE. Then the
scheme FHE has compression correctness.

Proof. Fix a public key pk = (pk1, pk2, ck) where pk2 defines a message space Z
k
q

and a secret key sk = (sk1, sk2). Further fix ciphertexts (c1, . . . , c�) such that ci

is a valid encryption of mi. Let m = (m1, . . . ,m�). Let the linear function f be
defined by

f(x1, . . . ,xk) =
k∑

i=1

�∑

j=1

Dec&Mult (xi, cj , tij) .
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Consider the ciphertext c′ = HE.Eval(pk2, f, (ck1, . . . , ckk)). As cki =
HE.Enc(pk2,bi · sk1), it holds by the relaxed homomorphic correctness of HE
that

HE.Dec(sk2, c′) = f(b1 · sk1, . . . ,bk · sk1) + z,

where ‖z‖∞ ≤ k · n · BHE. Moreover, it holds that

f(b1 · sk1, . . . ,bk · sk1) =
k∑

i=1

�∑

j=1

Dec&Mult (bi · sk1, cj , tij)

=
k∑

i=1

�∑

j=1

bi · Dec&Mult (sk1, cj , tij)

=
k∑

i=1

�∑

j=1

bi · (tij · mj + eij)

= T · m +
k∑

i=1

bi ·
⎛

⎝
�∑

j=1

eij

⎞

⎠

= T · m + e,

where e =
∑k

i=1 bi · (
∑�

j=1 eij) and T = (tij) is the encoding matrix. Since it
holds that |eij | ≤ BFHE, we get that ‖e‖∞ ≤ � ·BFHE. Consequently, it holds that

HE.Dec(sk, c′) = T · m + z + e.

Since ‖z + e‖∞ ≤ ‖z‖∞ + ‖e‖∞ ≤ k · n · BHE + � · BFHE ≤ K, by the shrinking
correctness of HE we have that

HE.ShrinkDec(sk2,HE.Shrink(pk2, c
′)) = m.

This shows that FHE has compression correctness.

4.4 Instantiating with Rate 1

A suitable FHE scheme which readily supports linear decrypt-and-multiply is the
GSW scheme [19] and its variants [1,8,24]. For the Brakerski-Vaikuntanathan
variant of this scheme [8], we can set things up such that the decryption noise-
bound BFHE is polynomial in λ (see Sect. 2.4). Correctness is achieved by choosing
a sufficiently large polynomial modulus q.

When instantiating the linearly homomorphic scheme HE with our packed
Regev encryption that supports ciphertext shrinking (see Sects. 3.2 and 3.3), we
obtain the following. Assume that the decryption noise of the FHE scheme FHE
is some polynomial BFHE. Moreover, let BHE = poly(λ) be the decryption noise
of HE for some fixed B-bounded error distribution χ over Z. By Theorem 2 we
need to setup HE (via the choice of the modulus q) such that we have shrinking
correctness for noise up to K ≥ � · BFHE + k · n · BHE. In turn, by Lemma 1 we
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can achieve this if q > 4�K. Consequently, since BFHE, BHE, and therefore K
are of size poly(λ), we can choose q of size poly(λ) and achieve a polynomial
modulus-to-noise ratio B/q = poly(λ) for the underlying LWE problem. For
this scheme the encoding matrix T is given by T = q

2 · I, where I ∈ Z
�×�
q is

the identity matrix (see Sect. 3.3). The overall rate of this scheme is exactly the
same as that of HE, which, as we’ve analyzed in Sect. 3.3. That is, for length �
messages we have �+poly(λ) length ciphertexts, and thus for a sufficiently large
� = poly(λ) the rate is (1 − 1/λ).

5 Fully-Homomorphic Time-Lock Puzzles

We propose a construction for a fully-homomorphic time-lock puzzle FHTLP.
The scheme builds on the similar ideas as our rate-1 FHE construction, except
that we have to explicitly use a multi-key fully-homomorphic encryption scheme
with linear decrypt-and-multiply, due to the distributed nature of homomorphic
time-lock puzzles. Below we describe a simplified construction that encapsulates
only binary secrets, however we can easily turn it into a rate-1 scheme by using
a high-rate LH-TLP and packing vectors of binary messages into a single puzzle
via standard techniques.

Let FHE = (MK-FHE.KeyGen,MK-FHE.Enc,MK-FHE.Eval,MK-FHE.Dec) be
a (somewhat or fully) multi-key homomorphic encryption scheme with lin-
ear decrypt-and-multiply and plaintext space {0, 1}. Let further TLP =
(TLP.Setup,TLP.PuzGen,TLP.Eval,TLP.Dec) be a linearly homomorphic
time-lock puzzle. In abuse of notation we assume that the key-generation
algorithm MK-FHE.KeyGen(1λ, q) takes the modulus q as an explicit input.

FHTLP.Setup(1λ, T ) : On input the security parameter 1λ and the time
parameter T , the setup generates

pp0 ← MK-FHE.Setup(1λ; q) pp1 ← TLP.Setup(1λ, T )

where q is the modulus of the plaintext space defined by pp1, and returns
pp = (pp1, pp0) as the public parameters.

FHTLP.PuzGen(pp, s) : On input the public parameters pp = (pp1, pp0) and
a secret s ∈ {0, 1} the puzzle generation algorithm samples a fresh key
pair

(sk, pk) ← MK-FHE.KeyGen(pp0).

Then it encrypts the secret and generates a puzzle where the solution is
the secret key

c ← MK-FHE.Enc(pk, s) Z̃ ← TLP.PuzGen(pp1, sk)

and sets the puzzle to be the following tuple Z = (pk, c, Z̃).
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FHTLP.Eval(pp, f, (Z1, . . . ,Z�)) : On input the public parameters pp =
(pp1, pp0), the circuit representation of a function f : {0, 1}� → {0, 1},
and a vector of puzzles (Z1, . . . ,Z�), where each Zi = (pki, ci, Z̃i), the
evaluation algorithm computes

C ← MK-FHE.Eval((pk1, . . . , pk�), f, (c1, . . . , c�)).

Then it evaluates the decrypt-and-multiply function (with C and q/2
hardcoded) over the puzzles

Z̃ ← TLP.Eval(pp1,Dec&Mult(·,C, q/2), (Z̃1, . . . , Z̃�)).

Finally the algorithm returns Z̃ as the evaluated puzzle.
FHTLP.Solve(pp,Z) : We assume without loss of generality that the solv-

ing algorithm is given as input an evaluated puzzle Z. The decryption
algorithm parses pp = (pp1, pp0), solves the input puzzle

s ← TLP.Solve(pp1,Z)

and returns �s�2 as the solution.

5.1 Analysis

In the following we analyze the security and the correctness of our scheme.

Theorem 3 (Security). Let MK-FHE be a semantically secure multi-key
encryption scheme and let TLP be a secure time-lock puzzle, then the scheme
FHTLP as described above is secure.

Proof. We analyze only fresh (non-evaluated) puzzles without loss of generality.
The distribution ensemble induced by the view of the adversary corresponds to

(pp0, pp1, pk,MK-FHE.Enc(pk, s),TLP.PuzGen(pp1, sk))

over the random choices of the public parameters and the random coins of the
algorithms. By the security of TLP it holds that, for all PPT adversaries of depth
at most T , the latter distribution is computationally indistinguishable from

(pp0, pp1, pk,MK-FHE.Enc(pk, s),TLP.PuzGen(pp1, 0)) .

We are now in the position of invoking the semantic security of the MK-FHE
scheme. By a standard reduction, the following distribution

(pp0, pp1, pk,MK-FHE.Enc(pk, 0),TLP.PuzGen(pp1, 0)) .
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is computationally indistinguishable from the previous one. Although this holds
for any PPT adversary, we remark in our case even computational indistinguisha-
bility against depth-bounded attackers would suffice. The proof is concluded by
observing that the last distribution hides the secret information-theoretically.

What is left to be shown is that the scheme is correct.

Theorem 4 (Correctness). Assume the MK-FHE scheme MK-FHE has
decryption noise at most BMK-FHE and that q > 4 · BMK-FHE. Then the scheme
FHTLP as described above is (single-hop) correct.

Proof. We unfold the computation of the solving algorithm of the underlying
time-lock puzzle.

s = TLP.Solve(pp1,Z)

= TLP.Solve(pp1,TLP.Eval(pp1,Dec&Mult(·,C, q/2), (Z̃1, . . . , Z̃�)))
= Dec&Mult((sk1, . . . , sk�),C, q/2)
= Dec&Mult((sk1, . . . , sk�),MK-FHE.Eval((pk1, . . . , pk�), f, (c1, . . . , c�)), q/2)
= q/2 · f(s1, . . . , s�) + e mod q

by the correctness of the TLP scheme and of the MK-FHE decrypt-and-multiply,
respectively. By our choice of parameters |e| ≤ BMK-FHE (with all but negligible
probability) and therefore the decryption algorithm returns the correct bit with
overwhelming probability.

5.2 Instantiation

A linearly-homomorphic time-lock puzzle has been recently proposed in [22]. In
this construction, all users in the system share the public parameters

(
N = p · q, g, h = g2

T
)

where T is the parameter that dictates the hardness of the puzzle and g is the
generator of Z∗

N (with Jacobi symbol +1). For a secret s ∈ ZN , each user can
locally generate a puzzle computing

gr (mod N) hr·N (N + 1)s (mod N2)

where r ←$ZN2 . The puzzle can be solved by raising the first element to the
power of 2T and removing the blinding factor from the second term. Once (N+1)s

is known, s can be recovered efficiently using the polynomial-time discrete loga-
rithm algorithm from [26]. The puzzle hides the message up to time T assuming
the inherent sequentiality of squaring in groups of unknown order. The scheme is
linearly-homomorphic over the ring (ZN ,+) and can be generalized in the same
spirit as the Damg̊ard-Jurik approach to achieve rate 1 (see [22] for more details).
As discussed in Sect. 2.4, we can use the LWE-based MK-FHE scheme of [24]
(which supports linear decrypt-and-multiply) with an externally provided mod-
ulus q = N . Hardness of the underlying LWE problem for arbitrary (worst-case)
moduli follows by [27].
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