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Abstract. In this work, we define and construct fully homomorphic
non-interactive zero knowledge (FH-NIZK) and non-interactive witness-
indistinguishable (FH-NIWI) proof systems.

We focus on the NP complete language L, where, for a boolean
circuit C and a bit b, the pair (C, b) ∈ L if there exists an input w
such that C(w) = b. For this language, we call a non-interactive proof
system fully homomorphic if, given instances (Ci, bi) ∈ L along with
their proofs Πi, for i ∈ {1, . . . , k}, and given any circuit D : {0, 1}k →
{0, 1}, one can efficiently compute a proof Π for (C∗, b) ∈ L, where
C∗(w(1), . . . ,w(k)) = D(C1(w

(1)), . . . , Ck(w
(k))) and D(b1, . . . , bk) = b.

The key security property is unlinkability : the resulting proof Π is indis-
tinguishable from a fresh proof of the same statement.

Our first result, under the Decision Linear Assumption (DLIN),
is an FH-NIZK proof system for L in the common random string model.
Our more surprising second result (under a new decisional assumption
on groups with bilinear maps) is an FH-NIWI proof system that requires
no setup.

Keywords: Homomorphism · Non-interactive zero-knowledge ·
Non-interactive Witness Indistinguishability

1 Introduction

Homomorphism is a desirable feature that enhances the capabilities of many
cryptographic systems. Most notably, the concept of fully homomorphic encryp-
tion [13,18,25] has revolutionized the area of cryptography. Other primitives
such as homomorphic signatures [10,20] and homomorphic secret sharing [12]
have also found useful cryptographic applications [11,22]. In this work, we study
homomorphism in the context of non-interactive proof systems. Our goal is to
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design homomorphic proof systems with secrecy guarantees; specifically, we focus
on the most common secrecy guarantees studied in the literature, namely zero-
knowledge [9] and witness indistinguishability [6,17].

Our Work: Fully-Homomorphic NIZK and NIWI Proofs. We introduce the
notion of fully-homomorphic non-interactive zero-knowledge (FH-NIZK) and
witness-indistinguishable (FH-NIWI) proof systems. In the simplest setting, this
proof system allows for combining proofs for the instances A and B into a proof
for the instance A ∧ B. In the more general setting, this proof system allows
for combining proofs for multiple instances A1, . . . , An using a function f into a
single proof for f(A1, . . . , An).

A naïve attempt to combine proofs for the instances (A1, . . . , An) using a
function f is to simply output the concatenation of the individual proofs on
each of the instances A1, . . . , An together with the function f . However, this
combined proof does not resemble an honestly generated proof for the instance
f(A1, . . . , An). Our goal is to combine proofs in a way that is indistinguishable
from an honestly generated proof for the instance f(A1, . . . , An). We call this
property unlinkability.

There are several reasons why unlinkability is an interesting feature: Firstly,
it is often desirable to hide the fact that a proof was obtained by combining
multiple proofs. Unlinkability also preserves the privacy of the underlying proof;
namely, it ensures that homomorphic evaluation of multiple NIZK (resp., NIWI)
proofs still results in a NIZK (resp., NIWI) proof. Moreover, it guarantees that
the homomorphic evaluation can be multi-hop, meaning that the proofs can
be evaluated upon multiple times. We describe the homomorphic evaluation
procedure and unlinkability property below.

We define the notion of a fully-homomorphic proof system for the NP-
complete language LU which consists of instances (C, b), where C is a boolean
circuit with single-bit output and b is a bit, such that there exists a witness w
(a vector of bits) for which C(w) = b. A non-interactive proof system for prov-
ing membership in this language consists of the algorithms Prove and Verify. A
fully homomorphic proof system additionally has the algorithm Eval defined as
follows:

Homomorphic Evaluation (Eval): On input k instances {zi = (Ci, bi)}i∈[k]

accompanied with proofs {Πi}i∈[k] for the statements {zi ∈ LU}i∈[k], and
a circuit D : {0, 1}k → {0, 1}, Eval outputs a proof Π∗ for the statement
z∗ = (C∗,D(b1, . . . , bk)) ∈ LU , where C∗ is defined to be the circuit that on
input (w1, . . . ,wk) outputs D(C1(w1), . . . , Ck(wk)).

We define unlinkability as follows: A proof Π∗ output by Eval on input {zi ∈
LU}i∈[k] accompanied with proofs {Πi}i∈[k], where Πi is output by Prove on
input zi and a valid witness wi, should be indistinguishable from the output
of Prove on input the instance (C∗,D(b1, . . . , bk)) and witness (w1, . . . ,wk). As
mentioned above, unlinkability guarantees that the evaluation property preserves
zero-knowledge (ZK) or witness-indistinguishability (WI) of an evaluated proof,
depending on whether the fresh proof is ZK or WI respectively. We refer the
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reader to Fig. 1 for an illustrative description of unlinkability, and refer the reader
to Sect. 4 for our definition of fully homomorphic proofs.

Our Results. We construct both a NIZK and a NIWI fully homomorphic proof
system.

D

b∗

C1 C2 Ck

· · ·

Π∗

C∗

b∗

ΠF≈

Fig. 1. Unlinkability property of Fully Homomorphic Proofs: Let Π∗ be the output
of Eval on input {(Ci, bi) ∈ LU}i∈[k] accompanied with proofs {Πi}i∈[k], where Πi is
output by Prove on input (Ci, bi) and a valid witness wi. Let C∗ be the circuit that
on input (w1, . . . ,wk), outputs D(C1(w1), . . . , Ck(wk)) and let ΠF be an honestly
generated proof for the instance (C∗, b∗) ∈ LU . We require that Π∗ is computationally
indistinguishable from ΠF .

Theorem 1 (Informal). Assuming Decisional Linear Assumption (DLIN),
there exists a fully-homomorphic non-interactive zero-knowledge proof system
in the common random string model.

We describe the construction of FH-NIZK in the technical sections and defer the
proof to the full version [4].

For constructing FH NIWI proofs, we rely on a new decisional assumption
on groups with bilinear maps called DLIN with leakage, defined in Fig. 2.

A proof of security of the assumption in the bilinear generic model is provided
in the full version of the paper [4].

Theorem 2 (Informal). Assuming DLIN with Leakage, there exists a fully-
homomorphic non-interactive witness-indistinguishable proof system in the plain
model (i.e. without setup).

We describe the construction of FH-NIWI in the technical sections and defer the
proof to the full version [4].

Related Works. Most relevant to our work is the work on malleable proof sys-
tems [14,16], who studied unary transformations, i.e., when Eval receives a sin-
gle instance-proof pair and outputs a mauled instance along with the corre-
sponding proof. The work of [14] studied malleable proof systems for specific
relations, and [16] studied malleability for general relations albeit under knowl-
edge assumptions. Moreover, these works consider NIZK proof systems and thus
require trusted setup. We note that [14] satisfies a stronger proof of knowledge
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property (called controlled-malleable simulation-sound extractability) that we
don’t achieve in this work.

The notion of malleability, although seemingly limited due to its unary
nature, has found many applications, such as verifiable shuffles [14], delegat-
able anonymous credentials [7,15] and leakage-resilient proof systems [5]. Re-
randomizability [7], a special case of malleability, has also been studied in the
literature. Following [14,16], Ananth et al. [3] construct privately malleable NIZK
proof systems, and the works of [1,2] study homomorphic proof systems for spe-
cific relations.

Fig. 2. Description of the DLIN with leakage, with respect to a group G of prime
order p with a bilinear map e : G × G → GT . We refer to this as DLIN with leakage
assumption since the first row in both the distributions are indistinguishable assuming
DLIN, and the second and third rows can be viewed as leakage.

It is important to stress that all the prior works, even in the case of
unary transformations studied in the context of malleable proofs [14,16], assume
trusted setup. Thus, in the context of WI proof systems, our results are espe-
cially surprising since it allows for combining proofs that were created completely
independently, with no shared setup.

We now describe some applications of fully-homomorphic proofs.

Private Incremental Proofs. Incremental proofs, introduced by Valiant [26], allow
for merging many computationally sound proofs [23] into one proof which is as
short and easily verifiable as the original proofs. Incremental proofs have been
applied in several contexts such as proof-carrying data [8] and cryptographic
image authentication mechanisms [24]. It is useful in two types of settings: one
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where the computation dynamically evolves over a period of time, hence a proof
of correctness of the entire computation cannot be computed all at once, and
the other where different entities wish to compute a proof for the correctness of
computation in a distributed setting.

The focus of prior works on incremental proofs was on succinctness whereas
the focus of our work is on privacy. While our work does not achieve succinctness,
as we will see later achieving privacy alone turns out to be quite challenging
(especially, in the context of fully-homomorphic NIWIs). We hope that our tools
can be combined with succinct incremental proofs to yield incremental proofs
that enjoy both succinctness and privacy guarantees.

Commit-and-Compute Paradigm. Another application of fully-homomorphic
proofs is the commit-and-compute paradigm. At a high level, the commit-and-
compute paradigm allows a prover to commit to its sensitive data, and later on,
prove statements about the committed data. Proofs from different provers can
then be combined to infer arbitrary statements about the committed data. We
give below an example that illustrates the applicability of this paradigm.

Verifiable Data Analysis. Consulting firms often collect data from different
research groups, perform analysis on the joint dataset and then share the ana-
lyzed results with different organizations. For instance, there are firms that col-
lect medical data from different research groups and share the analysis on the
medical data to pharmaceutical companies. This raises concerns about trusting
the research groups and the consulting firms to not lie about their conclusions.
We can tackle this concern by using fully homomorphic NIZK or NIWI proofs.
The research groups can publish their (committed) data along with a proof
that it was collected from valid sources, without revealing the identity of the
sources. The consulting firms can then perform analysis on the joint data sets
and homomorphically compute a proof that the analysis was performed correctly.
Moreover, the homomorphically computed proof will also hide the identities of
the research groups involved in sharing the data to the firms.

Commit-and-compute paradigm is formalized by defining the NP language
LCOM, a modification of LU so that the instance includes a vector of commitments
along with (C, b). The language LCOM is defined as follows:

LCOM =
{

(C, (com1, . . . , comn), b)
∣∣∣ ∃{wi, ri} s.t. C(w1, . . . , wn) = b, and

{comi = Commit(wi, ri)}
}

The evaluation is defined similarly to that of homomorphic Eval for LU . We define
and instantiate the commit-and-compute paradigm using fully-homomorphic
proofs in the full version [4].

Roadmap. In Sect. 2, we give an overview of our techniques. In Sect. 3, we
describe some notation and definitions. In Sect. 4, we present our definition of
fully homomorphic NIZK and NIWI proof systems. In Sect. 5, we define and
instantiate the building blocks for our constructions, and describe our DLIN
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with Leakage assumption (in Sect. 5.3). In Sect. 6, we construct fully homomor-
phic NIZK proofs for NP from DLIN. In Sect. 7, we describe our main result of
fully homomorphic NIWI proofs from the DLIN with Leakage assumption. We
refer the reader to the full version of the paper [4] for a detailed description of
the constructions.

2 Technical Overview

Let us start with some intuition. Suppose we want to generate a proof for the
satisfiability of C1 ∧ C2 for some circuits C1, C2. Given a proof Π1 for the satis-
fiability of C1 and a proof Π2 for the satisfiability of C2, clearly Π = (Π1,Π2)
is a proof for the satisfiability of C1 ∧ C2. However, such a proof does not sat-
isfy unlinkability. Moreover, the structure of the proof Π = (Π1,Π2) may be
different from that of a fresh proof computed for the satisfiability of C1 ∧ C2.

To achieve homomorphism and unlinkability, a natural candidate is a proof
system that works gate-by-gate as follows: Commit to all the wire values of the
circuit and prove that each gate is consistent with the committed values. Such a
proof structure is a good candidate because structurally, a proof of the composed
instance C1 ∧ C2 will be similar to a fresh proof.

Indeed the beautiful work of Groth, Ostrovsky and Sahai [21] (henceforth
referred to as GOS) has this proof structure and it is the starting point for our
FH NIZK construction as well as our FH NIWI construction. GOS constructed
NIZK and NIWI proofs under the decisional linear (DLIN) assumption. First
in Sect. 2.1, we describe our FH NIZK construction which builds on the GOS
NIZK. Then in Sect. 2.2, we describe our FH NIWI construction which contains
the bulk of the technical difficulty in this work.

2.1 Overview: Fully Homomorphic NIZK

Recall that an LU instance is of the form (C, out) where C : {0, 1}t → {0, 1} and
out ∈ {0, 1}. Let w = (w1, . . . , wt) be a witness such that C(w) = out. Let us
first recall the GOS NIZK proof for LU .

GOS NIZK. The GOS NIZK proof system is associated with a commitment
scheme with public parameters (as we elaborate on later). The CRS consists of
the parameters pp for the commitment scheme. The prover on input (C, out)
along with witness w does the following:

1. Let w1, . . . , wn be the values induced by witness w = (w1, . . . , wt) on all the
wires of the circuit C. Commit to all the wire values with respect to pp, except
the output wire. For every i ∈ [n − 1], denote by ci the commitment to wire
value wi. Denote by cn = wn.

2. For each i ∈ [n], prove that the commitment ci is a commitment to a boolean
value. We refer to such proofs by Bit Proofs.

3. For each gate in C, prove that the commitments to the input and the output
wires of the gate are consistent with the gate functionality. We refer to such
proofs by Gate Proofs.
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In their construction, GOS use a commitment scheme which has two indis-
tinguishable modes of public parameters: perfectly binding and perfectly hiding.
Loosely speaking, the perfectly binding mode is used to argue perfect soundness,
and the perfectly hiding mode is used to argue zero-knowledge. In addition, they
require the commitment scheme to be additively homomorphic and the additive
homomorphism is used in the Gate Proofs.

GOS constructed NIWI proof systems for Bit Proofs and Gate Proofs, and
proved that this is sufficient for their NIZK construction. Both Bit and Gate
Proofs are computed using the openings of the commitments as the witness.
Our FH NIZK construction follows a similar template (our NIZK construction
is identical to the GOS NIZK) but in order to achieve unlinkability, we need
additional properties from the commitment scheme as well as from the Bit Proofs
and Gate Proofs, as we explain below.

Homomorphic Evaluation. Homomorphic evaluation works as follows: On input
k instances {zi = (Ci, bi)}i∈[k] along with proofs {Πi}i∈[k] where each Πi is a
proof that zi ∈ LU , and a circuit D, we want to output a proof that (C∗, b∗) ∈ LU
where C∗ is the composed circuit and b∗ = D(b1, . . . , bk). First, compute a fresh
proof for the circuit D with witness (b1, . . . , bk). Note that the fresh proof for
(D, b∗) together with the proofs {Πi}i∈[k], forms a verifying proof with respect
to (C∗, b∗). This follows from the fact that in each proof Πi, the output wire bi

is given in the clear. However this combined proof is distinguishable from a fresh
proof (given the individual proofs {Πi}i∈[k]). Thus, to achieve unlinkability, we
randomize this entire proof.

Randomizing the NIZK Proof. A proof system is said to be randomizable [7] if
given a proof Π for an instance x, it is possible to randomize the proof Π to
obtain a proof Π ′ for x, such that Π ′ is indistinguishable from a fresh proof for
x. Randomizability of a proof system is sufficient for achieving unlinkability in
our construction, as explained above.

At a high level, we randomize the proof Π as follows: Randomize all the
commitments in the proof, and then “update” the existing proofs to be with
respect to the randomized commitments. Thus, given the original Bit Proofs and
Gate Proofs, we need to be able to “maul” them to be with respect to the new
randomized commitments in such a way that the updated proofs are distributed
as fresh Bit Proofs and Gate Proofs. We refer to such proofs as malleable proofs.

Ingredients for Our FH NIZK. In summary, for constructing FH NIZK,
we use a commitment scheme (C.Setup,C.Commit,C.Rand) from GOS, which
is also randomizable. We also need malleable proof systems for Bit
proofs and for Gate proofs. (we define the corresponding proof systems
(Bit.Prove,Bit.Verify,Bit.Maul) and (N.Prove,N.Verify,N.Maul) in Sect. 3).

As shown in GOS, both Bit Proofs and Gate Proofs can be reduced to proofs
of linearity with respect to the NP language LLin. The language LLin is param-
eterized by three random group elements (f, h, g) in some underlying group G

of prime order (which has a bilinear map), and whose instances consists of pairs
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(A,B), where A = (fa1 , ha2 , ga3) and B = (f b1 , hb2 , gb3), such that a1 + a2 = a3

or b1 + b2 = b3
1.

GOS constructed a NIWI proof for LLin. Recall that for our purposes, we
need malleable proof systems for Bit Proofs and Gate Proofs, and as a result we
need the underlying NIWI proof for LLin to be malleable with respect to ran-
domization. Namely given a pair (A,B) ∈ LLin with a NIWI proof Π, it should
be possible to maul the proof Π for (A,B) into a proof Π ′ for a randomiza-
tion (A′,B′) of (A,B). We show that the GOS proof for LLin has the desired
malleability property, and we refer the reader to Sect. 3 for the definition of a
malleable proof system.

2.2 Overview: Fully Homomorphic NIWI

We now focus on our construction of a FH NIWI proof system for LU . As we will
see, this is a significantly harder task compared to the FH NIZK, since NIWI is
constructed in the plain model without a CRS.

The GOS NIWI Construction. We will first describe the GOS NIWI proof sys-
tem. Recall that in the GOS NIZK construction, the CRS consists of the param-
eters pp of the commitment scheme. In a NIWI construction, there is no CRS.
In the GOS NIWI, the prover chooses two parameters (pp0, pp1) such that it
is possible to publicly verify that one of them is binding. The NIWI proof for
(C, out) ∈ LU is of the form (pp0,Π0, pp1,Π1) where Πb is the NIZK proof with
respect to ppb for each b ∈ {0, 1}.

Towards Homomorphic Evaluation and Unlinkability. It is not clear how to use
the GOS NIWI construction to construct an FH NIWI. In particular, achieving
unlinkability here is significantly harder. Intuitively, the difficulty stems from
the fact that even though the GOS NIWI appears to be gate-by-gate, there is an
over-arching pair of parameters associated with the entire proof, and this pair is
different for different proofs.

In more detail, a fresh GOS NIWI proof as described above has two param-
eters (pp0, pp1) associated with it. Thus, if we use an approach similar to
the FH NIZK construction for composing proofs, namely if we prove that
(D(C1, . . . , Ck), b∗) ∈ LU , given k instances {zi = (Ci, bi)}i∈[k] along with corre-
sponding proofs {Πi}i∈[k], where b∗ = D(b1, . . . , bk), then the resulting composed
proof will have 2k parameters associated with it. It is unclear how to randomize
such a composed proof to look like a fresh proof which has only two parameters
associated with it.

In order to achieve unlinkability in our construction, we diverge from the
GOS construction. Rather than choosing a pair of parameters per proof, we
choose a fresh pair of parameters (pp0j , pp

1
j ) for each gate of the circuit. As in

the GOS construction, the honest prover chooses one of them to be binding
and the other hiding such that one can publicly verify that indeed one of the
parameters is binding. Recall that in the GOS NIWI construction, the prover

1 If a1 + a2 = a3 then A is said to be a linear tuple.
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committed to each wire value with respect to two parameters (pp0, pp1). Now
that we are choosing fresh parameters per gate, the question is which parameters
do we use to commit to a wire value?

We associate four parameters pp0i , pp1i , pp0j , pp1j with an internal wire between
the ith and the jth gate in the circuit. In our construction, we commit to the wire
value with respect to all of these parameters and thus, have four commitments
c0i , c

1
i , c

0
j , c

1
j per wire. We compute Bit Proofs with respect to each of the four

commitments, and compute Gate Proofs for every gate with respect to both
parameters associated with that gate.

Ensuring Soundness. Recall that the GOS NIWI consists of two independent
NIZK proofs Π0,Π1 with respect to parameters pp0, pp1 respectively. Thus, the
commitments, Bit Proofs and Gate Proofs with respect to both the parameters
are independent of each other, and Π0,Π1 are verified separately. This is not
the case in our setting.

Our proof contains a pair of parameters per gate, and has four commitments
per wire. Thus, we need to prove that the multiple commitments per wire commit
to the same value. In particular for soundness, it is sufficient to prove that among
the four commitments per wire, the two commitments corresponding to the two
binding parameters commit to the same value.

However the verifier does not know which of the four parameters pp0i , pp1i , pp0j ,
pp1j are binding. All we are guaranteed is that for every gate j, one of (pp0j , pp

1
j )

is binding. So in our construction, we give four pairwise proofs that each com-
mitment with respect to gate i commits to the same value as each commitment
with respect to gate j. Namely, for all b1, b2 ∈ {0, 1}, the commitments (cb1

i , cb2
j )

with respect to ppb1
i , ppb2

j commit to the same value. This ensures consistency
with respect to the two binding commitments across gates i, j. This, along with
the Bit and Gate proofs will ensure that there is a consistent boolean assignment
w1, . . . , wn induced by the witness w across all the wires of the circuit, such that
C(w) = out.

We emphasize that we do not provide consistency proofs between the two
commitments (c0i , c

1
i ) for a gate i, and in fact this is crucial for achieving wit-

ness indistinguishability, as we explain later. Towards constructing such pair-
wise proofs, we define the language LTC

2 which consists of instances of the form
(ci, cj , ppi, ppj) where commitment ci with respect to parameters ppi and cj

with respect to ppj commit to the same bit.

Arguing Witness Indistinguishability. The main challenge is to prove that
the final construction is witness indistinguishable even given the additional LTC

proofs for instances of the form (ci, cj , ppi, ppj). We note that even if the proof
system for LTC satisfies WI, we do not know how to argue that the final con-
struction is WI. Intuitively, the issue is that an LTC statement may have a unique
witness, in which case WI offers no secrecy. As we explain below, we need our

2 TC stands for the language of Two Commitments.
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LTC proof system to have a secrecy guarantee of the flavor of strong NIWI (with
respect to specific distributions).

To argue WI of our final FH NIWI construction, we prove that a proof Π0

for (C, out) ∈ LU with respect to witness wit0 is indistinguishable from a proof
Π1 with respect to witness wit1. Let us zoom in on a wire k between gates i, j
whose value changes from 0 (for wit0) to 1 (for wit1). Both Π0,Π1 will contain
four commitments to the wire k with respect to parameters pp0i , pp

1
i , pp

0
j , pp

1
j ,

along with the four LTC proofs (see Fig. 3).
Denote by PP = (pp0i , pp

1
i , pp

0
j , pp

1
j ). Denote by W(b) the four commitments

to bit b on wire k, that is W(b) = (c0i , c
1
i , c

0
j , c

1
j ) where all the four commitments

are to the bit b. Denote by Π(b) = (π00, π01, π10, π11) where for all b1, b2 ∈ {0, 1},
πb1b2 is a proof for (cb1

i , cb2
j , ppb1

i , ppb2
j ) ∈ LTC.

pp0i pp1i

pp0j pp1j

c0i c1i

c0j c1j

π00

π01

π10

π11

Fig. 3. Zooming in on wire k of circuit C with parameters PP = (pp0i , pp
1
i , pp

0
j , pp

1
j ),

commitments W = (c0
i , c

1
i , c

0
j , c

1
j ) and LTC proofs Π = (π00, π01, π10, π11).

To prove WI of the final construction, in particular the following should hold:
(
PP,W(0),Π(0)

) ≈ (
PP,W(1),Π(1)

)
(1)

This indistinguishability requirement already implies a strong NIWI for LTC,
with respect to distributions D0 and D1, where Db samples LTC instances
(ci, cj , ppi, ppj) such that ci, cj commit to the bit b.

For our analysis, Eq. (1) is insufficient since we need Eq. (1) to hold even given
the rest of the proof for (C, out) ∈ LU . In other words, we need Eq. (1) to hold
given some auxiliary information aux, where given aux it should be possible to
efficiently compute the rest of the proof from it. One possible aux is the openings
of all the four commitments so that it is then possible to compute Bit and Gate
Proofs for the rest of the proof. But if we give the openings with respect to 0 and
1 respectively, then the two distributions in Eq. (1) are clearly distinguishable.

So the question is, what aux can we give? Our key insight is that we can
give equivocated openings for the commitments with respect to the two hiding
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parameters and honest openings with respect to the binding parameters, so that
in both the distributions in Eq. (1), two of the openings are to 0 and two of them
are to 1. Without loss of generality, we think of pp0i , pp0j as the binding parameters
and pp1i , pp

1
j as the hiding parameters. We strengthen the requirement in Eq. (1)

as follows:

(
PP(0),W(0),Π(0),O(0)) ≈ (PP(1),W(1),Π(1),O(1)

)
(2)

where PP(b) = (ppb
i , pp

1−b
i , ppb

j , pp
1−b
j ), and W(b),Π(b) are as before, and where

in both the distributions, O(b) contains openings for the commitments W(b) to
(0, 1, 0, 1) respectively. This is the case since in the left-hand-side parameters
PP(0), the second and fourth parameters are hiding, and we equivocate c1i , c

1
j to

open to 1, whereas in the right-hand-side parameters PP(1), the first and third
parameters are hiding, and we equivocate c1i , c

1
j to open to 0. Note that the LTC

proofs in Π(b) are still computed using the (honest) openings to b.
This is still not sufficient for our WI analysis. In order to argue WI of the

final construction, we need to invoke Eq. (2) for every wire k in the circuit for
which the value of wit0 on wire k is different from value of wit1 on wire k. These
invocations are not completely independent since two different wires may be
associated with the same gate, and in particular the two wires may be associated
with an overlapping set of parameters. Thus, we need to further strengthen
Eq. (2) to as follows:

(
PP(0),W(0),Π(0),O(0),W(1),Π(1),O(1)

) ≈(
PP(1),W(1),Π(1),O(1),W(0),Π(0),O(0)

)
(3)

where PP(b),W(b),Π(b) and O(b) are as described above. We note that in the
left-hand-side, W(1) are four commitments to 1 with respect to PP(0), Π(1) are
the corresponding LTC proofs computed using the honest openings to 1, and O(1)
are the openings to (1, 0, 1, 0) respectively. Similarly, in the right-hand-side, W(0)
are four commitments to 0 with respect to PP(1), Π(0) are the corresponding LTC

proofs, and again O(0) are the openings to (1, 0, 1, 0) respectively. We refer to the
property from Eq. (3) as Strong Secrecy of LTC. The Strong Secrecy requirement
of LTC as in Eq. (3) is sufficient for our WI analysis. Before explaining our WI
analysis, we describe the ingredients for our FH NIWI Construction.

Recall that our NIWI proof for (C, out) ∈ LU is computed as follows: Choose
a fresh pair of parameters per gate, commit to all the wire values with respect
to all the associated parameters (2 commitments per input wire, 4 commitments
per connecting wire), compute Bit Proofs (one per commitment), compute Gate
Proofs (two per gate) and compute LTC proofs (four per connecting wire). In
order to randomize our NIWI proof, we randomize all the parameters, corre-
spondingly update the commitments and update the proofs to be with respect
to the randomized parameters and commitments. Specifically, we need the fol-
lowing ingredients for our final FH NIWI Construction.
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Ingredients for our FH NIWI.

– A Commitment Scheme as required in the FH NIZK construction, but with
the additional feature that allows for randomizing the parameters and updat-
ing the commitments to be with respect to the randomized parameters, so
that the randomized parameters and commitments are distributed like fresh
commitments.

– Bit Proofs and Gate Proofs as required in the FH NIZK construction, but
with the following (modified) malleability property: Given a proof for com-
mitments with respect to some pp, it is possible to efficiently randomize the
parameters, correspondingly update the commitments and update the proofs
to be with respect to the new parameters and commitments, such that they
are all distributed like fresh ones. As in the FH NIZK, we require the Bit and
Gate Proofs to satisfy WI.

– A proof system for LTC with the same malleability property as Bit and Gate
Proofs, and with the Strong Secrecy property as described in Eq. (3).

We show that the GOS commitment scheme (C.Setup,C.Commit,C.Rand)
satisfies the additional feature that we require. The malleability of Bit Proofs
and Gate Proofs can be reduced to the malleability of the NP language
LLin described previously (similar to the FH NIZK construction). We then
describe the corresponding proof systems (Bit.Prove,Bit.Verify,Bit.GenMaul) and
(N.Prove,N.Verify,N.GenMaul).

Jumping ahead, we construct the proof system for LTC also using the proof
system for LLin, and the malleability of LTC follows from the malleability of LLin.
We then argue that the Strong Secrecy follows from our new DLIN with Leakage
assumption.

WI Analysis. To explain our WI analysis, we describe an algorithm ProofGen
that on input a sample from the left-hand-side distribution in Eq. (3), generates
an entire proof Π for (C, out) ∈ LU which is indistinguishable from an honest
proof generated using wit0, and on input a sample from the right-hand-side
distribution, ProofGen generates a proof Π which is indistinguishable from an
honest proof generated using wit1.

ProofGen Algorithm. Without loss of generality, we assume that every circuit is
layered; that is, all the gates of the circuit can be arranged in t layers so that
for all i ∈ [t], all the output wires of gates from layer i are input wires to gates
in layer i + 1. Fix any two witnesses wit0 and wit1 for (C, out) ∈ LU .

On input
(
PP(b),W(b),Π(b),O(b),W(1 − b),Π(1 − b),O(1 − b)

)
, ProofGen

does the following:

1. Recall that PP(b) = (ppb
i , pp

1−b
i , ppb

j , pp
1−b
j ). Assign parameters (ppb

i , pp
1−b
i )

to all the odd layer gates of the circuit and (ppb
j , pp

1−b
j ) to all the even layer

gates of the circuit. We will refer to {ppb
i , pp

b
j} as the Left Parameters and

{pp1−b
i , pp1−b

j } as the Right Parameters.
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2. For all the input wires of the circuit C, commit to wit0 with respect to
ppb

i (Left Parameter) and commit to wit1 with respect to pp1−b
i (Right

Parameter).
3. For every wire k, produce the 4 commitments and 4 LTC proofs for the wire

as follows: Denote by wk,0 the value induced by wit0 on wire k, and denote
by wk,1 the value induced by wit1 on wire k in the circuit.

– If wk,0 = wk,1 then compute the commitments and LTC proofs honestly.
– If wk,0 = 0 and wk,1 = 1 then use W(b) as the commitments and Π(b) as

the LTC proofs.
– If wk,0 = 1 and wk,1 = 0 then use W(1 − b) as the commitments and

Π(1 − b) as the LTC proofs.
4. Compute the Bit Proofs and Gate Proofs honestly: We have the openings for

all the commitments to the input bits (from Step 2). We also have the openings
for the commitments to every non-input wire k, namely O(b) for W(b) when
wk,0 = 0 and wk,1 = 1, or O(1 − b) for W(1 − b) when wk,0 = 1 and wk,1 = 0,
or since we generated the commitments honestly when wk,0 = wk,1. Note that
the openings with respect to the Left Parameters always correspond to wit0
and the openings with respect to the Right Parameters always correspond to
wit1.

– Bit Proofs can be computed honestly since all the openings are to 0 or 1.
– Gate Proofs can be computed honestly since all the openings with respect

to the Left Parameters are consistent with wit0 and all the openings with
respect to the Right Parameters are consistent with wit1.

5. Randomize the entire proof as follows:
– For every gate, randomize the pair of parameters for that gate.
– Update all the commitments (2 commitments per input wire, 4 com-

mitments per connecting wire) to be with respect to the randomized
parameters.

– Maul all the Bit Proofs (one per commitment), all the Gate Proofs (two
per gate) and all the LTC proofs (four for every connecting wire) to be
with respect to the updated parameters and commitments.

Finally output this randomized proof.

So far, we described the ProofGen algorithm that given a sample from the
distributions in Eq. (3), generates an entire proof for (C, out) ∈ LU . Let Π0

Gen

be a proof output by ProofGen on input a sample from the left-hand-side of
Eq. (3) and let Π1

Gen be a proof output by ProofGen on input a sample from the
right-hand-side of Eq. (3).

From Eq. (3), it follows that Π0
Gen ≈ Π1

Gen. All that remains is to argue
that Π0 ≈ Π0

Gen and Π1 ≈ Π1
Gen, where Πb is an honestly computed proof for

(C, out) ∈ LU using witness witb. Note that Π0 and Π0
Gen are identical except

that Π0
Gen uses equivocated openings to wit1 on the Right Parameters to compute

the Bit and Gate Proofs. Hence, Π0 ≈ Π0
Gen follows from WI of the Bit and Gate

Proofs, and in addition follows by the randomizability of the commitment scheme
and the malleability of the underlying proofs. By a similar argument, Π1 ≈ Π1

Gen.
Thus, WI of the final construction follows form the Strong Secrecy of LTC.
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Constructing the LTC Proof System. We construct a proof system for LTC

with the following properties:

1. Strong Secrecy: As defined in Eq. (3).
2. Malleability: Given a proof π for (c1, c2, pp1, pp2) ∈ LTC, one can efficiently

randomize the parameters to obtain pp′
1, pp

′
2, update the commitments to

obtain c′
1, c

′
2 which are with respect to pp′

1, pp
′
2, and then maul π to a proof

π′ for (c′
1, c

′
2, pp

′
1, pp

′
2) ∈ LTC such that (c′

1, c
′
2, pp

′
1, pp

′
2) looks like a fresh

instance and π′ is distributed like a fresh proof.
3. Soundness: We require that soundness holds for all instances (c1, c2, pp1, pp2)

where both pp1, pp2 are binding. As noted above, this is sufficient for the
soundness of the final construction.

We construct such a proof system using the malleable NIWI proof system
for LLin described before. Recall that LLin is a parameterized language with
parameters pp = (f, h, g) where f, h, g are generators of a group G, and it consists
of a pair of tuples (A,B) such that one of them is of the form (fa1 , ha2 , ga3)
where a3 = a1 + a2.

We reduce proving that (c1, c2, pp1, pp2) ∈ LTC to proving that (A,B) ∈ LLin

for some (A,B). However, we only know how to do this reduction for LTC

instances (c1, c2, pp1, pp2) for which pp1 = pp2. Therefore, we consider an NP-
relation for LTC with an additional witness which lets us convert an instance
(c1, c2, pp1, pp2) into an instance (c∗, c2, pp2, pp2). The additional witness for
(c1, c2, pp1, pp2) is a hard-to-compute function of the parameters pp1, pp2, and
we refer to it as an “intermediate parameter” pp∗ of pp1, pp2. Using the interme-
diate parameter pp∗ we can convert the commitment c1 with respect to pp1 into
a commitment c∗ with respect to pp2.

More specifically in our proof, pp∗ helps in converting the commitment c1
with respect to parameters pp1, into a commitment c∗ (to the same value) with
respect to pp2. Then, we can reduce the instance (c∗, c2, pp2, pp2) ∈ LTC to a
pair of tuples (A,B) ∈ LLin. The soundness and malleability of the LTC proof
system follows from the corresponding properties of LLin proof system. We refer
to the full version [4] for a detailed description of the construction.

Strong Secrecy from DLIN with Leakage. All that remains is to show that the
strong secrecy of LTC follows from our new assumption of DLIN with Leakage.
We first prove that Strong Secrecy of LTC follows from the fact that the NIWI
for LLin is strong WI with respect to the following distributions D0 and D1.

– D0 generates (A,B) where A = (fa1 , ha2 , ga3) for random a1, a2, a3 such that
a1 + a2 = a3, and B = (fa1 , ha2 , ga3+1).

– D1 generates (A,B) where A = (fa1 , ha2 , ga3−1) for random a1, a2, a3 such
that a1 + a2 = a3, and B = (fa1 , ha2 , ga3).

We then prove that the proof system for LLin is strong WI with respect to
D0 and D1 under DLIN with Leakage assumption. We refer to full version [4] for
a detailed description of the reduction.
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3 Preliminaries

We denote the security parameter by λ. We use PPT to denote that an algorithm
is probabilistic polynomial time. We denote by y ← A(x) if y is the output of
a single execution of A on input x. We denote by y = A(x; r) to explicitly
mention the randomness used in the execution. We denote y ∈ A(x) if there
exists randomness r such that y = A(x; r).

We use [n] to represent the set {1, . . . , n}. Vectors are denoted by a where
a = (a1, . . . , an) and ai is the i th element of a. |a| denotes the size of a. a ◦ b
denotes concatenation of the vectors a,b. {X}λ∈N ≈c {Y}λ∈N will denote that
distributions {X}λ∈N and {Y }λ∈N are computationally indistinguishable.

3.1 Definition of Proof Systems

Definition 1 (Non-interactive Zero-knowledge Proofs [9]). Let L ∈ NP
and let RL be the corresponding NP relation. A triplet of PPT algorithms
(Setup,Prove,Verify) is called a non interactive zero knowledge (NIZK) proof
system for L if it satisfies:

– Perfect Completeness: For all security parameters λ ∈ N and for all
(x,w) ∈ RL,

Pr[CRS ← Setup(1λ); π ← Prove(CRS, x, w) : Verify(CRS, x, π) = 1] = 1

– Adaptive Soundness: For any all-powerful prover P ∗, there exists a negli-
gible function μ such that for all λ,

Pr[CRS ← Setup(1λ); (x, π) = P ∗(CRS) : Verify(CRS, x, π) = 1 ∧ x /∈ L] ≤ μ(λ)

When this probability is 0, we say it is perfectly sound.
– Adaptive Zero Knowledge: There exists a PPT simulator S = (S1, S2)

where S1(1λ) outputs (CRSS , τ) and S2(CRSS , τ, x) outputs πs such that for
all non-uniform PPT adversaries A,

{CRS ← Setup(1λ) : AO1(CRS,·,·)(CRS)} ≈c

{(CRSS , τ)←S1(1λ) : AO2(CRSS ,τ,·,·)(CRSS)}
where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥.
Otherwise O1 outputs Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

Definition 2 (Non interactive Witness Indistinguishable Proofs [6,17]). A pair
of PPT algorithms (Prove,Verify) is called a non interactive witness indistin-
guishable (NIWI) proof for an NP language L with NP relation RL if it satisfies:

– Completeness: For all security parameters λ and for all (x,w) ∈ RL,

Pr[π ← Prove(1λ, x, w) : Verify(1λ, x, π) = 1] = 1



Fully Homomorphic NIZK and NIWI Proofs 371

– Soundness: For any all-powerful prover P ∗, if P ∗(1λ) = (x, π) and x /∈ L,
then Verify(1λ, x, π) = 0.

– Witness Indistinguishability: For all non-uniform PPT adversaries A,
there exists a negligible function ν such that for every λ ∈ N, probability that
b′ = b in the following game is at most 1/2 + ν(λ):
1. (state, x, w0, w1) ← A(1λ).
2. Choose b

$← {0, 1}. If RL(x,w0) 
= 1 or RL(x,w1) 
= 1 then output
⊥. Else, if b = 0 then π ← Prove(1λ, x, w0), and if b = 1 then π ←
Prove(1λ, x, w1).

3. b′ ← A(state, π).

We say that a pair of PPT algorithms (Prove,Verify) is called a non interactive
proof system for an NP language L if it satisfies completeness and adaptive
soundness.

For our purposes, we will be using NIWI proofs with respect to parameterized
languages of the form L[pp] where pp denotes some global parameters.

Definition 3 (Non interactive Witness Indistinguishability proofs for Param-
eterized Languages). Let Setup be a PPT algorithm that takes as input the
security parameter and outputs a set of parameters pp. A pair of PPT algo-
rithms (Prove,Verify) is called a NIWI proof for a parameterized NP language
L[pp], with NP relation RL[pp] if it satisfies:

– Completeness: For all security parameters λ, for all pp ∈ Setup(1λ) and for
all (x,w) ∈ RL[pp], Pr[π ← Prove(pp, x, w) : Verify(pp, x, π) = 1] = 1.

– Adaptive Soundness: For any all-powerful prover P ∗, there exists a negli-
gible function μ such that for all λ,

Pr[pp ← Setup(1λ) : (x, π) ← P ∗(pp) : Verify(pp, x, π) = 1 ∧ x /∈ L] ≤ μ(λ)

– Witness Indistinguishability: For all non-uniform PPT adversaries A,
there exists a negligible function ν such that for every λ ∈ N, probability that
b′ = b in the following game is at most 1/2 + ν(λ):
1. pp ← Setup(1λ).
2. (state, x, w0, w1) ← A(pp).
3. Choose b

$← {0, 1}. If RL[pp](x,w0) 
= 1 or RL[pp](x,w1) 
= 1 then output
⊥. Else if b = 0 then π ← Prove(pp, x, w0), else if b = 1 then π ←
Prove(pp, x, w1). Send π to A.

4. b′ ← A(state, π).

Definition 4 (Randomizable NIZK and NIWI Proofs [7]). A NIZK proof
system for an NP language L with NP relation RL with algorithms
(Setup,Prove,Verify) is said to be a randomizable proof system if there exists
a PPT algorithm Rand which on input a CRS, an instance x and a proof π, out-
puts a “randomized” proof π′ for x such that for all non-uniform PPT adversaries
A, there exists a negligible function ν such that for every λ ∈ N, the probability
that b′ = b in the following game is at most 1/2 + ν(λ):
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1. CRS ← Setup(1λ).
2. (state, x, w, π) ← A(CRS).
3. Choose b

$← {0, 1}. If Verify(CRS, x, π) 
= 1 or RL(x,w) 
= 1 then output ⊥.
4. Else if b = 0 then π′ ← Prove(CRS, x, w), else if b = 1 then π′ ←

Rand(CRS, x, π).
5. b′ ← A(state, π′).

More generally, a (WI) proof system (Prove,Verify) is said to be randomizable
if there exists a PPT algorithm Rand with the same description and properties
as above and where CRS = 1λ.

Definition 5 (Malleable NIWI Proofs for Parameterized Languages [14]). Let
(Prove,Verify) be a NIWI proof system for a parameterized NP language L[pp]
with NP relation RL[pp] where pp ← Setup(1λ) (as per Definition 3). Let T =
(T(C, b), Twit) be a pair PPT transformations such that for every (x,w) ∈ RL and
for every randomness σ ∈ {0, 1}poly(λ), (

T(C, b)(pp, x;σ), Twit(pp, x, w, σ)
) ∈ RL.

Such a proof system is said to be malleable with respect to T , if there exists
a randomized PPT algorithm Maul which on input parameters pp, an instance
x, randomness σ and proof π, outputs a “mauled” proof π′ for T (pp, x;σ) such
that the following properties hold:

Malleability. For all non-uniform PPT A, for all pp ∈ Setup(1λ), for all λ ∈ N,

Pr
[
(x, π) ← A(pp) ; (σ,R) ← {0, 1}poly(λ) ; π′ = Maul(pp, x, σ, π;R) :(

Verify(pp, x, π) = 0
) ∨ (

Verify(pp, T (pp, x;σ), π′) = 1
)]

= 1

Perfect Randomizability. There exists a poly-time function fT such that for
all pp ∈ Setup(1λ) and every (x,w) ∈ RL[pp], for every R, σ ∈ {0, 1}poly(λ),

Maul(pp, x, σ,Prove(pp, x, w;R);R′) =

Prove(pp, T(C, b)(pp, x;σ), Twit(pp, x, w, σ);S)

where S = fT (pp, w,R,R′, σ). Moreover, if R′, σ are uniform, then
fT (w,R,R′, σ) is uniformly distributed.

Definition 6 (Strong Non-interactive Witness Indistinguishability [19]). Let
Setup be a PPT algorithm that takes as input the security parameter and outputs
a set of parameters pp. Let D0 = {D0,λ}λ∈N,D1 = {D1,λ}λ∈N be distribution
ensembles in the support of RL[pp] ∩ {0, 1}λ such that for every b ∈ {0, 1},
(xb, wb) ← Db such that (xb, wb) ∈ RL[pp].

A NIWI proof system (Prove,Verify) for a parameterized NP language L[pp]
is a strong non interactive witness indistinguishable (Strong NIWI) proof with
respect to distributions D0,D1, if the following holds:

If {pp, x0} ≈ {pp, x1} then E0 ≈ E1

where Eb(1λ) does the following: Sample (xb, wb) ← Db(pp) and compute πb ←
Prove(pp, xb, wb). Output (pp, xb, πb).



Fully Homomorphic NIZK and NIWI Proofs 373

3.2 Bilinear Maps

We will be working with abelian groups G,GT of prime order p equipped with
a symmetric bilinear map e : G×G �→ GT . We let G be a deterministic polyno-
mial time algorithm that takes as input the security parameter 1λ and outputs
(p,G,GT , e, gp) such that p is a prime, G,GT are descriptions of groups of order
p, gp is a fixed generator of G and e : G × G �→ GT is a bilinear map with the
following properties:

– (Non-degenerate). For any generator g of G, gT = e(g, g) has order p in GT

– (Bilinear). For all a, b ∈ G, for all x, y ∈ Zp, e(ax, by) = e(a, b)xy

We require that the group operations and the bilinear operations are com-
putable in polynomial time with respect to security parameter.

Assumption 1 (Decisional Linear Assumption). We say that the Decisional
Linear (DLIN) Assumption holds for a bilinear group generator G if the following
distributions are computationally indistinguishable:

{(p,G,GT , e, g) ← G(1λ) ; (x, y) $← Z
∗
p : (r, s) $← Zp :

(p,G,GT , e, g, gx, gy, gxr, gys, gr+s)} and

{(p,G,GT , e, g) ← G(1λ) ; (x, y) $← Z
∗
p : (r, s, d) $← Zp :

(p,G,GT , e, g, gx, gy, gxr, gys, gd)}

4 Fully Homomorphic Proofs: Definition

In this section we define fully homomorphic NIZK and NIWI proofs for the
NP-complete language LU consisting of instances of the form (C, b) where C :
{0, 1}k → {0, 1} is a boolean circuit and b ∈ {0, 1}. Formally, LU is defined as:

LU = {(C, b) | ∃ w such that C(w) = b}

Let RU be the corresponding NP-relation. We first define the notion of composing
multiple instances of LU to get a new instance in LU :

Composing LU Instances: On input k instances {(Ci, bi)}k
i=1 where Ci :

{0, 1}ti → {0, 1} and C ′ : {0, 1}k → {0, 1},

Compose({(Ci, bi)}k
i=1, C

′) = (C, b)

where C : {0, 1}T → {0, 1} and T =
∑k

i=1 ti and for all (w1, . . . ,wk) ∈ {0, 1}t1 ×
· · · × {0, 1}tk ,

C(w1, . . . ,wk) = C ′(C1(w1), . . . , Ck(wk)
) ∧ b = C ′(b1, . . . , bk).
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4.1 Definition: Fully Homomorphic NIZK and NIWI Proofs

We now define fully homomorphic NIZK and NIWI proofs for the language LU
defined above.

Definition 7 (Fully Homomorphic NIZK Proofs). A randomizable NIZK proof
system (Setup,Prove,Verify,Rand) is a fully homomorphic proof system if there
exists a PPT algorithm Eval with the following input-output behavior:

((C, b),Π) ← Eval(CRS, {(Ci, bi),Πi}k
i=1, C

′): The Eval algorithm takes as input
the CRS, k instances {(Ci, bi)}k

i=1 along with their proofs {Πi}k
i=1, and a

circuit C ′ : {0, 1}k → {0, 1}. It outputs the composed instance (C, b) =
Compose({(Ci, bi)}k

i=1, C
′) and a corresponding proof Π such that the follow-

ing properties hold:

Completeness of Eval: We require that evaluating on valid proofs (proofs that
verify), should result in a proof that verifies. More concretely, we require that
for all non-uniform PPT A and for all λ ∈ N,

Pr

⎡
⎢⎢⎢⎣

CRS←Setup(1λ) ; ({(Ci,bi,Πi)}k
i=1,C′)←A(CRS) ;

((C,b),Π)←Eval(CRS,{(Ci,bi),Πi}k
i=1,C′) :(

Valid(C′)=0
)

∨
(
∃ i∈[k] s.t.Verify(CRS,(Ci,bi),Πi)=0

)
∨(

(Verify(CRS,(C,b),Π)= 1) ∧ (C,b)=Compose({(Ci,bi)}k
i=1,C′)

)

⎤
⎥⎥⎥⎦ = 1

where Valid(C ′) = 1 if and only if C ′ : {0, 1}k → {0, 1}.

Unlinkability: We require that a proof for (C, b) ∈ LU obtained by Eval should
be indistinguishable from a fresh proof for the same instance. Namely, for any
non-uniform PPT adversary A, there exists a negligible function ν such that for
every λ the probability that bit = bit′ in the following game is at most 1/2+ν(λ):
GAMEEval:

1. CRS ← Setup(1λ).
2. (state, {((Ci, bi),wi,Πi)}k

i=1, C
′) ← A(CRS)

3. Choose bit
$← {0, 1}. If for any i ∈ [k], Verify(CRS, (Ci, bi),Πi) 
= 1 or

((Ci, bi),wi) /∈ RU , output ⊥.
4. Else if bit = 0 then ((C, b),Π) ← Eval(CRS, {(Ci, bi),Πi}k

i=1, C
′). Else if

bit = 1 then compute (C, b) = Compose({(Ci, bi)}k
i=1, C

′) and
Π ← Prove(CRS, (C, b),w) where w = w1 ◦ · · · ◦ wk. Send (C, b,Π) to A.

5. bit′ ← A(state, (C, b,Π)).

Definition 8 (Fully Homomorphic NIWI Proofs). A randomizable NIWI proof
system (Prove,Verify,Rand) is a fully homomorphic NIWI proof system if there
exists a PPT algorithm Eval with the same description and properties as in
Definition 7 and where CRS = 1λ.
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5 Building Blocks for Fully Homomorphic Proofs

In this section we describe the building blocks for our fully homomorphic (FH)
NIZK and NIWI constructions. In Sect. 5.1, we define a commitment scheme with
additional properties, which we will use in our FH NIZK and NIWI constructions,
and we then instantiate it from DLIN.

In Sect. 5.2, we describe a NIWI proof system for the NP language LLin

(defined in Definition 10) based on DLIN. This proof system is the main ingre-
dient in constructing FH NIZK and FH NIWI proofs.

For our FH NIWI construction, we need the NIWI proof for LLin to have
additional properties of malleability and strong WI with respect to specific dis-
tributions. We prove that the proof system is malleable and we prove that strong
WI holds under a new assumption on bilinear groups: DLIN with Leakage. We
describe the corresponding bilinear assumption in Sect. 5.3.

5.1 Randomizable Commitment Scheme

Definition 9 (Randomizable Commitment Scheme). A Randomizable com-
mitment scheme for message space M consists of PPT algorithms COM =
(C.Setup,C.Commit,C.Rand) with the following descriptions and properties:

pp ← C.Setup(1λ): On input the security parameter, the setup algorithm outputs
public parameters pp.

com = C.Commit(pp, b; o): Using the public parameters pp, the commit algorithm
produces commitment com to message b ∈ {0, 1} using randomness o ←
{0, 1}p(λ) for some polynomial p. We will refer to o as “opening” for the
commitment com.

com′ = C.Rand(pp, com; o′): On input parameters pp, commitment com, random-
ness o′, C.Rand outputs a randomized commitment com′ to same value.

We require the following properties from the commitment scheme:

Perfectly Binding: For all (m0,m1) ∈ M such that m0 
= m1 and for all
o0, o1 ∈ {0, 1}poly(λ)

Pr[pp ← C.Setup(1λ) : C.Commit(pp,m0; o0) = C.Commit(pp,m1; o1)] = 0

Computationally Hiding: Let pp ← C.Setup(1λ). For all (m0,m1) ∈ M and
o0, o1 ← {0, 1}poly(λ), (

C.Commit(pp,m0; o0)
) ≈c

(
C.Commit(pp,m1; o1)

)

Perfect Randomizability: Let pp ← C.Setup(1λ). There exists an efficient
function fcom such that for any randomness o, the following holds:

– For every o′ ∈ {0, 1}poly(λ), C.Rand(pp,C.Commit(pp,m; o); o′) =
C.Commit(pp,m; s) where s = fcom(o, o′).

– If o′ is chosen uniformly at random, then fcom(o, o′) is uniformly
distributed.
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We now describe additional properties that we require from our commitment
scheme for our FH NIZK construction:

– Additive Homomorphism: We require that if c1 and c2 are commitments
to m1 and m2 respectively, then there exists an efficient function fadd such
that c = fadd(c1, c2) is a commitment to (m1 + m2).

– Perfect Equivocation: There exists a PPT algorithm C.Setup′ and a poly-
nomial time algorithm C.Equivocate such that

• C.Setup′ on input the security parameter, outputs pp′, such that

{pp ← C.Setup(1λ) : pp} ≈c {pp′ ← C.Setup′(1λ) : pp′}.

• Fix any rpp ∈ {0, 1}poly(λ), any m,m′ ∈ M and any randomness o ∈
{0, 1}poly(λ). Let pp′ = C.Setup′(1λ; rpp) and c = C.Commit(pp′,m; o).
Algorithm C.Equivocate on input (pp′, rpp, c, o,m′) outputs o′ such that
c = C.Commit(pp′,m′; o′). Also, for truly random o, (c, o′) is dis-
tributed identically to (c′′, o′′) where o′′ is chosen at random and c′′ =
C.Commit(pp′,m′; o′′).

Note that the parameters output by C.Setup(1λ) are binding and the param-
eters output by C.Setup′(1λ) are hiding.

We will denote a randomizable commitment which is also additively homo-
morphic (aH) and equivocable (E) as described above, by a RaHE-commitment
scheme.

Remark 1. We will denote by 1 and 0 the canonical commitments to 1, 0 respec-
tively, namely the commitments computed with randomness o = 0. Given such
a commitment it is possible to verify, that the commitment is indeed to 0 or 1.

Additional Functionalities for FH NIWI. In our FH NIWI construction,
we use a RaHE-commitment scheme which has additional functionalities
(OutParam,ValidParam,RParam,ChangeCom) with properties described below:

– Outputting hiding parameters: The deterministic algorithm OutParam
takes as input parameters pp0 and outputs pp1 such that for all rpp, if pp0 =
C.Setup(1λ; rpp), then pp1 = C.Setup′(1λ; rpp).

– Verifying if two parameters are valid: The algorithm ValidParam is
an efficient predicate that outputs 1 if pp0 ∈ C.Setup(1λ) and pp1 =
OutParam(pp0). It outputs 0 if both parameters are hiding, namely if
pp0, pp1 ∈ C.Setup′(1λ).

– Randomization of parameters: The RParam algorithm takes as input
parameters pp, randomness r′

pp, and outputs new parameters pp′ such that
for all rpp and for pp = C.Setup(1λ; rpp), the following properties hold:

• There exists an efficient function fpp: fpp(rpp, r′
pp) = σ and pp′ =

RParam(pp; r′
pp) = C.Setup(1λ;σ).

• RParam(OutParam(pp); r′
pp) = OutParam(RParam(pp; r′

pp)).
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– Transformation of commitments with respect to new parameters:
The ChangeCom algorithm takes in parameters pp, randomness r′

pp, commit-
ment c, and outputs commitment c′ to the same value, with respect to the
parameters pp′ = RParam(pp; r′

pp).

Proposition 1. Assuming DLIN, there exists an additively homomorphic ran-
domizable commitment scheme as per Definition 9.

5.2 Proofs of Linearity

In this section we describe the main ingredient for our fully homomorphic proofs,
which is a NIWI proof system with additional properties for the parameterized
language LLin[pp].

Definition 10 (Linear Tuples). Let (p,G,GT , e, gp) = G(1λ) and let f, h, g
be any three generators of G. A tuple A = (fa1 , ha2 , ga3) is said to be linear
with respect to (f, h, g) if a1 + a2 = a3.

Before describing the parameterized language LLin[pp], we describe the corre-
sponding setup algorithm for the parameters of the language, given by Lin.Setup.

Lin.Setup(1λ): Compute G(1λ) = (p,G,GT , e, gp). Choose at random
x, y, z ← Z

∗
p. Compute f = gx

p , h = gy
p , g = gz

p . Output pp =
[p,G,GT , e, gp, f, h, g].

We abuse notation and let pp denote the output of Lin.Setup as well as the
output of C.Setup. Note that pp ← Lin.Setup(1λ) is a subset of pp ← C.Setup(1λ).

We now define the language LLin[pp] where pp ← Lin.Setup(1λ). LLin[pp] is
the language consisting of a pair of tuples such that one of them is linear. It is
defined as follows:

LLin[pp] =
{(

A,B
) | ∃ (w1, w2, w3)

(
(w1 + w2 = w3

) ∧(
A = (fw1 , hw2 , gw3) ∨ B = (fw1 , hw2 , gw3)

)}

NIWI Proof from GOS. We first describe the NIWI proof (Lin.Prove, Lin.
Verify) for LLin[pp] from GOS [21]:

Lin.Prove(pp, (A1, A2, A3), (B1, B2, B3), (a1, a2, a3)): Without loss of generality,
let (a1, a2, a3) be such that (A1, A2, A3) = (fa1 , ha2 , ga3) and a1 + a2 = a3.
Choose t

$← Z
∗
p and output proof Π which consists of the following matrix:

[
π11 = Ba1

1 π12 = Ba1
2 h−t π13 = Ba1

3 g−t

π21 = Ba2
1 f t π22 = Ba2

2 π23 = Ba2
3 gt

]

Lin.Verify(pp, (A1, A2, A3), (B1, B2, B3),Π):
– Compute π31 = π11π21 and π32 = π12π22 and π33 = π13π23.
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– Check e(A1, B1) = e(f, π11), e(A2, B2) = e(h, π22), e(A3, B3) = e(g, π33).
– Finally check e(A1, B2)e(A2, B1) = e(f, π12)e(h, π21),

e(A2, B3)e(A3, B2) = e(h, π23)e(g, π32) and e(A1, B3)e(A3, B1) =
e(f, π13)e(g, π31).

Proposition 2 ([21]). Assuming DLIN, the proof system described above is a
perfectly sound witness indistinguishable proof system for the language LLin[pp]
(as per Definition 3).

Remark 2. If Π = [π11, . . . , π33] is a valid proof for ((A1, A2, A3),
(B1, B2, B3)) ∈ LLin[pp], then Π−1 = [π−1

11 , . . . , π−1
33 ] is a valid

proof for ((A−1
1 , A−1

2 , A−1
3 ), (B1, B2, B3)) ∈ LLin[pp] and for ((A1, A2, A3),

(B−1
1 , B−1

2 , B−1
3 )) ∈ LLin[pp].

GOS [21] provided a NIWI proof for LLin[pp] as described above. In our work,
we need the NIWI proof system to satisfy two additional properties: The first
is malleability with respect to randomization, namely given a tuple (A,B) ∈
LLin[pp] with NIWI proof Π, it is possible to randomize (A,B) to a new tuple
(A′,B′) ∈ LLin[pp] and maul the proof Π to be proof Π ′ with respect to (A′,B′).

As a second property, we require that the proof system satisfies strong witness
indistinguishability with respect to specific distributions (which we describe later
in the section).

Malleable Proofs for LLin. We now show that (Lin.Prove, Lin.Verify) is mal-
leable with respect to the transformation Lin.T = (Lin.Transform, Lin.WitTrans)
defined as follows:

Lin.Transform(pp,A,B; (r, s)) �
(
(A1f

r1 , A2h
r2 , A3g

r1+r2 ), (B1f
s1 , B2h

s2 , B3g
s1+s2 )

)

where pp = [p,G,GT , e, gp, f, h, g], A = (A1, A2, A3) and B = (B1, B2, B3).

Lin.WitTrans(pp, (A,B), (w1, w2, w3); (r1, r2, s1, s2)) � (w1 + z1, w2 + z2, w3 + z1 + z2)

(z1, z2) = (r1, r2) if A = (fw1 , hw2 , gw3 ) else (z1, z2) = (s1, s2) if B = (fw1 , hw2 , gw3 )

Mauled proof for Lin.Transform(pp,A,B, (r1, r2, s1, s2)) = (A1f
r1 , A2h

r2 ,
A3g

r3), (B1f
s1 , B2h

s2 , B3g
s3) is given by Lin.Maul(pp, (A,B), (r1, r2, s1, s2),Π):

Choose t ← Z
∗
p, and output a proof Π ′ consisting of the following matrix:

[
π′
11 = π11A

s1
1 Br1

1 fr1s1 π′
12 = π12A

s1
2 Br1

2 hr1s2−t π′
13 = π13A

s1
3 Br1

3 gr1s3−t

π′
21 = π21A

s2
1 Br2

1 fr2s1+t π′
22 = π22A

s2
2 Br2

2 hr2s2 π′
23 = π23A

s2
3 Br2

3 gr2s3+t

]

Proposition 3. Assuming DLIN, the proof system (Lin.Prove, Lin.Verify,
Lin.Maul) is a malleable NIWI for LLin[pp] as per Definition 5, with respect to
transformation Lin.T = (Lin.Transform, Lin.WitTrans).

Remark 3. We denote by Lin.Transform(pp, (A,B), (r1, r2)) the transformation
given by Lin.Transform(pp, (A,B), (r1, r2, r1, r2)).
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Strong NIWI for LLin. For our FH NIWI construction, we require that the
NIWI proofs for (A,B) ∈ LLin[pp] satisfy strong witness indistinguishability
with respect to distributions D0(pp),D1(pp) for pp ← Lin.Setup(1λ). For every
b ∈ {0, 1}, distribution Db(pp) is defined as follows:

Parse pp = [p,G,GT , e, gp, f, h, g]. Choose a1, a2 ← Z
∗
p, let a3 = a1 + a2. Let

Ab = (fa1 , ha2 , ga3−b) and let Bb = (fa1 , ha2 , ga3−b+1). Output (Ab,Bb).
Recall that (Lin.Prove, Lin.Verify, Lin.Maul) is said to be strong NIWI with

respect to distributions D0(pp),D1(pp) (as per Definition 6), if the following
holds:

{pp, (A0,B0), π0} ≈ {pp, (A1,B1), π1}
where (Ab,Bb) ← Db(pp) and where πb ← Lin.Prove(pp,Ab,Bb, (a1, a2, a3)).

5.3 Assumption: DLIN with Leakage

In this subsection, we state our new assumption on bilinear maps: DLIN with
Leakage.
Let pp ← Lin.Setup(1λ) and parse pp = [p,G,GT , e, f, h, g]. DLIN with Leakage
states that D′

0(1
λ) ≈c D′

1(1
λ) where D′

b(1
λ) is as follows:

– D′
0(1

λ) : Choose R,S, t ← Z
∗
p and output pp along with the following matrix:

⎡
⎣ fR hS gR+S

fR2
hRS−t gR(R+S+1)−t

fRS+t hS2
gS(R+S+1)+t

⎤
⎦

– D′
1(1

λ) : Choose R,S, t ← Z
∗
p and output pp along with the following matrix:

⎡
⎣ fR hS gR+S−1

fR2
hRS−t gR(R+S−1)−t

fRS+t hS2
gS(R+S−1)+t

⎤
⎦

Proposition 4. The DLIN with Leakage assumption is secure in the generic
group model.

Proposition 5. Assuming DLIN with Leakage, (Lin.Prove, Lin.Verify) is strong
NIWI for LLin[pp] with respect to D0,D1 (as described in Sect. 5.2).

6 Fully Homomorphic NIZK Proofs

We use the following ingredients for our FH NIZK construction:

– Randomizable commitment scheme as per Definition 9, which is additively
homomorphic and equivocable, denoted by

(C.Setup,C.Commit,C.Rand)
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– Malleable NIWI proof system for Lcom[pp] with respect to transformation
Bit.Transform, denoted by

(Bit.Prove,Bit.Verify,Bit.Maul) where

Lcom[pp] = {c | ∃ (b, o) s.t. c = C.Commit(pp, b; o) ∧ b ∈ {0, 1}}
for pp ← C.Setup(1λ), and transformation Bit.T = (Bit.Transform,
Bit.WitTrans) is given by Bit.Transform(pp, c, o′) = C.Rand(pp, c; o′) and
Bit.WitTrans(pp, c, (b, o), o′) = fcom(pp, o, o′) where o′ is fresh randomness.

– Malleable NIWI proof system for LN[pp] with respect to transformation
N.Transform, denoted by

(N.Prove,N.Verify,N.Maul) where

LN[pp] =
{{ci}i∈[3] | ∃ {bi, oi}i∈[3] s.t. ci = C.Commit(bi; oi) ∧

(b3 = b1 ∧̄ b2) ∧ {bi ∈ {0, 1}}i∈[3]

}

for pp ← C.Setup(1λ), and the transformation: N.T = (N.Transform,
N.WitTrans) is given by N.Transform(pp, {ci}i∈[3], {o′

i}i∈[3]) = {c′
i}i∈[3]

and N.WitTrans(pp, {ci, bi, oi, o
′
i}i∈[3]) = fcom(pp, o, o′) where c′

i =
C.Rand(pp, ci, o

′
i) for fresh randomness (o′

1, o
′
2, o

′
3) and where o = o1 + o2 +

2o3 − 2 and o′ = o′
1 + o′

2 + 2o′
3 − 2.

We now describe our construction:

NIZK.Setup(1k): Output pp ← C.Setup(1λ).
NIZK.Prove(CRS, (C, out),w): Let C : {0, 1}t → {0, 1} consist of n wires

(including input wires and excluding output wire), one output wire and
m NAND gates. Let w1, . . . , wn, wout be the boolean values induced by
w ∈ {0, 1}t on all (input and internal) the wires of circuit C and where
wout is the output wire (wout = out).
1. For wire i, commit to the value wi as follows: Choose oi at random

and compute
ci = C.Commit(wi; oi).

For the output wire wout, use canonical commitments so that cout = 1
if out = 1 and cout = 0 if out = 0.

2. For each wire i (except output), generate a proof that commitment
ci commits to a bit. Namely, compute

πi
bit = Bit.Prove(pp, ci, oi)

where oi is the opening for commitment ci.
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3. For each NAND gate j, let j1, j2 be the input wires and j3 be the
output wire with corresponding commitments cji

for i ∈ [3]. Compute

πj
gate = N.Prove(pp, {cji

}i∈[3], {oji
}i∈[3]).

Finally output

Π =
[
{ci}n

i=1, {πi
bit}n

i=1, {πj
gate}m

j=1, cout
]

NIZK.Verify(CRS, (C, out),Π): Parse Π =[
{ci}n

i=1, {πi
bit}n

i=1, {πj
gate}m

j=1, cout
]
.

1. For each wire i ∈ [n], check whether Bit.Verify(pp, ci, π
i
bit) = 1. Else

output 0.
2. For each NAND gate j ∈ [m], with input wires j1, j2 and output wire

j3 and with corresponding commitments cji
, for i = 1, 2, 3. Check

that N.Verify(CRS, {cji
}3i=1, π

j
gate) = 1. Else output 0.

3. Finally check that πout = 1 for out = 1 and πout = 0 for out = 0.
NIZK.Rand(CRS, (C, out),Π)): Parse Π =

[{ci}n
i=1, {πi

bit}n
i=1, {πj

gate}m
j=1, cout].

1. For each wire i, choose o′
i at random and compute c′

i =
C.Rand(pp, ci, o

′
i).

2. Compute πi′
bit ← Bit.Maul

(
pp, ci, o

′
i, π

i
bit

)
.

3. For each NAND gate j, with input wires j1, j2 and output wire j3,
compute πj′

gate ← N.Maul(pp, {{cji
, o′

ji
}i∈[3], π

j
gate).

4. Finally keep the output proof cout same as before. Output

Π ′ =
[
{c′

i}n
i=1, {πi′

bit}n
i=1, {πj′

gate}m
j=1, cout

]

NIZK.Eval(CRS, {(Ci, bi,Πi)}k
i=1, C

′):
1. Compute (C, out∗) = Compose({(Ci, bi,Πi)}k

i=1, C
′).

2. Let πi
out ∈ Π ′

i be the gate consistency proof for the output gate outi

of circuit Ci for i ∈ [k]. Compute Π̂i as the proof Π ′
i without the

proof πi
out, namely Π̂i = Π ′

i \ πi
out.

3. Compute a proof for C ′ with witness (b1, . . . , bk) by computing: Π∗ ←
NIZK.Prove(CRS, (C ′, out∗), (b1, . . . , bk)) where out∗ = C ′(b1, . . . , bk).

4. For each output gate outi for Ci, i ∈ [k], let i1, i2 be the input wires
to the gate and i3 be the output wire (with value bi).
Let o′

i3
be the randomness used in step 2 such that c′

i3
∈

Π ′ and c′
i3

= C.Commit(pp, bi, o
′
i3

). Compute (πi
out)

′ =
N.Maul(pp, {{c′

ji
, o′

ji
}i∈[3], π

i
out) where o′

ik
= 0 for k ∈ [2].

5. Let Π =
[
Π̂1, . . . , Π̂k,Π∗, (π1

out)
′, . . . , (πk

out)
′]. Compute Π ′ ←

NIZK.Rand(CRS, (C, out∗),Π). Finally output (C, out∗,Π ′).
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Theorem 3. Assuming DLIN, the construction as described above is a fully
homomorphic NIZK proof system for LU as per Definition 7.

We refer the reader to the full version [4] for a proof of Theorem 3.

7 Fully Homomorphic NIWI Proofs

Our first ingredient for FH NIWI is (C.Setup,C.Commit,C.Rand), a RaHE-
commitment scheme with the additional functionalities (OutParam,ValidParam,
RParam,ChangeCom,ValidInter, InterParam) as defined in Sect. 5.1.
Our second ingredient is a malleable proof system (TC.Prove,TC.Verify,
TC.Maul) for the language LTC defined as follows:

LTC =
{

(c1, c2, pp1, pp2) | ∃ (b, pp∗, o1, o2) s.t.

{ci = C.Commit(ppi, b; oi)}i∈[2] ∧ (
ValidInter(pp1, pp2, pp∗) = 1

)}

Recall that pp∗ is the intermediate parameter between pp1, pp2. It is a hard-
to-compute function of the parameters which we require as an additional witness
for the language.

The malleability is with respect to the transformation TC.T =
(TC.Transform,TC.WitTrans). TC.Transform takes as input an instance
(c1, c2, pp1, pp2), randomness (r1pp, r

2
pp, o1, o2) and outputs transformed instance

(c′
1, c

′
2, pp

′
1, pp

′
2).

In detail, TC.Transform on input (c1, c2, pp1, pp2), does the following:

– Randomize the parameters as follows: For all i ∈ [2], compute pp′
i =

RParam(ppi; ri
pp).

– Change the commitment ci to be with respect to the new parameters pp′
i, by

computing zi = ChangeCom(ppi, ci; ri
pp) for all i ∈ [2].

– Randomize the commitments as follows: For all i ∈ [2], compute c′
i =

C.Rand(pp′
i, zi; oi). Output (c′

1, c
′
2, pp

′
1, pp

′
2).

Correspondingly,

TC.WitTrans
(
(c1, c2, pp1, pp2), (b, pp∗, o1, o2), (r

1
pp, r

2
pp, o

′
1, o

′
2)

)
= (b, p̂p, r1, r2)

where p̂p = InterParam(pp1, pp2, r1pp) and where for every i ∈ [2], ri =
fcom(oi, o

′
i). Recall that InterParam and fcom are as per the definition of the

RaHE-commitment scheme described in Sect. 5.1.
Let us look at the soundness and secrecy requirements from this proof system.

We weaken the soundness requirement of our NIWI proof system and require a
stronger secrecy property from the proof system. We now describe both of these
properties:
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1. Weak Soundness: Rather than requiring soundness to hold for every
(c1, c2, pp1, pp2) ∈ LTC, we only require soundness to hold for all instances
for which pp1, pp2 ∈ C.Setup(1λ) (when both parameters are binding).
Note that our construction for NIWI proof of LTC achieves standard sound-
ness, however for the FH NIWI construction it suffices for the proof system
to have weak soundness.

2. Strong Secrecy: We require that the distributions DBind and DHide (described
below) are computationally indistinguishable.

– DBind(1λ) : Choose rpp at random and compute pp = C.Setup(1λ; rpp).
Compute pp′ = OutParam(pp). For every d ∈ {0, 1}, do the following:

• Choose od, o
′′
d at random and compute cd = C.Commit(pp, d ; od),

c′
d = C.Commit(pp′, d; o′′

d).
• Compute Πd

TC ← TC.Prove((cd, c′
d, pp, pp

′), (d, pp, od, o
′′
d)).3

• Compute o′
d = C.Equivocate(pp′, rpp, c′

d, o
′′
d , 1 − d).

Output
(
pp, pp′, c0, c′

0, c1, c
′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π1

TC

)
.

– DHide(1λ) : Choose rpp at random and compute pp = C.Setup′(1λ; rpp).
Compute pp′ = OutParam(pp). For every d ∈ {0, 1}, do the following:

• Choose o′
d, o

′′
d at random. Compute cd = C.Commit(pp, 1−d ; o′′

d) and
compute c′

d = C.Commit(pp′, 1 − d; o′
d).

• Compute Πd
TC ← TC.Prove((cd, c′

d, pp, pp
′), (1 − d, pp, o′′

d , o′
d)).

• Compute od = C.Equivocate(pp, rpp, cd, o
′′
d , d).

Output
(
pp, pp′, c0, c′

0, c1, c
′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π1

TC

)
.

Recall that

LU = {(C, out) | ∃ w such that C(w) = out}.

We will use the following ingredients in our FH NIWI construction:

– A RaHE-commitment scheme (C.Setup,C.Commit,C.Rand) with the
additional functionalities (OutParam,ValidParam,RParam,ChangeCom,
ValidInter, InterParam) as defined in Sect. 5.1.

– Malleable proof system for LTC with weak soundness and strong secrecy,
with respect to the transformation TC.T = (TC.Transform,TC.WitTrans) as
described before, denoted by (TC.Prove,TC.Verify,TC.Maul).

– Malleable NIWI proof system for Lcom[pp] with respect to the transformation
Bit.GenT = (Bit.GenTrans,Bit.GWitTrans).

– Malleable NIWI proof system for LN[pp] with respect to the transformation
N.GenT = (N.GenTrans,N.GWitTrans).

Theorem 4. Assuming the existence of the ingredients as described above, the
following construction ΠFHNIWI is a Fully Homomorphic NIWI proof system as
per Definition 8.
3 Recall that for parameters pp, pp′ such that pp′ = OutParam(pp), pp itself is an

intermediate parameter between pp, pp′.
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We instantiate the first, third and fourth ingredients from DLIN and instan-
tiate the second ingredient from DLIN with Leakage. This gives the following
corollary:

Corollary 1. Assuming DLIN with Leakage, the following construction ΠFHNIWI

is a Fully Homomorphic NIWI proof system as per Definition 8.

We refer the reader to the full version [4] for a proof of Theorem 4 and
instantiation of ingredients.
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