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Abstract. The complexity of collision-resistant hash functions has been
long studied in the theory of cryptography. While we often think about
them as a Minicrypt primitive, black-box separations demonstrate that
constructions from one-way functions are unlikely. Indeed, theoretical
constructions of collision-resistant hash functions are based on rather
structured assumptions.

We make two contributions to this study:
1. A New Separation: We show that collision-resistant hashing does

not imply hard problems in the class Statistical Zero Knowledge in
a black-box way.

2. New Proofs: We show new proofs for the results of Simon, ruling out
black-box reductions of collision-resistant hashing to one-way per-
mutations, and of Asharov and Segev, ruling out black-box reduc-
tions to indistinguishability obfuscation. The new proofs are quite
different from the previous ones and are based on simple coupling
arguments.

1 Introduction

Collision-resistant hash functions (CRHFs) are perhaps one of the most stud-
ied and widely used cryptographic primitives. Their applications range from
basic ones like “hash-and-sign” [Dam87,Mer89] and statistically hiding commit-
ments [DPP93,HM96] to more advanced ones like verifiable delegation of data
and computation [Kil92,BEG+94] and hardness results in complexity theory
[MP91,KNY17].

Constructions. Collision resistance is trivially satisfied by random oracles and
in common practice, to achieve it, we heuristically rely on unstructured hash
functions like SHA. Accordingly, we often think of CRHFs as a creature of
Minicrypt, the realm of symmetric key cryptography [Imp95]. However, when
considering theoretical constructions with formal reductions, collision resistance
is only known based on problems with some algebraic structure, like Factor-
ing, Discrete Log, and different short vector and bounded distance decoding
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problems (in lattices or in binary codes) [Dam87,GGH96,PR06,LM06,AHI+17,
YZW+17,BLVW19]. Generic constructions are known from claw-free permuta-
tions [Dam87,Rus95], homomorphic primitives [OK91,IKO05], and private infor-
mation retrieval [IKO05], which likewise are only known from similar structured
assumptions. An exception is a recent work by Holmgren and Lombardi [HL18]
which constructs CRHFs from a new assumption called one-way product func-
tions. These are functions where efficient adversaries succeed in inverting two
random images with probability at most 2−n−ω(log n). Indeed, this assumption
does not explicitly require any sort algebraic structure.

Understanding the Complexity of CRHFs. In light of the above, it is
natural to study what are the minimal assumptions under which CRHFs can
be constructed, and whether they require any sort of special structure. Here
Simon [Sim98] provided an explanation for our failure to base CRHFs on basic
Minicrypt primitives like one-way functions or one-way permutations. He showed
that there are no black-box reductions of CRHFs to these primitives. In fact,
Asharov and Segev [AS15] demonstrated that the difficulty in constructing
CRHFs from general assumptions runs far deeper. They showed that CRHFs
cannot be black-box reduced even to indistinguishability obfuscation (and one-
way permutations), and accordingly not to anyone of the many primitives it
implies, like public key encryption, oblivious transfer, or functional encryption.

CRHFs and SZK. An aspect common to many CRHF constructions is that
they rely on assumptions that imply hardness in the class SZK. Introduced by
Goldwasser, Micali and Rackoff [GMR85], SZK is the class of promise prob-
lems with statistical zero-knowledge proofs. Indeed, SZK hardness is known
to follow from various algebraic problems that lead to CRHFs, such as Dis-
crete Logarithms [GK93], Quadratic Residuosity [GMR85], and Lattice Prob-
lems [GG98,MV03], as well as from generic primitives that lead to CRHFs such
as homomorphic encryption [BL13], lossy functions [PVW08], and computational
private information retrieval [LV16].

The formal relation between SZK and CRHFs is still not well understood. As
possible evidence that SZK hardness may be sufficient to obtain collision resis-
tance, Komargodski and Yogev [KY18] show that average-case hardness in SZK
implies a relaxations of CRHFs known as distributional CRHFs. Applebaum and
Raykov [AR16] show that CRHFs are implied by average-case hardness in a sub-
class of SZK of problems that have a perfect randomized encoding. Berman et
al. [BDRV18] showed that average-case hardness of a variant of entropy approx-
imation, a complete problem for the class of Non-Interactive SZK (NISZK), suf-
fices to construct yet a different relaxation known as multi-collision resistance.

Is hardness in SZK necessary for CRHFs? Our perception of CRHFs as a
Minicrypt primitive, as well as the result by Holmgren and Lombardi mentioned
above, suggest that this should not be the case. However, we do not know how
to prove this. Meaningfully formalizing a statement of the form “CRHFs do
not require SZK hardness” requires care—it is commonly believed that SZK
does contain hard problems, and if this is the case then formally, CRHFs (or
any other assumption for that matter) imply hardness in SZK. To capture this
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statement we again resort to the methodology of black-box separations; that is,
we aim to prove that hard problems in SZK cannot be obtained from CRHFs in
a black-box way.

Recent work by Bitansky, Degwekar, and Vaikuntanathan [BDV17] showed
that a host of primitives, essentially, all primitives known to follow from IO, do
not lead to hard problems in SZK through black-box reductions. Their separa-
tion, however, does not imply a separation from CRHFs; indeed, CRHFs are not
known to follow from IO, and in fact according to Asharov and Segev [AS15],
cannot in a black-box way.

1.1 This Work

In this work, we close the above gap, proving that CRHFs do not imply hardness
in SZK through black-box reductions.

Theorem 1.1. There are no fully black-box reductions of any (even worst-case)
hard problem in SZK to CRHFs.

Here by fully black box we mean reductions where both the construction and
the security proof are black box in the CRHF and the attacker, respectively. This
is the common type of reductions used in cryptography. We refer the reader to
the technical overview in Sect. 2 for more details.

New Proofs of Simon and Asharov and Segev. Our second contribution is
new proofs for the results of Simon [Sim98], ruling out fully black-box reductions
of CRHFs to OWPs,1 and of Asharov and Segev [AS15], ruling out black-box
reductions of CRHFs to OWPs and IO. The new proofs draw from ideas used
in [BDV17]. They are based mostly on simple coupling arguments and are quite
different from the original proofs.

1.2 More Related Work on Black-Box Separations

Following the seminal work of Impagliazzo and Rudich [IR89], black-box separa-
tions in cryptography have been thoroughly studied (see, e.g., [Rud88, KST99,
GKM+00, GT00, GMR01, BT03, RTV04, HR04, GGKT05, Pas06, GMM07,
BM09, HH09, BKSY11, DLMM11, KSS11, GKLM12, DHT12, Fis12, BBF13,
Pas13, BB15, GHMM18]). Most of this study has been devoted to establishing
separations between different cryptographic primitives and some of it to putting
limitations on basing cryptographic primitives on NP-hardness [GG98,AGGM06,
MX10,BL13,BB15,LV16].

Perhaps most relevant to our works are the works of Simon [Sim98], Asharov
and Segev [AS15] and [BDV17] mentioned above, as well as the work by Haitner
et al. [HHRS15] who gave an alternative proof for the Simon result (and extended
it to the case of statistically-hiding commitments of low round complexity).

1 Simon also ruled out a stronger type of reductions known as semi-black-box reduc-
tions [RTV04]. We only rule out the notion of fully black-box reductions described
above.
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We also note that [KNY18] claim to show that distributional CRHFs cannot
be reduced to multi-collision resistant hash functions in a black box way, which
given the black-box construction of distributional CRHFs from SZK hardness
[KY18], would imply that SZK hardness cannot be obtained from multi-collision
resistance in a black box way. However, for the time being there seems to be a
gap in the proof of this claim [Per].

2 Techniques

We now give an overview of the techniques behind our results.

Ruling Out Black-Box Reductions. Most constructions in cryptography are
fully black-box [RTV04], in the sense that both the construction and (security)
reduction are black box. In a bit more detail, a fully black-box construction of a
primitive P ′ from another primitive P consists of two algorithms: a construction
C and a reduction R. The construction CP implements P ′ for any valid oracle
P. The reduction RA,P , given oracle-access to any adversary A that breaks CP ,
breaks the underlying P. Hence, breaking the instantiation CP of P ′ is at least
as hard as breaking P itself.

A common methodology to rule out fully black black-box constructions of a
primitive P ′ from primitive P (see e.g., [Sim98,HR04,HHRS15]), is to demon-
strate oracles (Γ,A) such that:

– relative to Γ , there exists a construction CΓ realizing P that is secure in the
presence of A,

– but any construction C′Γ realizing P ′ can be broken in the presence of A.

Indeed, if such oracles (Γ,A) exist, then no efficient reduction will be able to use
(as a black-box) the attacker A against P ′ to break P (as the construction of P
is secure in the presence of A).

We now move on to explain how each of our results is shown in this frame-
work.

2.1 Collision Resistance When SZK Is Easy

Our starting point is the work by [BDV17] who showed oracles relative to which
Indistinguishability Obfuscation (IO) and One-Way Permutations (OWPs) exist
and yet SZK is easy. We next recall their approach and explain why it falls short
of separating CRHFs from SZK. We then explain the approach that we take in
order to bridge this gap.

Black-box Constructions of SZK Problems. The [BDV17] modeling of
problems in SZK follows the characterization of SZK by Sahai and Vadhan [SV03]
through its complete Statistical Difference Problem (SDP). SDP is a promise
problem, where given circuit samplers (C0, C1), the task is to determine if the
statistical distance between their respective output distributions is large (>2/3)
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or small (<1/3). Accordingly, we can model a black-box construction of a sta-
tistical distance problem SDPΨ , relative to an oracle Ψ , defined by

SDPΨ
Y =

{
(C0, C1) : SD(CΨ

0 , CΨ
1 ) ≥ 2

3

}
,

SDPΨ
N =

{
(C0, C1) : SD(CΨ

0 , CΨ
1 ) ≤ 1

3

}
.

Jumping ahead, our eventual goal will be construct an oracle Γ = (Ψ,A) such
that SDPΨ is easy in the presence of A, and yet Ψ can be used to securely realize
a CRHF, in the presence of A. Here we naturally choose Ψ to be a random
shrinking function f , and for the SZK breaker A adopt the oracle SDOf from
[BDV17]. SDOf is a randomized oracle that takes as input a pair of oracle-aided
circuits (C(·)

0 , C
(·)
1 ), computes the statistical distance s = SD(Cf

0 , Cf
1 ), samples

a random value t ← (1/3, 2/3), and outputs:

SDOf (C0, C1; t) :=

{
N If s < t

Y If s ≥ t
.

This oracle is clearly sufficient to break (or rather, decide) SDPf . The challenge
is in showing that CRHFs exist in the presence of the oracle SDOf , which may
make exponentially many queries to f when computing the statistical distance.

One-Way Permutations in the Presence of SDO. Toward proving the
existence of CRHFs in the presence of SDO, we first recall the argument from
[BDV17] as to why one-way permutations exist relative to SDO, and then explain
why it falls short of establishing the existence of CRHFs.

Consider the oracle Γ = (f,SDOf ), where f is a random permutation. Show-
ing that f(x) is hard to invert for an adversary Af,SDOf

(f(x)) with access to f
and SDOf relies on two key observations:

1. Inverting f requires detecting random local changes. Indeed, imagine an alter-
native experiment where we replace f with a slightly perturbed function
fx′→f(x), which diverts a random x′ to f(x). In this experiment, the attacker
would not be able to distinguish x from x′ and would output them with the
exact same probability. Note, however, that if the attacker can invert f in
the real experiment (namely, output x) with noticeable probability, then this
means that the probabilities of outputting x and x′ in the original experiment
must noticeably differ. Indeed, in the original experiment x′ is independent of
the attacker’s view. It is not hard to show that without access to the oracle
SDOf , such perturbations cannot be detected (this can be shown for example
via a coupling argument, as we explain in more detail in Sect. 2.2).

2. The SDOf oracle itself, and thus Af,SDOf

, can be made oblivious to random,
local changes. Hence, even given access to the SDOf oracle, the adversary
cannot invert with non-trivial probability. This is shown based on the idea
of “smoothening”: any two circuits (Cf

0 , Cf
1 ) can be transformed into new
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circuits that do not make any specific query x with high probability. This
allows arguing that even if we perturb f at a given point, their statistical
distance s does not change by much. In particular, if s is moderately far
from the random threshold t, chosen by SDO, s′ the statistical distance of the
perturbed circuits remains on the same side of t, which means that SDO’s
answer will remain invariant. Indeed, such “farness” holds with overwhelming
probability over SDO’s choice of t.

What About Collision Resistance? The above approach is not sufficient
to argue that collisions are hard to find (when f is replaced with a shrinking
function). The reason is that collisions are “non-local” — they are abundant,
and it is impossible to eliminate all of them in a shrinking function. In fact, as
we shall show later on, a similar argument to the one above can be made to work
relative to an oracle that trivially breaks CRHFs (this leads to our new proofs
of the separations of CRHFs from OWPs and IO [Sim98,AS15]). Accordingly, a
different approach is required.

Our Approach: Understanding What Statistical Difference Oracles
Reveal. At high level, to show that collisions in f are hard to find, we would
like to argue that queries to SDOf leak no information about any f(x), except
for inputs x, which the adversary had already explicitly revealed by querying
f itself. This would essentially reduce the argument to the standard argument
showing that random oracles are collision resistant—each new query collides
with any previous query with probability at most 2−m, where m is f ’s output
length. Overall, an attacker making q queries cannot find a collision except with
negligible probability q22−m.

However, showing that SDOf reveals nothing is too good to be true. Rather,
we show that this is the case with overwhelming probability. That is, with over-
whelming probability on any partial execution, the value f(x) of any x not
explicitly queried within the execution is uniformly random. Roughly speak-
ing, the property that such partial executions should satisfy is that all queries to
SDOf satisfy smoothness and farness conditions similar to those discussed above.
The essential observation is that when such conditions hold the answer of SDOf

remains invariant not only to a random local change, but to any local change.
In particular, a partial execution transcript satisfying these conditions would
remain invariant if we change the value f(x) for any x not explicitly queried to
any particular y �= f(x).

A Note on Leakage from Random Oracles. Our approach is in part inspired
by the works of Unruh [Unr07] and Coretti et al. [CDGS18] on random oracles
with auxiliary information. They show that revealing short auxiliary information
about f (so called leakage), essentially has the effect of fixing f on a small set of
values, while the rest of f remains hidden. This does not suffice for us, because
it does not restrict in any way which values are fixed. We need to ensure that
all values not explicitly queried remain hidden even under the leakage from the
oracle SDO. (Our argument is restricted though to the specific oracle SDO and
does not say anything about arbitrary leakage.)
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2.2 Proving Simon and Asharov-Segev: A Coupling-Based
Approach

Next, we sketch the main ideas underlying the new proofs of Simon’s result
that OWPs do not imply CRHFs through fully black-box constructions, and
the extended result by Asharov and Segev, which consider not only OWPs, but
also IO. In this overview, we focus on the simpler result by Simon. We refer the
reader to the full version of this paper for the extension to IO.

Simon’s Collision Finding Oracle. The oracle Γ = (f,Collf ) introduced
by Simon consists of a random permutation f and a collision finding oracle
Collf . The oracle Collf given a circuit Cf returns a random w along with a
random element that collides with w; namely a random w′ in the preimage of
y = Cf (w). In particular, if the circuit C is compressing, then the oracle will
output a collision w �= w′ with high probability, meaning that CRHFs cannot
exist in its presence.

Our Proof. To prove that Coll does not help inverting f , Simon used careful
conditional probability arguments, whereas Haitner et al. [HHRS15], and then
Asharov and Segev [AS15] adding also IO to the picture, relied on a compression
and reconstruction argument, originally due to Gennaro and Trevisan [GT00].
Our proof is inspired by the [BDV17] proof that the statistical distance oracle
SDO does not help inverting permutations (discussed above). At high level, we
would like to argue that the collision-finding oracle Coll, like the oracle SDO,
is oblivious to random local changes. Following the intuition outlined for SDO,
an attacker that fails to detect random local changes will also fail in inverting
random permutations.

Punctured Collision Finders. To fulfil this plan, we consider a punctured
version PColl of the oracle Coll, where the function f can be erased at a given
set of values S. Roughly speaking, PColl will allow us to argue that Coll is not
particularly sensitive to the value f(x) of almost any x. To define PColl, we first
give a more concrete description of Coll and then explain how we change it.

The oracle Coll, for any circuit C : {0, 1}k → {0, 1}∗, assigns a random input
w ∈ {0, 1}k and a random permutation π of {0, 1}k � [2k]. It then returns
(w,w′), where w′ is the first among π(1), π(2), . . . such that Cf (w) = Cf (w′).
The oracle PCollfS is parameterized by a set of punctured inputs S ⊆ {0, 1}n. Like
Coll, for any C, it samples a random input w and a permutation π. Differently
from Coll, if Cf (w) queries any x ∈ S, the oracle returns ⊥. Else, it iterates
over the inputs {0, 1}k according to π and finds the first value w′ such that (1)
Cf (w′) makes no queries to any x ∈ S, and (2) Cf (w) = Cf (w′). The oracle
outputs the collision (w,w′).

The PColl oracle satisfies the following essential property. Let τ be a tran-
script generated by the attacker Af,Collf and assume that for all Coll answers
(w,w′) in τ , neither Cf (w) nor Cf (w′) query any x ∈ S. Then Af,PCollfS gener-
ates the exact same transcript τ . Indeed, this follows directly from the definition
of the punctured oracle PColl.
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Proving Hardness of Inversion by Smoothening and Coupling. Equipped
with the punctured oracle, we now explain how it can be used argue the hardness
of inversion. We first consider a smoothening process analogous to the one consid-
ered in the statistical distance separation discussed above. That is, we make sure
that (with overwhelming probability) all queries C made to Coll are smooth in the
sense that Cf (w) does not query any specific input with high probability when
w is chosen at random. We then make a few small perturbations to our oracles,
and argue that they are undetectable by a coupling argument. Finally, we deduce
univertability.

Step 1: Let x be the preimage that Af,Collf (f(x)) aims to find. We first con-
sider, instead of Coll, the punctured oracle PCollf{x}. Due to smoothness, almost

every transcript produced by Af,Collf (f(x)) is such that x is not queried by
Cf (w), Cf (w′) for any query C and answer (w,w′) returned by Coll. Any tran-
script satisfying the latter can be coupled with an identical transcript gener-
ated by Af,PCollf{x}(f(x)), and deduce that the probability of inversion (out-
putting x) in this new experiment E1 is close to the probability in the original
experiment E0.

Step 2: We perturb the oracle again. We sample a random x′ ← {0, 1}n and
make the following two changes: (1) we change the oracle f to fx′→f(x), which
diverts x′ to f(x), and (2) we puncture at x′, namely, we consider PCollf{x,x′}.

We next observe that in this new experiment E2, x and x′ are symmetric.
Accordingly, x and x′ are output with the same probability in the experiment
E2. To complete the proof, we apply a coupling argument to show that x and
x′ are output with almost the same probability also in the previous experiment
E1. This is enough as in E1 the view of the attacker is independent of x′, which
will allows us to deduce that the probability of inversion is negligible overall.

Let us describe the coupling argument more explicitly. Both experiments E1

and E2 are determined by the choice of f, x, x′ and randomness R = {w, π} for
Coll. We can look at the events X1 = X1(f, x, x′, R) and X2 = X2(f, x, x′, R),
where X1 occurs when the attacker outputs x in the experiment E1 and X2

occurs when it outputs x in E2. Similarly, we can look at X ′
1 and X ′

2, which
describe the events that x′ is output in each of the experiments. Then by cou-
pling, we know that∣∣∣Pr [X1] − Pr [X2]

∣∣∣ ≤ Pr
f,x,x′,R

[IX1 �= IX2 ] ,

where IX1 , IX2 are the corresponding indicators. The same holds for X ′
1, X ′

2.
Thus, we can bound:
∣
∣
∣Pr [X1] − Pr

[

X ′
1

]
∣
∣
∣ ≤

∣
∣
∣Pr [X1] − Pr [X2]

∣
∣
∣ +

∣
∣
∣Pr [X2] − Pr

[

X ′
2

]
∣
∣
∣ +

∣
∣
∣Pr

[

X ′
1

] − Pr
[

X ′
2

]
∣
∣
∣

≤ Pr
f,x,x′,R

[IX1 �= IX2 ] + 0 + Pr
f,x,x′,R

[

IX′
1

�= IX′
2

]

.

It is left to see that when fixing f, x,R the outputs in the two experiments E1, E2

(and thus also X1,X2 and X ′
1,X

′
2) are identical as long as x′ does not coincide
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with any of the queries to f , nor with any of the queries induced by any PColl{x}
answer (w,w′). Since the number of such queries is bounded and x′ is chosen
independently at random, this will almost surely be the case.

Organization

In Sect. 3, we provide relevant preliminaries. In Sect. 4, we prove that there are
no fully black-box reductions of SZK hardness to CRHFs. In Sect. 5, we reprove
Simon’s result that there are no fully black-box reductions of CRHFs to OWPs.
The extension of this result to IO can be found in the full version of this paper.

3 Preliminaries

In this section, we introduce the basic definitions and notation used throughout
the paper.

3.1 Conventions

For a distribution D, we denote the process of sampling from D by x ← D.
A function negl : N → R

+ is negligible if for every constant c, there exists a
constant nc such that for all n > nc negl(n) < n−c.

Randomized Algorithms. As usual, for a random algorithm A, we denote by
A(x) the corresponding output distribution. When we want to be explicit about
the algorithm using randomness r, we shall denote the corresponding output by
A(x; r). We refer to uniform probabilistic polynomial-time algorithms as PPT
algorithms.

Oracles. We consider oracle-aided algorithms (or circuits) that make repeated
calls to an oracle Γ . Throughout, we will consider deterministic oracles Γ that are
a-priori sampled from a distribution Γ on oracles. More generally, we consider
infinite oracle ensembles Γ = {Γn}n∈N

, one distribution Γn for each security
parameter n ∈ N (each defined over a finite support). For example, we may
consider an ensemble f = {fn} where each fn : {0, 1}n → {0, 1}n is a random
function. For such an ensemble Γ and an oracle aided algorithm (or circuit)
A with finite running time, we will often abuse notation and denote by AΓ (x)
and execution of A on input x where each of (finite number of) oracle calls
that A makes is associated with a security parameter n and is answered by the
corresponding oracle Γn. When we write AΓ

1 , . . . ,AΓ
k for k algorithms, we mean

that they all access the same realization of Γ .

3.2 Coupling and Statistical Distance

Definition 3.1 (Coupling). Given two random variables X,Y over X ,Y, a
coupling of X,Y is defined to be any distribution PX′Y ′ on X × Y such that, the
marginals of PX′Y ′ on X and Y are the distributions X, Y respectively.

Denote by PXY the set of all couplings of X,Y .
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Lemma 3.2. Given any two distributions X,Y supported on X ,

SD(X,Y ) = inf
PX′Y ′ ∈PXY

Pr
(x,y)←PX′Y ′

[x �= y] .

Furthermore, for distributions over a discrete domain X the infimum
is attained: that is, there exists a coupling PXY such that SD(X,Y ) =
Pr(x,y)←PXY

[x �= y].

The lemma allows us to bound the statistical distance between two random
variables (hybrid experiments in our case) by setting up a coupling between two
experiments and bounding the probability of them giving a different outcome.
Looking ahead, in Lemma 5.6, we describe an explicit coupling for the Simon’s
collision finder oracle, of the form above that allows us to bound the statistical
distance between hybrids.

4 Separating SZK and CRHFs

4.1 Fully Black-Box Constructions of SZK Problems

The class of problems with Statistical Zero Knowledge Proofs (SZK)
[GMR85,Vad99] can be characterized by complete promise problems [SV03],
particularly statistical difference, and the transformation is black-box. In order
to consider black-box constructions of hard problems in SZK, we start by defining
statistical difference problem relative to oracles. This modelling follows [BDV17].

In the following definition, for an oracle-aided (sampler) circuit C(·) with
n-bit input and an oracle Ψ , we denote by CΨ the output distribution CΨ (r)
where r ← {0, 1}n. We denote statistical distance by SD: for two distributions
X and Y SD(X,Y ) = 1

2

∑
x |Pr [X = x] − Pr [Y = x]|.

Definition 4.1 (Statistical Difference Problem relative to oracles). For
an oracle Ψ , the statistical difference promise problem relative to Ψ , denoted as
SDPΨ = (SDPΨ

Y , SDPΨ
N ), is given by

SDPΨ
Y =

{
(C0, C1) : SD(CΨ

0 ,CΨ
1 ) ≥ 2

3

}
,

SDPΨ
N =

{
(C0, C1) : SD(CΨ

0 ,CΨ
1 ) ≤ 1

3

}
.

Next, we define formally define fully black-box reductions from CRHFs to
SZK.

Definition 4.2 (Black-Box Construction of SZK-hard Problems). A
fully black-box construction of a hard statistical distance problems (SDP) from
CRHFs consists of

– Black-box construction: A collection of oracle-aided circuit pairs Π(·) ={
Π

(·)
n

}
n∈N

where Πn =
{

(C(·)
0 , C

(·)
1 ) ∈ {0, 1}n×2

}
such that each (C0, C1)

defines an SDP instance.
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– Black-box security proof: A probabilistic oracle-aided reduction R with
functions qR(·), εR(·) such that the following holds: Let f be any distribution
on functions. For any probabilistic oracle-aided A that decides Π in the worst-
case, namely, for all n ∈ N,

Pr
[
Af (C0, C1) = B for all

(C0, C1) ∈ Πn, B ∈ {Y,N}
such that (C0, C1) ∈ SDPf

B

]
= 1

the reduction breaks collision resistance of f , namely, for infinitely many
n ∈ N,

Pr
f

[
fn(x) = fn(x′) where (x, x′) ← Rf,A

]
≥ εR(n),

where R makes at most qR(n) queries to any of its oracles (A, f) where each
query to A consists of circuits C0, C1 each of which makes at most qR(n)
queries to f .

Next, we state the main result of this section: that any fully black-box con-
struction of SDP problems from CRHFs has to either run in time exponential
in the security parameter or suffer exponential security loss.

Theorem 4.3. For any fully black-box construction (Π,R, qR, εR) of SDPs from
CRHFs, the following holds:

1. (The reduction runs in exponential time.) qR(n) ≥ 2n/10. Or,
2. (Reduction succeeds with exponentially small probability.) εR(n) ≤ 2−n/10.

We prove the theorem by describing an oracle Γ = (f,A) such that, A solves
SDPf but f is a CRHF relative to Γ . The rest of the section is devoted to describ-
ing this oracle and proving the theorem. We start by describing the adversary
that breaks SDP: the statistical distance oracle.

4.2 The Statistical Distance Oracle

Next we describe the statistical distance oracle SDO from [BDV17] that solves
SZK instances.

Definition 4.4 (Oracle SDOΨ). The oracle consists of t = {tn}n∈N
where

tn : {0, 1}2n → ( 13 , 2
3 ) is a uniformly random function. Given n-bit descrip-

tions of oracle-aided circuits C0, C1 ∈ {0, 1}n, let t� = tn(C0, C1), and let
s = SD(CΨ

0 ,CΨ
1 ), return

SDOΨ (C0, C1; t) :=

{
0 If s < t�

1 If s ≥ t�

It is immediate to see that SDOΨ decides SDPΨ in the worst-case.
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Claim 4.4.1. For any oracle Ψ ,

SDPΨ ∈ PΨ,SDOΨ

.

Remark 4.5 (On the Oracle Used). Our separation is sensitive to the oracle used.
Subsequent to [BDV17,KY18] observed that the Simon’s collision finding oracle
Coll can be used to decide SZK. Clearly, no separation between CRHFs and
SZK holds relative to the Simon’s oracle. It turns out that Simon’s oracle can
be used to estimate a different measure of distance between distributions, the
Triangular Discrimination,2 which like statistical distance also gives an SZK-
complete promise problem [BDRV19]. Our separation does hold with a variant
of Coll and SDO that measures triangular discrimination, but does not output a
collision.

4.3 Insensitivity to Local Changes

Next, we recall the notions of smoothness and farness from [BDV17] that are
used to argue that the SDOΨ oracle is insensitive to local changes. Roughly
speaking farness says that the random threshold t used for a query (C0, C1) to
SDOΨ is “far” from the actual statistical distance. [BDV17] show that with high
probability over the choice of random threshold t, farness holds for all queries
(C0, C1) made to SDOΨ by any (relatively) efficient adversary. This intuitively
means that changing the distributions (CΨ

0 ,CΨ
1 ), on sets of small density, will

not change the oracle’s answer.

Definition 4.6 ((Ψ, t, ε)-Farness). Two oracle-aided circuits (C0, C1) ∈
{0, 1}n satisfy (Ψ, t, ε)-farness if the statistical difference s = SD(CΨ

0 ,CΨ
1 ) and

threshold t are ε-far:
|s − t| ≥ ε.

For an adversary A, we denote by farness(A, Ψ, ε) the event that every SDO query
(C0, C1) made by AΨ,SDOΨ

satisfies (Ψ, t, ε)-farness, where t = tn(C0, C1) is the
threshold sampled by SDO.

Lemma 4.7 ([BDV17](Claim 3.7)). Fix any Ψ and any oracle-aided adversary
A such that AΨ,SDOΨ

makes at most q queries to SDOΨ . Then

Pr
t

[farness(A, Ψ, ε)] ≥ 1 − 6qε,

where the probability is over the choice t of random thresholds by SDO.

We now turn to define the notion of smoothness. Roughly speaking we will
say that an oracle-aided circuit C is smooth with respect to some oracle Ψ if
any specific oracle query is only made with small probability. In particular, for a
pair of smooth circuits (C0, C1), local changes to the oracle Ψ should not change
significantly the statistical distance s = SD(CΨ

0 ,CΨ
1 ).

2 The triangular discrimination is defined as TD(X, Y ) = 1
2

∑

x
(Pr[X=x]−Pr[Y =x])2

(Pr[X=x]+Pr[Y =x])
.

This measure also lies in the interval [0, 1] and is a metric.
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Definition 4.8 ((Ψ, ε)-Smoothness). A circuit C(·) is (Ψ, ε)-smooth, if every
location x ∈ {0, 1}∗ is queried with probability at most ε. That is,

max
x

Pr
w

[
CΨ (w) queries Ψ at x

]
< ε.

For an adversary A, we denote by smooth(A, Ψ, ε) the event that in every SDO

query (C0, C1) made by AΨ,SDOΨ

both circuits are (Ψ, ε)-smooth.

Lemma 4.9 ([BDV17](Claim 3.9)). Let Ψ , Ψ ′ be oracles that differ on at most
c values in the domain. Let C0 and C1 be (Ψ, ε)-smooth. Let s = SD(CΨ

0 , CΨ
1 )

and s′ = SD(CΨ ′
0 , CΨ ′

1 ) then |s − s′| ≤ 2cε.

The above roughly means that (under the likely event that farness holds)
making smooth queries should not help the adversary detect local changes in the
oracle Ψ . [BDV17] show that we can always “smoothen” the adversary’s circuit
at the expense of making (a few) more queries to Ψ , which intuitively deems the
statistical difference oracle SDOΨ useless altogether for detecting local changes
in Ψ .

In what follows, a (q′, q)-query algorithm A makes at most q′ queries to the
oracle Ψ and q queries to SDOΨ such that for each query (C0, C1) to SDO, the
circuits C0, C1 themselves make at most q queries to Ψ on any input.

Lemma 4.10 (Smoothing Lemma for SDO [BDV17](Lemma 3.10)). For
any (q, q)-query algorithm A and β ∈ N, there exists a (q + 2βq2, q)-query algo-
rithm S such that for any input z ∈ {0, 1}� and oracles Ψ,SDOΨ :

1. SΨ,SDOΨ

(z) perfectly simulates the output of AΨ,SDOΨ

(z),
2. SΨ,SDOΨ

(z) only makes queries (C0, C1) where both C0, C1 are (Ψ, ε)-smooth
queries to SDOΨ with probability:

Pr
S

[smooth(S, Ψ, ε)] ≥ 1 − 2−εβ+log(2q2/ε),

over its own random coin tosses.

4.4 Collision Resistance in the Presence of SDO Oracle

In this section, we prove the oracle separation between collision resistant hash
functions and SZK.

Let Fn be the set of all functions from {0, 1}n to {0, 1}m(n) where m(n) < n
is a shrinking function. Let F = {Fn}n∈N

denote the family of these sets of
functions. Let T = {Tn}n∈N

where Tn denotes the set of threshold functions
t : {0, 1}n → (1/3, 2/3). 3

3 While we describe the threshold function as a real valued function, it can be safely
discretized because statistical distance for any pair of circuits C0, C1 : {0, 1}m →
{0, 1}�, takes values that are multiples of 2−(m+1). We omit the details here.
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Definition 4.11 (The Oracle f). The oracle f = {fn}n∈N
on input x ∈

{0, 1}n returns fn(x) where fn : {0, 1}n → {0, 1}m is a random function from
Fn.

The oracle we consider is Γ = (f,SDOf ). It is easy to see that all SDPf ∈
Pf,SDOf

. What remains to show is that f is still collision resistant in the presence
of the SDOf oracle. We do so next.

Theorem 4.12. Let A be a (q, q)query adversary for q = O(2m/10). Then,

Pr
[
fn(x) = fn(x′) where (x, x′) ← Af,SDOf

(1n)
]

≤ 2−m/10.

Proof. Fix oracle f−n = {fk}k �=n arbitrarily. Consider the (q + 2βq2, q)query
smooth version S, of A given by Lemma 4.10 for β = 2m/5 · m and ε = 2−m/5.
We assume w.l.o.g that S makes no repeated oracle queries and that whenever
S outputs a collision (x, x′), x is its last oracle query and x′ is a previous query
(both to the f oracle).

The first assumption is w.l.o.g because S may store a table of previously made
queries and answers. The second is w.l.o.g because S may halt once its f -queries
include a collision and output that collision; also, if one, or both, outputs x, x′

have not been queried, S can query it at the end (and if needed change the order
of the output so that x is queries last). The latter costs at most two additional
queries, and does not affect the smoothness of S.

Next, we define some notation about transcripts generated in the process.

Transcripts. A transcript π consists of all queries asked and answers received
by S to the oracle (f,SDOf ). Let xi denote the i-th query to the f -oracle. We
say that x �∈ π if the location x is not among the queries explicitly made in π.

The Underlying Joint Distribution. The proof infers properties of the joint
distribution (f, t, π) consisting of the oracle f , the SDO oracle’s random thresh-
olds t and the transcript generated by S. The distribution is generated as follows:
f ← F and t ← T and π ← Sf,SDOf;t

where SDOf ;t denotes running the SDO
oracle with random thresholds t. Denote this distribution by PFTΠ .

Note that given f, t, the transcript π is generated in a deterministic manner as
S is deterministic and the oracle’s behavior is completely specified. Furthermore,
we also consider partial transcripts obtained by running S and stopping after i
queries. This transcript is denoted by π<i, xi: that is the π<i consists of queries
and responses received and xi is the next query to the oracle f . Note that xi

is a deterministic function of π<i. Given the distribution PFTΠ , the conditional
distributions PFT |Π=π or PFT |Π=π<i

are well defined: these consist of uniform
distribution on pairs (f, t) that when run using S result in the transcript being
π (or π<i).

The Good Event. We define the concept of Good transcripts. Roughly speak-
ing, these are transcripts π that satisfy sufficient smoothness and farness so to
guarantee that the value f(x) at any x /∈ π is completely hidden.
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Definition 4.13 (Good). A tuple (f, t, π, x, ε) is good, denoted by good(f, t,
π, x, ε) if the following hold:

1. π = Sfx→⊥,SDOfx→⊥;t
(1n), where fx→⊥ is the function equal to f everywhere

except at x where it takes the value ⊥.
2. (x is not explicitly queried:) x �∈ π.
3. (Transcript is smooth:) Every SDO-query made by Sfx→⊥,SDOfx→⊥;t

(1n) is
(fx→⊥, 2ε)-smooth. Denote this event by smooth(fx→⊥, t, π, 2ε).

4. (Transcript is far:) Every SDO-query (C0, C1) made by Sfx→⊥,SDOfx→⊥;t
(1n),

satisfies (fx→⊥, t, 12ε)-farness where t = t(C0, C1). Denote this by
far(f, t, π, 12ε).

The key reason for using fx→⊥ instead of f in the definition is that when an
execution of Sfx→⊥,SDOfx→⊥;t

generates a transcript π while making only smooth
and far queries, all executions of Sfx→z,SDOfx→z ;t

for all z, also generate π while
not necessarily being smooth or far themselves.

A tuple (f, t, π, ε) is good if for all x �∈ π, good(f, t, π, x, ε) holds.

Lemma 4.14. Let PFTΠ as defined above. Then,

Pr
(f,t,π)←PF T Π

[good(f, t, π, ε)] ≥ 1 − 16qε − 2−βε+log(2q2/ε)

The same holds for i-length partial transcripts generated as well, for all i.

Lemma 4.15. For any transcript π and query x �∈ π such that

Pr
(f,t,π)←PF T Π

[good(f, t, π, x, ε)] > 0,

it holds that,
{
f(x) : (f, t) ← PFT |Π=π,good(f,t,π,x,ε)

}
≡ Um .

Next, we prove Theorem 4.12 assuming Lemmas 4.14 and 4.15. Then, we
prove the two lemmas.
Let hit(π) denote the event that π contains two queries x, x′ such that fn(x) =
fn(x′). Then,

Pr
f,t

[
fn(x) = fn(x′) ∧ (x, x′) = Sf,SDOf;t

(1n)
]

= Pr
f,t,π

[hit(π)]

≤ Pr
f,t,π

[hit(π) ∧ good(f, t, π, ε)]

+ Pr
f,t,π

[
good(f, t, π, ε)

]
.

We will bound the two terms separately. The first term will involve using
Lemma 4.15 while the second term is bound using Lemmas 4.7 and 4.10.
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We begin by bounding the first term. This is done by decomposing the proba-
bility of hitting a collision by the first query that hits a collision:

Pr
f,t

[hit(π) ∧ good(f, t, π, ε)]

≤
∑

i

Pr
f,t

[
hit(π≤i) ∧ hit(π<i) ∧ good(f, t, π<i, ε)

]

=
∑

i

Pr
f,t

[
f(xi) ∈ hitSet(π<i) ∧ hit(π<i) ∧ good(f, t, π<i, ε)

]
,

where xi /∈ π denotes the i-th f query made by S and hitSet(π<i) denotes the
answers to f -queries in π<i,

=
∑

i

∑
π<i,xi

Pr
f,t

[
(π<i, xi) = Sf,SDOf;t

(1n) ∧ good(f, t, π<i, xi, ε)
]

· Pr
f,t←PF T |Π=π<i,good

[f(xi) ∈ hitSet(π<i)]

The last equality follows from the definition of conditional probability. At this
point, we can use Lemma 4.15 to argue that

Pr
f,t←PF T |Π=π<i,good(f,t,π<i,xi,ε)

[f(xi) ∈ hitSet(π<i)] ≤ i

2m

because f(xi) is uniformly random and |hitSet(π<i)| ≤ i. Hence, we get that,

≤
∑

i

i

2m
·

∑
π<i,xi

Pr
f,t

[
(π<i, xi) = Sf,SDOf;t

(1n) ∧ good(f, t, π<i, xi, ε)
]

≤
q′∑

i=1

i

2m
≤ q′2

2m
,

where q′ = q + 2βq2 + 2, the number queries that S makes to f .
Hence, by Lemma 4.14, the algorithm’s success probability is bounded by

Pr
f,t

[
fn(x) = fn(x

′) ∧ (x, x′) = Sf,SDOf;t
(1n)

]
≤ Pr

f,t
[hit(π) ∧ good(f, t, π)] + Pr

f,t

[
good(f, t, π)

]

≤ (q + 2βq2 + 2)2

2m
+ 16qε + 2−βε+log(2q2/ε)

≤ O(q4β22−m + 16qε + q2/ε2−εβ)

≤ O(2−m/10) .

when substituting ε = 2−m/5, β = 2m/5 · m, and q ≤ 2m/10.

Proof (of Lemma 4.14). The proof follows from the observation if Sf,SDOf

outputs
π with all the queries being both smooth, and far, then, the same holds for
Sfx→⊥,SDOfx→⊥ with slightly degraded parameters. That is,
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Pr
(f,t,π)←PF T Π

[good(f, t, π, ε)] = Pr
f,t,π

[∧x�∈πgood(f, t, π, x, ε)]

≥ Pr
f,t,π

[smooth(f, t, π, ε) ∧ farness(f, t, π, 8ε)]

≥ 1 − 16εq − 2−βε+log(2q2/ε)

Hence, to complete the proof, we need to show that, for any (f, t) if Sf,SDOf

(1n)
outputs π with all the queries being (f, ε)-smooth, and (f, t, 16ε)-far, then,
Sfx→⊥,SDOfx→⊥ (1n) generates π with all the queries being (f, 2ε-smooth and
(f, t, 12ε)-far.

First observe that by Lemma 4.9, since 16ε-farness and ε-smoothness hold,
answers by SDOfx→⊥ are identical to those by SDOf . Accordingly, the transcript
π = Sfx→⊥,SDOfx→⊥ (1n).

Next, we show that 2ε-smoothness holds with respect to SDOfx→⊥ . Indeed,
any SDO-query (C(·)

0 , C
(·)
1 ) is ε-smooth with respect to f , accordingly the prob-

ability that either circuit Cb queries any individual z is bounded by

Pr
[
Cfx→⊥

b queries z
]

≤ Pr
[
Cfx→⊥

b queries x
]

+ Pr
[
Cf

b queries z
]

≤ 2ε .

Finally, to conclude the proof, we show that 12ε-farness holds with respect
to fx→⊥. Indeed, for any query (C0, C1), let s = SD(Cf

0 , Cf
1 ) be the statistical

distance with respect to f , then by ε-smoothness with respect to f , the statistical
distance sx = SD(Cfx→⊥

0 , Cfx→⊥
1 ) with respect to fx→⊥ is at most 2ε-far from s.

Letting t = t(C0, C1) be the threshold chosen by SDO, we know by 16ε-farness
that |s − t| ≥ 16ε and thus |sx − t| ≥ 12ε, which implies the require farness with
respect to fx→⊥.

The above argument holds unaltered for partial transcripts output by S as
well. Even there, when a partial trancript is output by Sf,SDOf

with all queries
being (f, ε)-smooth and (f, t, 16ε)-far, then, Sfx→⊥,SDOfx→⊥ (1n) generates the
same partial transcript with all the queries being (f, 2ε)-smooth and (f, t, 12ε)-
far. �

Proof (of Lemma 4.15). Given π, x �∈ π, for any y

Pr
f,t←PF T |Π=π,good(f,t,π,x,ε)

[f(x) = y] =
Prf,t

[
π = Sf,SDOf;t

(1n) ∧ f(x) = y ∧ good(f, t, π, x, ε)
]

Prf,t

[
π = Sf,SDOt (1n) ∧ good(f, t, π, x, ε)

]

In order to show that, the distribution
{
f(x) : f ← PF |Π=π,good

}
is uniform, it

suffices to show that for all y1, y2 ∈ {0, 1}m,

Pr
f,t

[
π = Sf,SDOf;t

(1n) ∧ f(x) = y1 ∧ good(f, t, π, x, ε)
]

= Pr
f,t

[
π = Sf,SDOf;t

(1n) ∧ f(x) = y2 ∧ good(f, t, π, x, ε)
]
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To prove this, it suffices to show that for every (f, t) where f(x) = y1,

π = Sf,SDOf;t
(1

n
) ∧ good(f, t, π, x, ε) = 1 ⇐⇒ π = Sfx→y2 ,SDO

fx→y2 ;t
(1

n
) ∧ good(fx→y2 , t, π, x, ε)

This follows because as good(f, t, π, x, ε) holds, π = Sfx→⊥,SDOfx→⊥;t
(1n) and

every query made to SDOfx→⊥;t is both 12ε-far and 2ε-smooth. Hence, when
we change the oracle to (fx→y2 ,SDO

x→y2), each query is answered identically
to fx→⊥,SDOfx→⊥;t. Indeed, for any query (C0, C1), let s = SD(Cfx→⊥

0 , Cfx→⊥
1 )

be their statistical distance with respect to fx→⊥, then by 2ε-smoothness with
respect to fx→⊥, the statistical distance s′ = SD(Cfx→y2

0 , C
fx→y2
1 ) is at most

4ε-far from s. As the threshold t = t(C0, C1) is more than 12ε far by farness,
the answer will be unchanged to this query.

Hence, S(fx→y2 ,SDOx→y2 ) will also return π as the answer. Also, by definition,
good(fx→y2 , t, π, x, ε) will hold because π = Sfx→⊥,SDOfx→⊥;t

(1n) and every query
made to SDOfx→⊥;t is both 12ε-far and 2ε-smooth. Hence, the claim follows.

�

This completes the proof of Theorem 4.12. �

5 A New Proof of an Old Separation

In this section, we give a new proofs of a result by Simon [Sim98] ruling
out fully black-box reductions of collision-resistant hash functions to one-way
permutations.

Fully Black Box Constructions of CRHFs from OWPs. We begin by
defining oracle-aided constructions of CRHFs and then specialize it to the setting
of OWPs.

Definition 5.1 (Oracle-Aided Collision-Resistant Function Families).
A pair of polynomial-time oracle-aided algorithms (Gen,Hash) is a collision-
resistant function family relative to an oracle Γ if it satisfies the following
properties:

– The index-generation algorithm Gen is a probabilistic algorithm that on input
1n and oracle access to Γ outputs a function index σ ∈ {0, 1}m(n).

– The evaluation algorithm Hash is a deterministic algorithm that takes as input
a function index σ ∈ {0, 1}m(n) and a string x ∈ {0, 1}n, has oracle access to
Γ , and outputs a string y = HashΓ (σ, x) ∈ {0, 1}n−1.

Definition 5.2 (Black-Box Construction of CRHFs from OWPs). A
fully black-box construction of a Collision Resistant Hash Functions (CRHFs)
from One-Way Permutations consists of a pair of PPT oracle-aided algorithms
(Gen,Hash), an oracle-reduction R along with functions qR(n), εR(n) such that
the following two conditions hold:
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– Correctness: For any n ∈ N, for any permutation f , and for any function
index σ produced by Genf (1n), it holds that Hashf (σ, ·) : {0, 1}n → {0, 1}n−1.

– Black-box security proof: For any permutation f and probabilistic oracle-
aided algorithm A , if

Pr
[
Hashf (σ, x) = Hashf (σ, x′) ∧ x �= x′

]
≥ 1

2

where the experiment is σ ← Genf (1n) and (x, x′) ← Af (1n, σ), for infinitely
many n, then the reduction breaks f , namely, for infinitely many n ∈ N either

Pr
x←{0,1}n

f,A

[
RA,f (fn(x)) = x

]
≥ εR(n),

for infinitely many values of n where R makes at most qR(n) queries to the
oracles A, f and for every circuit D(·) queried to A makes at most qR(n)
queries to f on any input.

We remark that ruling out black-box reductions as defined above where the
reduction has to break the OWP given an adversary that breaks CRHFs w.p. over
1/2 only makes our result stronger. In the standard setting, the reduction has to
break OWP given an adversary that succeeds with any noticeable probability.

5.1 Simon’s Collision Finding Oracle and Puncturing

Recall that the Simon’s collision finding oracle is defined as follows:

Definition 5.3 (Simon’s Oracle CollΨ). Given any description of a circuit
C with m-bit inputs, the oracle’s randomness contains a random input wC ∈
{0, 1}m and a random permutation πC : {0, 1}m → {0, 1}m. The CollΨ oracle
returns the following:

CollΨ (C) := (wC , w′
C) where w′

C = πC(i) for the smallest i such that CΨ (wC) = CΨ (πC(i)).

W.l.o.g, along with (wC , w′
C), let Coll also return the queries made to Ψ , and

their answers, when evaluating CΨ (wC) and CΨ (w′
C).

The collision-finding oracle breaks any oracle-aided collision resistant hash
function.

Lemma 5.4 ([Sim98]). Let Γ = (Ψ,CollΨ ). Let C(·) : {0, 1}n → {0, 1}n−1 be
any candidate construction of CRHFs. Then,

Pr
[
CΨ (w) = CΨ (w′) ∧ w �= w′ where, (w,w′) ← CollΨ (C)

]
≥ 1

2

where the randomness is over the randomness of Coll.
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Proof. Fix Ψ and omit it from the notation. For any string y ∈ {0, 1}n−1, let
ay = |{x : C(x) = y}|. Then,

Pr [w �= w′] =
∑

y∈Supp(C)

Pr
w,w′←C−1(y)

[w �= w′] · Pr
w

[C(w) = y]

=
∑

y∈Supp(C)

ay − 1
ay

· ay

2n

=
∑

y∈Supp(C)

ay

2n
−

∑
y∈Supp(C)

1
2n

≥ 1 − 2n−1

2n
,

where the second inequality follows from the fact that Prw,w′←C−1(y) [w �= w′] =

Prw′←C−1(y) [w′ �= w] = ay−1
ay

. �

Next we define a variant of the Simon’s oracle, dubbed as the punctured
Simon’s oracle. This collision finding oracle allows Ψ to be punctured, that is, a
set of values in Ψ are erased. As we will show later, this oracle returns the same
answers as CollΨ most of the time, and we can characterize when it does not.

Definition 5.5 (Punctured Simon’s Oracle PCollΨS ). Let Ψ : {0, 1}∗ →
{0, 1}∗ be an oracle. Let S ⊆ {0, 1}∗ be a subset of inputs. The oracle PColl’s
randomness contains for any circuit C with m-bit inputs, a random input
wC ∈ {0, 1}m and a random permutation πC : {0, 1}m → {0, 1}m. The PCollΨS
oracle returns the following:

PCollΨS (C) = ⊥, if CΨ (wC) queries any x ∈ S.

Else,
PCollΨS (C) := (wC , w′

C)

where w′
C = πC(i) for the smallest i such that CΨ (wC) = CΨ (πC(i)) and

CΨ (πC(i)) does not query any x ∈ S. Along with (wC , w′
C), let it also return

the queries made to Ψ when evaluating CΨ (wC) and CΨ (w′
C). We refer to these

queries as Ψ queries induced by the Coll oracle.

There are two key properties of the punctured oracle: (1) The answers of
PCollΨS are independent of the values of the oracle Ψ on all of S; and (2) there
is a natural coupling between CollΨ and PCollΨS such that, as long as there is
no explicit query x ∈ S to Ψ , the two oracles return identical answers. This is
captured by the following lemma.

Lemma 5.6. Let Ψ : {0, 1}∗ → {0, 1}∗ be an oracle, let S ⊆ {0, 1}∗. Consider
the coupling of CollΨ and PCollΨS that instantiates the two oracles with identical
randomness. Let A be any deterministic oracle-aided algorithm. Let τ be the
transcript generated by AΨ,CollΨ . Then,

AΨ,PCollΨS = τ if and only if, Ψ -set(τ) ∩ S = ∅,

where Ψ -set(τ) is the set of all queries made to Ψ in the execution. This includes
the queries to Ψ returned by the Coll oracle.
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Proof. Every direct query to Ψ by A is returned identically in both the execu-
tions. Furthermore, in any transcript τ , such that Ψ -set(τ) ∩ S = ∅, all queries
to CollΨ and PCollΨS are answered identically. This follows from the definition of
PColl because for every query C to Coll and response (wC , w′

C), all the queries
made to Ψ when evaluating CΨ (wC) and CΨ (w′

C) are explicitly made directly to
Ψ , and are thus in Ψ -set. In more detail, for any query CΨ made to CollΨ with
answer (wC , w′

C), CΨ (wC) does not make any queries in S, and thus PColl, will
also return wC . In addition, any w′′ that is lexicographically prior to w′

C will
not be returned because it either induces queries in S, or if it does then it is
such that CΨ (w′′) �= CΨ (wC). In contrast, C(w′

C) does not make any queries to
S, and is such that C(w′

C) = C(wC). Hence w′
C will also be returned by PColl

(and likewise the queries to Ψ induced by wC , w′
C). �

A Word of Caution. In Lemma 4.15, we showed that the distribution f(x)
when conditioned on a transcript τ is close to uniformly random.4

{
f(x) : f ← PF |Π=π,good

}
≡ Um

Lemma 5.6 seems to suggest the same for the collision finding oracle. That is,
the oracle reveals no information about f(x) for any location x not explicitly
queried in τ . Unfortunately, we do not know how to show this. The key reason
for this is that the probability of seeing this transcript τ could itself depend on
the value of f(x). This issue is not new: it also comes up with the SDO oracle.
We are able to remedy this issue in the case of the SDO oracle in part because
of its short output: it allows us to define the notion of farness which shows that
the SDO oracle is robust to any small changes to the SDO oracle. Puncturing
only allows us to erase a value, and not set it to a different one.

5.2 Smoothening for the Collision Finding Oracle

Similar to Lemma 4.10, we can show that any algorithm AΨ,CollΨ can be trans-
formed to a smoothened algorithm SΨ,CollΨ that with high probability makes only
smooth queries to the CollΨ oracle.

A (q′, q)-query algorithm A makes at most q′ queries to the oracle f and q
queries to Collf such that each for each query C to Coll, the circuit C makes at
most q queries to f on any input.

Lemma 5.7 (Smoothing Lemma for Coll). For any (q, q)-query algorithm A
and β ∈ N, there exists a (q + βq2, q)-query algorithm S such that for any input
z ∈ {0, 1}∗ and oracles Ψ,CollΨ :

1. SΨ,CollΨ (z) perfectly simulates the output of AΨ,CollΨ (z),

4 We are using τ for transcript here to avoid the ambiguity with the Coll oracle ran-
domness π.
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2. SΨ,CollΨ (z) only makes queries that are (Ψ, ε)-smooth queries to CollΨ with
probability:

Pr
S

[smooth(S, Ψ, ε)] ≥ 1 − 2−εβ+log(q2/ε),

over its own random coin tosses.

The proof of the lemma is identical to that of Lemma 4.10, the bound differs in
a factor of 2: (q + βq2) instead of (q + 2βq2) in case of Lemma 4.10 because Coll
oracle takes only one circuit as input.

5.3 One Way Permutations in the Presence of Coll

In this section, we show that CRHFs cannot be constructed from OWPs in a
black-box manner (Definition 5.2). That is, we show,

Theorem 5.8. Let (Gen,Eval,R, qR, εR) be a fully black-box construction of
CRHFs from OWPs. Then, either

1. (Large Running Time) R makes at least qR(n) ≥ 2n/6 queries. Or,
2. (Large Security Loss) εR(n) ≤ 2−n/6.

To prove the theorem, we consider the oracle Γ = (f,Collf ) where f is a random
permutation. We show that a random permutation f is hard to invert even given
access to Collf . We start by defining the oracle. In what follows, Pn denotes the
set of permutations of {0, 1}n.

Definition 5.9 (The Oracle f). f = {fn}n∈N
on input x ∈ {0, 1}n answers

with fn(x) where fn is a random permutation fn ← Pn.

It is clear that Collf breaks any potential CRHF construction with prob-
ability at least 1/2. Our main result states that f cannot be inverted, except
with exponentially small probability, even given an exponential number of oracle
queries to f and Collf . Here, consistently with the previous subsection, we say
that an adversary A is q-query if Af,Collf makes at most q queries to f and q
queries to Collf , and any query made to Collf consists of oracle-aided circuit C
that makes at most q queries to f , on any specific input.

Theorem 5.10. Let q ≤ O(2n/6). Then for any (q, q)-query adversary A,

Pr
f,Coll,x

[
Af,Collf (f(x)) = x

]
≤ O(2−n/6).

Proof. We, in fact, prove a stronger statement: the above holds when fixing
the oracles f−n := {fk}k �=n. Let ε = 2−n/3 and β = 2n/3 · n. Fix a q-query
adversary A and let S be its smooth (q + βq2 + 2q2, q) query simulator given by
Lemma 4.10. The extra 2q2 queries are incurred by the fact that along with each
collision w,w′ from Collf (C), the queries made to f in computing Cf (w) and
Cf (w′) are also returned. Since S perfectly emulates A, it is enough to bound
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the probability that S successfully inverts. To bound S’s inversion probability,
we consider six hybrid experiments {Hi}i∈[6] given in Table 1. Throughout, for
a permutation f ∈ Pn and x, y ∈ {0, 1}n, we denote by fx→y the function that
maps x to y and is identical to f on all other inputs (in particular, fx→y is no
longer a permutation when x �= f−1(y)).

Table 1. The hybrid experiments.

Hybrid H1 (Real) H2 H3 H4 H5 H6 (Ideal)

Permutation fn ← Pn

Preimage x ← {0, 1}n

2nd Preimage z ← {0, 1}n

Planted

Image

y ← {0, 1}n

Challenge f(x) y

Oracle f, Collf f, PColl
f
{x} fz→f(x), PColl

f
{x,z} fx→y, PColl

f{
f−1(y),x

} f, PColl
f{
f−1(y)

} f, Collf

Winning

Condition

Find x

Hybrid H1 is identical to the real world where S wins if it successfully inverts
the permutation at a random output. We show that the probability that the
adversary wins in any of the experiments is roughly the same, and that in hybrid
H6 the probability that S wins is tiny.

Claim 5.10.1. |Pr [S wins in H1] − Pr [S wins in H2]| ≤ O(2−n/6)

Proof. The difference between the two hybrids is in the collision finding oracle:
in H1, S gets the standard Collf oracle, while in H2, punctured oracle PCollf{x},
punctured at x. Note that by coupling the two experiments, we can bound the
statistical distance (and hence the winning probabilities) in H1 and H2 as fol-
lows:

∣∣∣Pr [S wins in H1] − Pr [S wins in H2]
∣∣∣ ≤ Pr

f,x,z
Coll

[
Sf,Collf (f(x)) �= Sf,PCollf{x}(f(x))

]

Let smooth = smooth(S(f(x)), f, ε) be the event that all Coll-queries
made by Sf,Collf (f(x)) are (f, ε)-smooth (Definition 4.8). And let collHit =
collHit(S, f, x, z) denote the event that the collision finder oracle Collf for some
query C returns an answer (w,w′) such that Cf (w) or Cf (w′) queries x during
the evaluation. Note that collHit does not occur when f is queried at x by S, but
only when its indirectly queried by Collf .

Observe that by Lemma 5.6, as long as punctured set {x} is not queried by a
collision returned, that is as long as collHit event does not occur, the two oracles
Collf and PCollf{x} would return identical answers. Hence,

Pr
f,x,z
Coll

[
Sf,Collf (f(x)) �= Sf,PCollf{x}(f(x))

]
≤ Pr

f,x,z
Coll

[collHit]



On the Complexity of Collision Resistant Hash Functions 445

We bound the probability of collHit as:

Pr [collHit] ≤ Pr
[
smooth

]
+ Pr [smooth ∧ collHit]

By the smoothness Lemma 5.7,

Pr
[
smooth

]
≤ 2−εβ+log(2q2/ε) ,

and, when smooth holds, we can bound the probability of a collHit.

Pr [smooth ∧ collHit] ≤ 2qε

This follows from the fact that for any (f, ε)-smooth circuit C, and any x, the
following holds:

Pr
r

[
Cf (r) queries x

]
≤ ε

Hence, as the marginal of each coordinate of a collision returned by the Coll oracle
is uniformly random, by a union bound, the probability of collHit occurring for
this particular Coll query C is at most 2·ε. Hence the total probability is bounded
by q · (2ε) as desired.

Hence, we can bound the difference between H1 and H2 by

2−εβ+log(2q2/ε) + 2qε ≤ O(2−n/6)

when setting ε = 2−n/3, β = 2n/3 · n and recalling that q ≤ O(2n/6). �

Claim 5.10.2. |Pr [S wins in H2] − Pr [S wins in H3]| ≤ O(2−n/6).

Proof. The difference between the two hybrids is that in H2, S receives the
normal f oracle, while in H3, it receives the planted oracle fz→f(x). And it
receives PCollf{x} in H2 while receiving PCollf{x,z} in H3. In what follows, we

denote by zHit = zHit(S, f, x, z) the event that Sf,PCollf{x}(f(x)) queries f on z,
either directly or indirectly through a collision returned.

Consider the execution of Sf,PCollf{x} in H2, every query S makes to the oracle
is answered identically in H3, unless the event zHit occurs. This follows because
the f oracle itself differs only at z in the two hybrids, and the PColl oracle
returns the same value by Lemma 5.6 unless zHit occurs. Hence, as S receives
the same answers and hence asks the same questions in both hybrids, it would
have the same output, unless zHit occurs. As z is picked uniformly at random,
independent of everything else in H2,

Pr [zHit] ≤ 2−n · |total f -queries made by S| ≤ 2−n · (q + βq2 + 2q2) ≤ O(2−n/6)

when setting ε = 2−n/3, β = 2n/3 · n and recalling that q ≤ O(2n/6). �

Claim 5.10.3. Pr [S wins in H3] = Pr [S wins in H4].
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Proof. First, by symmetry, observe that in H3, the probability of S outputting x
is the same as that of S outputting z, because they are completely symmetrical in
this hybrid. Then observe that these two hybrids H3 and H4 are relabellings of
each other: z ↔ x, f(x) ↔ y and x ↔ f−1(y). This implies that the probability
of the probability of S outputting z in H3 is the same as that of S outputting x
in H4. This completes the argument. �

Claim 5.10.4. |Pr [S wins in H4] − Pr [S wins in H5]| ≤ O(2−n/6).

The difference between the two hybrids is two fold: the f and PColl oracles
differs at x and are identical otherwise. Note that x is independent of the adver-
sary’s view in H5. The proof of this claim is identical to that of Claim 5.10.2
and is omitted.

Claim 5.10.5. |Pr [S wins in H5] − Pr [S wins in H6]| ≤ O(2−n/6).

The only difference between the two hybrids is that the Coll oracle from H6

is punctured at f−1(y) in H5. The proof of this claim is identical to that of
Claim 5.10.1, relies on smoothness, and is omitted.

To conclude the proof of Theorem 5.10, we observe that

Claim 5.10.6. Pr [S wins in H6] ≤ 2−n.

Proof. The view of S in this hybrid is completely independent of the random
choice of x. �

This completes the proof of Theorem 5.10. �
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