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Abstract. We study the possibility of achieving full security, with guar-
anteed output delivery, for secure multiparty computation of functional-
ities where only one party receives output, to which we refer as solitary
functionalities. In the standard setting where all parties receive an out-
put, full security typically requires an honest majority; otherwise even
just achieving fairness is impossible. However, for solitary functionalities,
fairness is clearly not an issue. This raises the following question: Is full
security with no honest majority possible for all solitary functionalities?

We give a negative answer to this question, by showing the existence
of solitary functionalities that cannot be computed with full security.
While such a result cannot be proved using fairness-based arguments,
our proof builds on the classical proof technique of Cleve (STOC 1986)
for ruling out fair coin-tossing and extends it in a nontrivial way.

On the positive side, we show that full security against any number
of malicious parties is achievable for many natural and useful solitary
functionalities, including ones for which the multi-output version cannot
be realized with full security.

1 Introduction

Secure multiparty computation (MPC) [7,9,19,32] allows a set of mutually dis-
trusting parties to compute any function of their local inputs while guaranteeing
(to the extent possible) the privacy of the inputs and the correctness of the out-
puts. Security is formulated by requiring that a real execution of a protocol is
indistinguishable from an ideal execution in which the parties hand their inputs
to a trusted party who computes the function and returns the outputs.

The strongest level of security one could hope for is so-called “full secu-
rity” [8,19]. Full security ensures guaranteed output delivery in the sense of
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allowing all parties to learn their outputs without revealing additional infor-
mation about other inputs. In particular, it implies fairness: malicious parties
cannot learn their outputs while preventing honest parties from learning their
outputs. This level of security is achievable in the presence of an honest major-
ity, either unconditionally [4,7,9,31] (assuming secure point-to-point channels
and a broadcast channel) or under standard cryptographic assumptions [18,19]
(assuming a public-key infrastructure).

Without an honest majority, a classical result of Cleve [11] shows that full
security, or even fairness alone, is generally impossible. Concretely, there are
many natural functionalities such that in every protocol for computing them,
malicious parties can gain a significant advantage over honest parties in learning
information about the output. Thus, when no honest majority is assumed, it is
common to settle for weaker notions of security such as “security with abort” [5,
19–21,32].

In this paper, we consider the possibility of achieving full security for func-
tionalities that deliver output to a single party, to which we refer as “functional-
ities with solitary output” or “solitary functionalities” for short. Such function-
alities capture many realistic use-cases of MPC in which different participants
play different roles. For instance, consider a (single) employer who wishes to
learn some aggregate private information about a group of employees, where
the output should remain hidden from the employees. This type of functionali-
ties is commonly considered in the non-interactive setting, including the Private
Simultaneous Messages (PSM) model of secure computation [15] and its robust
variants [1,6].

Beyond being a natural class of functionalities, the class of solitary func-
tionalities is also interesting because it bypasses all fairness-based impossibility
results. Indeed, fairness is not an issue when only one party receives an output,
and thus Cleve’s impossibility result does not have any consequences for such
functionalities. Therefore, the first question that we ask is a very basic feasibility
question in the theory of MPC:

Do all functionalities with solitary output admit a fully secure protocol?

This feasibility question can be contrasted with the state of affairs in other
ongoing lines of work on characterizing the functionalities that admit protocols
with information-theoretic security, or UC security, or fairness [3,10,13,23,28],
where the high-order bit is already known and the current efforts are focused on
trying to fully characterize the realizable functionalities.

We make two main contributions. On the negative side, we settle the high-
order bit by proving that some solitary functionalities cannot be computed with
full security. This is conceptually intriguing because, as mentioned above, soli-
tary functionalities do not introduce “fairness” problems. So what is the source
of difficulty in achieving full security? Our impossibility proof extends Cleve’s
original attack in a rather subtle way. In Cleve’s attack, the adversary gains
advantage over honest parties by aborting the protocol at a point where it knows
significantly more information about the output than the honest parties do. Our
new attack, dubbed the “double-dipping attack”, is based on the following rough
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intuition. (The following simplified description of the attack ignores important
subtleties; see Sects. 1.2 and 3 for a more precise version.) The adversary con-
trols a majority of the parties that includes the output party. It instructs one of
the parties it controls to abort the protocol just when learning enough (but not
all) information about the output. Intuitively, in such a case, the protocol must
be run again with default values (in particular, the original inputs cannot be
recovered as the aborting parties form a majority). In the end of the protocol,
the adversary learns the output of f on two inputs, with the same input values
for honest parties. This is an information that the adversary cannot obtain in
the ideal world, hence security fails.

On the positive side, we make progress towards full characterization of the
solitary functionalities that admit fully secure protocols. We present such pro-
tocols for several natural and useful families of solitary functionalities, including
variants of commonly studied MPC problems such as Private Set Intersection.
Our positive results apply in many cases where negative results are known for
the multi-output variant. We elaborate on both our positive and negative results
below.

1.1 Our Results

For our negative result, we present a family Ω of solitary functionalities for which
no fully secure protocol exists. A representative example of such a functionality,
first considered in the context of “best of both worlds” security [25] (see below),
is the following 3-party functionality feq with two parties P1 and P2 receiving
inputs x, y ∈ {1, 2, 3}, respectively, and an output-receiving party Q. The output
of feq is defined as feq(x, y) = x if x = y and feq(x, y) =⊥ otherwise. We sketch
below how “double dipping” is applied to this functionality, and present the
family Ω and the formal impossibility proof in Sect. 3.

Next, in Sect. 4, we present several positive results. We start by proving that
fairness implies full security in the following sense: if f is an n-party function,
where all parties receive the output, and f can be computed with fairness, then
the (n + 1)-party solitary functionality f ′, with inputs given to P1, . . . , Pn, as in
f , and with the output delivered to the output party Q, can be computed with
full security. Our next positive result shows that we can go much beyond fairness
positive results; specifically, we consider a family of n-party functionalities that
we call functions with “forced output distribution”. Described for the 3-party
case, this family includes all functions f(x, y) (with inputs x, y to P1, P2, respec-
tively, and output to Q) such that for at least one of the input parties, say P1,
there is a distribution on its input, where the output f(x, y) is distributed the
same, no matter what the other input is. Note that such (non-trivial) functions
f cannot be computed with fairness, as this would imply fair coin-tossing, which
is impossible [11]. Finally, as a third positive result, we consider a family of func-
tionalities that we term “functionalities with fully revealing input”. Described in
the 3-party setting above, this family includes all functionalities where one of
the parties, say P1, has an input for which the function f becomes injective.
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We stress that these results fall short of providing a full characterization of
the fully secure solitary functionalities, as we give an example of a function that
does not fall into any of the families of positive results but nevertheless can
be computed with full security. Interestingly, we compute this function using a
variant of the GHKL protocol [23] for computing fair two-party functionalities,
yet—viewed as a symmetric two-party functionality—it is inherently unfair. We
leave the question of finding a full characterization as an intriguing open question
for future work.

Example. To demonstrate the usefulness of the above positive and negative
results, we consider some variants of the Private Set Intersection (PSI) problem.
In this problem, the inputs x, y of P1, P2 correspond to subsets S1, S2 of some
domain [m] and the output is the intersection S = S1 ∩ S2. It follows from
our negative result that if |S1| = |S2| = k, for some fixed k, then this function
cannot be computed with full security (in fact, the function feq mentioned above
is exactly the case k = 1). On the other hand, for the same inputs, if the required
output is only the intersection size, i.e. |S|, then this becomes a functionality
with a forced output distribution (e.g., by choosing S1 as a uniformly random set
of size k) and so this functionality can be computed with full security. Similarly,
if we allow |S1|, |S2| to be anywhere between k and m then PSI with full security
becomes possible (using [m] as a revealing input) and, if we allow |S1|, |S2| to
be anywhere between 0 and k, this is also possible (using a degenerate version
of the forced output distribution, where ∅ is selected with probability 1). Other
interesting cases, like the case where |S1|, |S2| are between 1 and k, are left as
an open problem. (See the full version of the present paper [24] for an analysis
of additional variants of PSI, including additional variants where the output is
just the intersection size |S|, or just a bit indicating whether S = ∅, sometimes
referred to as the disjointness function. The full version also includes similar
analyses for different natural flavors of Oblivious Transfer (OT)).

Finally, as an additional contribution, we analyse the round complexity of
computing solitary functionalities with full security. We observe that some of
the protocols presented in our positive results are constant-round protocols,
while others use super-logarithmic number of rounds. We prove that, for cer-
tain solitary functionalities, full security actually requires super-constant round
complexity (see Sect. 5). We leave the question of figuring out the exact round-
complexity for any solitary functionality as an intriguing open question for future
work.

Feasibility Landscape of Boolean Solitary Functionalities. We conclude this
section with a few sentences regarding the “feasibility” landscape of solitary
MPC. We focus on functions with Boolean output where the output receiving
party does not provide input; this case is interesting as it is readily comparable
to the non-solitary Boolean two-party case (the most well understood instance
of fully secure MPC with dishonest majority). We distinguish two cases depend-
ing of the size of the input domains. From the fairness criterion, if one party
has a strictly bigger input domain than the other, then almost all functionalities
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Fig. 1. Table summarizing our results vis-à-vis the PSI problem

are computable with full security, because almost all two-party Boolean func-
tions admit fair protocols in this case [3]. On the other hand, when the parties
have exactly the same number of inputs, the fairness criterion does not apply,
because almost all two-party Boolean functions are not computable with fair-
ness.1 However, by excluding the functions that are computable using a variant
of the forced criterion, we can succinctly describe the set of functions whose
status is unknown: {M ∈ {0, 1}n×n | ∃x ∈ R

n s.t. Mx = 1n ∧
∑

i xi ≤ 0}. In
words, the set corresponds to 0–1 matrices (viewed as matrices over the reals)
whose columns span 1n with coefficient that have a negative sum. While we could
not rigorously analyze the measure of this set, we conjecture that it represents a
vanishing fraction of the entire space, i.e. relative to {0, 1}n×n; experimental evi-
dence for n ≤ 300 strongly supports our conjecture (see [24], Appendix A). Thus,
the following picture emerges for functionalities with equal-sized input domains:
almost all 2-party functionalities cannot be computed fairly, while almost all
solitary 3-party functionalities (two inputs and one output) can be computed
with full security.

1.2 Our Techniques

Next, we elaborate on some of the techniques that we use.

(i) Impossibility result. As mentioned above, for our impossibility result, we
use a technique inspired by Cleve’s seminal “biasing” attack on coin-tossing [11].
In Cleve’s attack, the adversary is trying to bias the output of a fair coin-flip.
The adversary picks a random round i, and plays honestly until that round.
Then, the adversary computes the corrupted party’s backup value for that round,

1 The reason being that most such functions can be used to implement the coin-tossing
functionality [29] – which does not admit a fair protocol.
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i.e. the output prescribed by the protocol in case the other party aborted at that
round. The adversary aborts the corrupted party at that round or the next round
depending on the “direction” it is attempting to bias the output to. Intuitively,
because the protocol is inherently unfair, the adversary has an advantage in
learning the output. Therefore, by aborting prematurely, the adversary alters
the distribution of the honest party’s output.

Translating the above attack to our setting is not straightforward, given that
the above gives an attack on correctness while we aim for an attack on privacy.
For concreteness, we now explain how our impossibility applies to the 3-party
functionality feq described above. Notice that, in an ideal execution, if P1 chooses
its input at random, then the other two colluding parties can only be sure of
P1’s input with probability at most 1/3 (i.e. by guessing the right value). In the
real-world however, there must be some round of the protocol where the joint
backup value of P2 and Q (i.e. the output prescribed by the protocol in case P1
aborted at that round) contains information about P1’s input, while the joint
backup value of P1 and Q does not contain information about P2’s input. By
aborting P2 at that round, the adversary can effectively compute the output on
two different inputs of P2 and thus guess P1’s input with probability noticeably
greater than 1/3.

Rather crudely, the above can be summarized as follows: We define a coin-
toss between {P1, Q} and {P2, Q} such that the outcome of the “coin-toss” is
tied to some privacy event. By “biasing” the coin-toss, the adversary effectively
increases its chance that the privacy event occurs, which results in a privacy
breach. It should be noted that this picture is not accurate since, in our setting,
the direction of bias is very important and this cannot be guaranteed by Cleve’s
attack.

(ii) Protocols. Our transformation from n-party fair protocols (with output to
all) to (n + 1)-party fully secure protocols with solitary output to Q describes
a compiler that takes a fair protocol Π and transforms it into a fully secure
protocol Π ′ with solitary output. The idea is to emulate Π by sharing the view
of each party Pi in the original protocol Π between Pi and Q in Π ′. This way, an
adversary corrupting a subset of parties not including Q learns nothing, while
an adversary corrupting a subset of parties that includes Q only learns the
views of the corresponding parties in Π. The latter cannot be used to mount an
attack, given the presumed security of the original protocol. Our protocols for the
forced output distribution class and for the fully revealing input class are very
different. Interestingly, these two cases are symmetric in some sense, where each
has “problematic” parties. In the former (forced output distribution) case, the
problematic party is the one that does not have a forced output distribution.
The protocol we propose in this case funnels the communication through the
others parties. Thus, by design, the problematic party only contributes to the
computation once. For the latter (fully revealing input) case, the problematic
parties are the ones without fully revealing input. The protocol we propose for
this case funnels the communication through the party with a revealing input,
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say P1. Thus, by design, unless P1 is corrupt (in which case there are no secrets),
computation only occurs once.

Related Work. Below, we discuss some related work that deals with full security
and other related security notions (in particular, fairness).

In the two-party case, it is known that fairness is equivalent to full security
(with guaranteed output delivery), since if an honest party aborts it can safely
replace the input of the corrupted party by a default value and compute the
resulting output locally. In contrast, Cohen and Lindell [12] show that in the
multiparty case there are functionalities that admit fair protocols but do not
admit fully secure protocols.

Since the work of Cleve [11], it is known that full security, or even fairness,
cannot be achieved in general unless there is an honest majority. This led to a
rich line of work [2,3,14,23,30] attempting to characterize which functions can be
computed with full security. Most works along this line focused on the two-party
case, starting with the results of [23], and culminating in a full characterization
for the class of fair Boolean functions with the same output for both parties [3].

Less is known for the multi-party case. Examples of multi-output functions
for which fair protocols exist (specifically, n-party OR and 3-party majority)
are given in [22]. In [25,27] (see also [26]), the notion of “Best-of-both-worlds
security” is introduced as a hybrid between full security and security with abort.
A protocol satisfies this definition, if there is one protocol that simultaneously
provides full security if there is an honest majority and otherwise it guarantees
security with abort. Note that, in the context of best-of-both-worlds, [25] already
gives an example of a 3-party solitary function for which no constant-round pro-
tocol exists (concretely, the function feq mentioned above). This was improved
to log n rounds in [27].

Open Problems. As mentioned above, the most obvious open problems are
obtaining a characterization or at least reducing the gap between the positive
and negative results, and working out the exact round complexity for fully secure
computation of solitary functionalities. Less obviously, we identify the following
interesting open questions.

1. Our attack in Sect. 3 crucially relies on the rushing capability of the adversary.
It would be interesting to show that this is inherent for impossibility or to
extend the negative result to the case of a non-rushing adversary.

2. In this work, we are mainly concerned with the feasibility questions of solitary
MPC. Therefore, for obtaining malicious security, our protocols use a generic
step that we have not tried to optimize. We leave the interesting question of
improving concrete efficiency for future work, or designing concretely efficient
fully secure protocols for useful special cases such as PSI.

3. As explained in subsequent sections, broadcast is necessary for solitary MPC.
However, some functionalities do not require broadcast. While the question
is orthogonal to the goal of the paper, it would be interesting to understand
which functionalities require broadcast in the solitary setting.
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2 Preliminaries

The following models and definitions are adapted from [12,17].

2.1 Models

In this section we outline the definition of secure computation, following
Canetti’s definition approach for the standalone model [8], and highlight some
details that are important for our purposes. The following version of the def-
inition is somewhat simplified. We refer the reader to [8] for more complete
definitions.

Communication Model. We consider a network of n processors, usually denoted
P1, . . . , Pn and referred to as parties. Each pair of parties is connected via a
private, authenticated point-to-point channel. In addition, all parties share a
common broadcast channel, which allows each party to send an identical message
to all other parties. In some sense, the broadcast channel can be viewed as a
medium which “commits” the party to a specific value.2

Functionality. A secure computation task is defined by some n-party function-
ality f : X1 × . . . × Xn → Σn, specifying the desired mapping from the parties’
inputs to their final outputs. Party Pi’s input domain is denoted by Xi, for each
i ∈ [n], and the outputs of the parties are assumed to belong to some alphabet
Σ. When n = 3, the parties’ input domains will be denoted X, Y and Z to make
the distinction more explicit. One may also consider randomized functionalities,
which take an additional random input; however, in this work we focus on the
deterministic case.

Functionality with Solitary Output. A n-party functionality f : X1 × . . . × Xn →
Σn admits solitary output if it delivers output to (the same) one party alone,
i.e. f is of the form (x1, . . . , xn) 
→ (∅, . . . , ∅, σ, ∅, . . . , ∅), where the index of σ
does not depend on the input. The output-receiving party will be denoted by, Q,
and, unless stated otherwise, will be identified with Pn. If no confusion arises,
we simply write f : X1 × . . . × Xn → Σ or f : (x1, . . . , xn) 
→ σ.

Some Notations. Denote by P = {P1, . . . , Pn} the set of all parties. If no confu-
sion arises, we sometimes identify P with the numbers in [n] = {1, . . . , n}. Sub-
sets of these parties are denoted by calligraphic letters (S, T , . . .), and their com-
plements will be denoted by (S, T , . . .). Random variables are denoted by lower-
case boldface (x,y, . . .) and distributions by upper-case boldface (X,Y, . . .). For
a functionality f taking input from X1 × . . . × Xn we will write xS to denote

2 We remark that our assumption regarding broadcast is in fact necessary for fully
secure computation of solitary functionalities. This observation follows from the fact
that “convergecast” implies broadcast [16]. We also sketch a simpler direct argument
in the full version [24].
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an element of the subspace ×i∈SXi and, abusing notation, f(xS , xS) denotes
the value of f(x1, x2, . . . , xn). Furthermore, for integers m and k, we let

([m]
k

)

denote the subsets of [m] of size exactly k and 2[m] the set of all subsets of
[m]. For set S and distribution S, we write s ← S and s ← S to denote that
element s is sampled uniformly at random from S or according to distribution
S, respectively.

Protocol. Initially, each party Pi holds an input xi, a random input ρi and,
possibly, a common security parameter κ. The parties are restricted to (expected)
polynomial time in κ. The protocol proceeds in rounds, where in each round each
party Pi may send a “private” message to each party Pj (including itself) and
may broadcast a “public” message, to be received by all parties. The messages Pi

sends in each round may depend on all its inputs (xi, ρi and κ) and the messages
it received in previous rounds. Without loss of generality, we assume that each
Pi sends xi, ρi, κ to itself in the first round, so that the messages it sends in each
subsequent round may be determined from the messages received in previous
rounds. We assume that the protocol terminates after a fixed number of rounds,
denoted r (that may depend on the security parameter κ), and that honest
parties never halt prematurely, i.e. honest parties are active at any given round
of the protocol. Finally, each party locally computes some output based on its
view. We note that our negative results extend to protocols that have expected
polynomial number of rounds (in κ) via a simple Markov inequality argument.

Fail-Stop Adversary. We consider a fail-stop t-adversary A, where the parameter
t is referred to as the security threshold. The adversary is an efficient interactive
algorithm,3 which is initially given the security parameter κ and a random input
ρ. Based on these, it may choose a set T of at most t parties to corrupt. The
adversary then starts interacting with a protocol (either a “real” protocol as
above, or an ideal-process or hybrid-process protocol to be defined below), where
it takes control of all parties in T . In particular, it can read their inputs, random
inputs, and received messages and, contrary to the malicious case (see below),
it can control the messages that parties in T send only by deciding whether to
send them or to abort. We assume by default that the adversary has a rushing
capability: at any round it can first wait to hear all messages sent by uncorrupted
parties to parties in T , and use these to make its decisions whether to abort or
continue (some of) the parties he corrupts. Corrupted parties that do not abort
send their prescribed messages for the present round, while corrupted parties
that abort send a special abort symbol to all parties.4

3 It is usually assumed that the adversary is given an “advice” string a, or is alter-
natively modeled by a nonuniform algorithm. In fact, the proofs of our negative
results are formulated in this nonuniform setting, but can be modified to apply to
the uniform one as well.

4 This assumption implies that an abort is detected by all parties, even one that
occurred on a private channel. This assumption can be enforced via a dispute reso-
lution mechanism, thanks to the broadcast channel.
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Malicious Adversaries. Adversaries that deviate arbitrarily from the protocol are
not discussed in the present paper. Using the GMW compiler [19], our positive
results can be extended to malicious adversaries. Negative results trivially extend
to such adversaries (since fail-stop is a special kind of malicious adversary).

Security. We consider two types of security known as full security and security
with identifiable abort. The former is the focus of the paper, i.e. it corresponds to
the security notion we want to realize or rule out. The latter is a weaker security
notion that is useful towards realizing our positive results. Informally, a protocol
computing f is said to be t-secure if whatever a t-adversary can “achieve” by
attacking the protocol, it could have also achieved (by corrupting the same set
of parties) in an ideal process in which f is evaluated using a trusted party. To
formalize this definition, we have to define what “achieve” means and what the
ideal process is. The ideal process for evaluating the functionality f is a protocol
πf involving the n parties and an additional, incorruptible, trusted party TP.

Ideal Model with Full Security. The protocol proceeds as follows: (1) each party
Pi sends its input xi to TP; (2) TP computes f on the inputs (using its own
random input in the randomized case), and sends to each party its corresponding
output. Note that when the adversary corrupts parties T in the ideal process, it
can pick the inputs sent by parties in T to TP (possibly, based on their original
inputs) and then output an arbitrary function of its view (including the outputs
it received from TP). Honest parties always output the message received from
the trusted party and the corrupted parties output nothing.

Ideal Model with Identifiable Abort. In this case, an adversary can abort the
computation in the ideal model after learning its outputs, at the cost of reveal-
ing to the honest parties the identity of at least one of the corrupted parties. The
protocol proceeds as follows: (1) each Pi sends its input xi to TP; (2) TP com-
putes f on the inputs (using its own random input in the randomized case), and
sends to each of the corrupted parties its corresponding output. (3) By sending
to TP either (continue, ∅) or (abort, Pi), for some Pi in T , according to whether
the adversary continues the execution, or aborts the execution at the cost of
revealing one corrupted party. (4) TP sends the outputs to the honest parties
if the adversary continues, or the identity of the corrupted Pi together with a
special abort-symbol, if the adversary aborted the computation. Similarly to the
previous case, when an adversary corrupts parties in the ideal process, it can
pick the inputs sent by parties in T to TP (possibly, based on their original
inputs) and then output an arbitrary function of its view (including the outputs
it received from TP). Honest parties always output the message received from
the trusted party and the corrupted parties output nothing.

2.2 Security Definition

To formally define security, we capture what the adversary “achieves” by a ran-
dom variable concatenating the adversary’s output together with the outputs
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and the identities of the uncorrupted parties. For a protocol Π, adversary A,
input vector x, and security parameter κ, let execΠ,A(κ, x) denote the above
random variable, where the randomness is over the random inputs of the uncor-
rupted parties, the trusted party (if f is randomized), and the adversary. The
security of a protocol Π (also referred to as a real-life protocol) is defined by
comparing the exec variable of the protocol Π to that of the ideal process πtype

f ,
where type ∈ {full_sec, id_abort} specifies the ideal process to be compared with
(either full security or identifiable abort). Formally:

Definition 2.1. We say that a protocol Π t-securely computes f if, for any
(real-life) t-adversary A, there exists (an ideal-process) t-adversary A′ such that
the distribution ensembles execΠ,A(κ, x) and execπtype

f
,A′(κ, x) are indistinguish-

able. The security is referred to as perfect, statistical, or computational according
to the notion of indistinguishability being achieved. For instance, in the compu-
tational case it is required that for any family of polynomial-size circuits {Cκ}
there exists some negligible functionality neg, such that for any x,

|Cκ(execΠ,A(κ, x)) − Cκ(execπtype
f

,A′(κ, x))| ≤ neg(κ).

An equivalent form of Definition 2.1 quantifies over all input distributions
X rather than specific input vectors x. This equivalent form is convenient for
proving our negative results.

Intuitive Discussion. Definition 2.1 asserts that for any real-life t-adversary A
attacking the real protocol there is an ideal-process t-adversary A′ which can
“achieve” in the ideal process as much as A does in the real life. The latter
means that the output produced by A′ together with the inputs and outputs
of uncorrupted parties in the ideal process is indistinguishable from the output
(wlog, the entire view) of A concatenated with the inputs and outputs of uncor-
rupted parties in the real protocol. This concatenation captures both privacy and
correctness requirements. On the one hand, it guarantees that the view of A does
not allow it to gain more information about inputs and outputs of uncorrupted
parties than is possible in the ideal process and, on the other hand, it ensures
that the inputs and outputs of the uncorrupted parties in the real protocol be
consistent with some correct computation of f in the ideal process. We stress
that ideal-world adversary can indeed choose whatever input it likes, and it need
not restrict itself to the input chosen by the real-world adversary.

Default Security Threshold. Throughout the paper, we assume that the security
threshold is t = n − 1, namely an arbitrary strict subset of the parties can be
corrupted. We therefore do not mention the parameter t in the rest of the paper.

2.3 Hybrid Model and Composition

Hybrid Model. The hybrid model extends the real model with a trusted party
that provides ideal computation for predetermined functionalities. In more
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detail, the parties communicate with this trusted party as per the specifications
of the ideal models described above (either fully secure or identifiable abort, to
be specified). Let Fn be a functionality. Then, an execution of a protocol Π com-
puting a functionality f in the Fn-hybrid model involves the parties interacting
as per the real model and, in addition, having access to a trusted party com-
puting Fn. The protocol proceeds in rounds such that, at any given round, the
parties send normal messages as in the standard model, or, make a single invo-
cation of the functionality Fn. Security is defined analogously to Definition 2.1
by replacing the real protocol with the hybrid one. The model in question is
referred to as the (Fn, type)-hybrid model, depending on the specification of the
ideal functionality.

Composition. The hybrid model is useful because it allows cryptographic tasks
to be divided into subtasks. In particular, a fully secure hybrid protocol making
ideal invocations to an ideal functionality with identifiable abort can be trans-
formed into a fully secure real protocol, if there exists a real protocol for the ideal
functionality that is secure with identifiable abort. This technique is captured
by Canneti’s sequential composition theorem.

Theorem 2.1 (Canetti [8]). Suppose that protocol Π securely computes f in
the (Fn, id_abort)-hybrid model with full security, and suppose that Ψ securely
computes f in the real model. Then, protocol ΠΨ securely computes f in the
real model, where ΠΨ is obtained by replacing ideal invocations of Fn with real
executions of Ψ . Furthermore, the quality of the security (computational, statis-
tical or perfect) of the resulting protocol is the weakest among the security of Π
and Ψ .

Finally, we define the notion of backup values. It is immediate from the secu-
rity definition that any fully secure protocol admits well defined backup values.

Definition 2.2 (Backup values). The following definitions are with respect
to a fixed honest execution of an n-party, r-round correct protocol (determined by
the parties’ random coins) for solitary functionality f . The ithround backup value
of a subset of parties Q = {Q} ∪ S ⊆ P at round i ∈ [r], denoted Backup(Q, i),
is defined as the value Q would output, if all parties in P \ Q abort at round
i + 1 and no other party aborts. For consistency, we let Backup(Q, r) denote the
output of the protocol if no parties abort (i.e Backup(Q, r) = Backup(Q′, r), for
every Q and Q′).

3 Impossibility: The Double-Dipping Attack

In this section we prove our main negative result. Namely, we show impossibility
of achieving full security for a number of solitary functionalities, including the
following natural families:

– Equality testing with leakage of input (including feq from the introduction).



324 S. Halevi et al.

– Private Set Intersection for fixed input size (i.e. PSI as defined in Definition
3.1).

Definition 3.1. Let PSIidm,k :
([m]

k

)
×

([m]
k

)
→ 2[m] be such that PSIidm,k(S1, S2) =

S1 ∩ S2. As a three party functionality, PSIidm,k receives inputs from P1 and P2
and delivers output to an additional party Q.

Namely, PSIidm,k takes as input two sets of size k and outputs their intersection.
We point out that feq ≡ PSIidm,1. In this section, we show impossibility for a
class of functions that includes PSIidm,k, for every 0 < k < m/2. As a warm-up,
we sketch our impossibility result for the specific functionality feq; the general
case is essentially an extrapolation of this case. We will be using the following
notation.

Notation 3.1. Let Π be a three-party, r-round protocol for computing a func-
tion f : X ×Y ×Z → Σ with solitary output. Define random variables a0, . . . ,ar

and b0, . . . ,br such that ai is the value of Backup({Q, P1} , i) in a random exe-
cution of Π and, similarly, bi is the value of Backup({Q, P2} , i) in a random
execution of Π, where Backup(Q, i) is according to Definition 2.2.

3.1 Warm up

Let Π be a three-party protocol for computing feq. Let X and Y denote the
uniform distribution for the inputs of P1 and P2 respectively. We proceed under
the following simplifying assumptions for Π: for every i ∈ [r], it holds that
Prx←X [ai = x] = 1/3 and Pry←Y [bi = y] = 1/3. In words, if P1 (resp. P2)
chooses its input uniformly at random, then the backup output of Q and P1
(resp. Q and P2) at round i is equal to the aforementioned input with probabil-
ity exactly 1/3, regardless of P2’s (resp. P1’s) choice of input. For the purposes
of the present warm up, we will further assume that a0 and b0 are independent
random variables. Next, we rule out fully secure computation for feq under these
simplifying assumptions. When we tackle the general case in the next subsec-
tion, we get rid of these simplifying assumptions, by showing additional attacks
(adversaries) where the aforementioned properties do no to hold.

We show that there exists an adversary that can guess the honest party’s
input with probability noticeably greater than what the ideal model allows.
First, in the ideal model with full security, notice that when an honest party P�

chooses his input uniformly at random, then an adversary corrupting {P3−�, Q}
may guess (with certainty) the honest party’s input with probability at most
1/3 (by using the right input for the corrupted party). We show that for any
real protocol, there exists an adversary that can guess the input with noticeably
greater probability, thus violating security.

Consider two adversaries AP1 and AP2 corrupting {Q, P1} and {Q, P2},
respectively, acting as follows. The honest party and corrupted party choose their
inputs uniformly at random; write x and y for the inputs chosen by P1 and P2.
The adversary AP1 chooses a round i uniformly at random. Then, before sending
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its messages for round i, if ai �= x, the adversary aborts party P1 without send-
ing further messages and instructs Q to continue honestly with P2; otherwise, it
sends its messages for round i and aborts P1 alone. The adversary AP2 chooses
a round i uniformly at random. Then, after sending its messages for round i, if
bi �= y, the adversary aborts P2 without sending further messages and instructs
Q to continue honestly with P1; otherwise, it sends its messages for round i + 1
and aborts P2 alone. Adversary AP1 outputs bi−1 or bi (depending on the round
P1 aborted) and AP2 outputs ai or ai+1 (depending on the round P2 aborted).
We show that at least one of the adversaries outputs the honest party’s input
with probability noticeably greater than 1/3, in violation of privacy. Next, we
compute each of the relevant probabilities.

Pr
[
AP1 outputs y

]
= 1

r
·

r∑

i=1

(

Pr
x←X
y←Y

[ai �= x ∧ bi−1 = y] + Pr
x←X
y←Y

[ai = x ∧ bi = y]

)

Pr
[
AP2 outputs x

]
= 1

r
·

r−1∑

i=0

(

Pr
x←X
y←Y

[bi �= y ∧ ai = x] + Pr
x←X
y←Y

[bi = y ∧ ai+1 = x]

)

Next, we compute the average of the two quantities above.
(
Pr

[
A

P1 outputs y
]
+ Pr

[
A

P2 outputs x
])

/2

=
1
2r

(

Pr
x←X

y←Y

[b0 �= y ∧ a0 = x] + Pr
x←X

y←Y

[ar = x ∧ br = y] +

r−1∑

i=1

Pr
x←X

y←Y

[ai = x] +

r−1∑

i=0

Pr
x←X

y←Y

[bi = y]

)

By correctness of the protocol and simplifying assumptions,

(
Pr

[
AP1 outputs y

]
+ Pr

[
AP2 outputs x

])
/2 = 1

2r
· Pr

x←X
y←Y

[b0 �= y ∧ a0 = x] + 1
3

= 1
3 + 1

2r
· 2

9

We conclude that at least one of the adversaries can guess with certainty the
opponent’s input with probability noticeably greater than 1/3, thus violating
privacy.

3.2 General Case

We define a class Ω of 3-party functions, and we show that no function in this
class admits a fully secure realization. Intuitively, this class of functions satisfies
the following requirement: For both 
 ∈ {1, 2}, there is a (non-trivial) partition
of the inputs of P� and a distribution over the inputs of P� such that if P� samples
its input according to the specified distribution then, with some fixed probability
bounded away from 0 or 1, the output alone5 fully determines what set of the

5 Without knowledge of the inputs of Q and P3−�.
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partition P�’s chosen input belongs to, no matter how the inputs of Q and P3−�

were chosen. Furthermore, if both parties sample their inputs according to their
respective distributions, then either for both inputs their sets in the partitions
are determined from the output alone, or for neither. Formally,

Definition 3.2. The class of functions Ω consists of all functions f satisfying
the following conditions, for some γ1, γ2 ∈ (0, 1). There exist distributions X
and Y over X and Y , respectively, such that supp(X) = X and supp(Y) = Y ,
and partitions X1 . . . Xk and Y1 . . . Y� of X and Y , respectively, such that

1. For every distribution Δ1 over X × Z,
Pr(x0,z0)←Δ1

ỹ←Y
[∃j s.t. Pry′←Y [y′ ∈ Yj | f(x0, ỹ, z0) = f(x0, y′, z0)] = 1] = γ1

2. For every distribution Δ2 over Y × Z,
Pr

x̃←X
(y0,z0)←Δ2

[∃j s.t. Prx′←X [x′ ∈ Xj | f(x̃, y0, z0) = f(x′, y0, z0)] = 1] = γ2

3. There exists z0 ∈ Z such that, for every σ ∈ Σ,
∃j s.t. Pr [x̃ ∈ Xj | f(x̃, ỹ, z0) = σ] = 1 if and only if
∃j s.t. Pr

x̃←X
ỹ←Y

[ỹ ∈ Yj | f(x̃, ỹ, z0) = σ] = 1

Note that PSIidm,k, with 0 < k < m/2, satisfies the above definition: define
X = Y as the uniform distribution and define partitions {Xx = {x}}x∈X and
{Yy = {y}}y∈Y .

Remark 3.1. The class of functions Ω can be generalized in few ways that we
omitted, for the sake of presentation. The first generalization considers functions
that take more than three inputs and can be reduced to functions in Ω by
grouping parties together. The second generalization relaxes the requirement on
the support of the distributions X and Y (allowing supp(X) � X or supp(Y) �

Y ). The proof for the latter is almost identical to the one below.

Theorem 3.2. For any f ∈ Ω and for any protocol Π computing f , at least
one of the following holds.

– There exists an adversary corrupting either P1 or P2 that can violate correct-
ness.

– There exists an adversary corrupting either Q and P1, or Q and P2 that can
violate privacy.

Hereafter, fix a function f , real numbers γ1, γ2 ∈ (0, 1), distributions X and
Y and partitions X1 . . . Xk and Y1 . . . Y�, and z0 satisfying Definition 3.2. It
is immediate that γ1 = γ2, hence we simply write γ (= γ1 = γ2). We define
4r + 1 adversaries {AP1

i }r
i=1, {AP2

i }r−1
i=0 , {CP�

i }r
i=1 and ÃP1

0 (See Fig. 2). Let
Σ′ ⊂ Σ denote all the elements σ ∈ Σ such that there exists j for which
Pr

x̃←X
ỹ←Y

[ỹ ∈ Yj | f(x̃, ỹ, z0) = σ] = 1. Such a Σ′ is guaranteed to exist by Item 2

of Definition 3.2.
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Fig. 2. Description of the adversaries

Proof. Define ã0, . . . , ãr and b̃0, . . . , b̃r such that ãi = 1 (resp. b̃i = 1) if and
only if ai ∈ Σ′ (resp. bi ∈ Σ′) and 0 otherwise. In the following, we consider
an execution of the protocol where Q uses z0 as input, P1 uses input sampled
according to X and P2 uses input sampled according to Y, regardless of whether
the parties are corrupted or not.

Claim 3.1. Unless CP1
i or CP2

i violate correctness, it holds that |Pr[b̃i = 1]−γ|,
|Pr [ãi = 1] − γ| ≤ neg(κ), for every i ∈ {0, . . . , r − 1}.

Next, we analyze the probability that AP1
i and AP2

i output 1. Observe that,
by correctness, with all but negligible probability, whenever AP1

i (resp. AP2
i )

outputs 1, the adversary succeeds in guessing the “bucket” the honest party’s
input belongs to, with certainty. To prove our theorem, we show that one of
the adversaries AP�

i or ÃP1
0 outputs 1 with probability greater than γ, violating

privacy.
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Pr
[
AP1

i outputs 1
]

= Pr
[
ãi = 0 ∧ b̃i−1 = 1

]
+ Pr

[
ãi = 1 ∧ b̃i = 1

]

Pr
[
AP2

i outputs 1
]

= Pr
[
b̃i = 0 ∧ ãi = 1

]
+ Pr

[
b̃i = 1 ∧ ãi+1 = 1

]

Therefore,
r∑

i=1

Pr
[
AP1

i outputs 1
]
+

r−1∑

i=0

Pr
[
AP2

i outputs 1
]

(1)

= Pr
[
b̃0 = 0 ∧ ã0 = 1

]
+

r−1∑

i=1

Pr
[
ãi = 1

]
+

r−1∑

i=0

Pr
[
b̃i = 1

]
+ Pr

[
ãr = 1 ∧ b̃r = 1

]

Thus
r∑

i=1

Pr
[
AP1

i outputs 1
]
+

r−1∑

i=0

Pr
[
AP2

i outputs 1
]
= Pr

[
b̃0 = 0 ∧ ã0 = 1

]
+ 2r · γ

(2)
The last equation follows by correctness and Items 1 to 3 of Definition 3.2. Next,
we argue that Pr[b̃0 = 0 ∧ ã0 = 1] is a noticeable quantity. If not, then we
claim that adversary ÃP1

0 can violate privacy. Suppose that Pr[b̃0 = 0 ∧ ÃP1
0 =

1] ≤ neg(κ) and let ρ denote the (joint) randomness of parties P1 and Q. In
the presence of adversary ÃP1

0 , we claim that the events a0 /∈ Σ′ and ar /∈ Σ′

are independent of each other. To prove it, first notice that a0 may be viewed
as deterministic function of the inputs of P1 and Q and ρ, and ar may be
viewed as a deterministic function of the inputs of f (the latter assumption
holds by correctness, with all but negligible probability). We write a0(x, z0; ρ)
and ar(x, y, z0) to make the dependency explicit and compute:

Pr
x←X,y←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′]

=
∑

x0∈X

Pr
y←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′ | x = x0

]
· Pr

x←X
[x = x0]

Observe that for any fixed x0, the random variables a0(x0, y; ρ) and ar(x0, y, z0)
are independent random variables. Therefore,

Pr
x←X,y←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ

′ ∧ ar(x, y, z0) /∈ Σ
′]

=
∑

x0∈X

Pr
ρ←R

[
a0(x, z0; ρ) /∈ Σ

′ | x = x0
]

· Pr
y←Y

[
ar(x, y, z0) /∈ Σ

′ | x = x0
]

· Pr
x←X

[x = x0]

Finally, by correctness and Item 2 of Definition 3.2

Pr
x←X,y←Y,ρ←R

[a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′]

=
∑

x0∈X

Pr
ρ←R

[a0(x, z0; ρ) /∈ Σ′ | x = x0] · (1 − γ) · Pr
x←X

[x = x0]

= (1 − γ) · Pr
x←X,ρ←R

[a0(x, z0; ρ) /∈ Σ′] = (1 − γ)2
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The last equality follows from correctness and Item 1 of Definition 3.2. Thus, if
Pr[b̃0 = 0 ∧ ã0 = 1] ≤ neg(κ), then adversary ÃP1

0 outputs 1 with probability
1 − (1 − γ)2 > γ, in violation of privacy. In conclusion, using an averaging
argument in Eq. 2, at least one of {AP1

i }r
i=1, {AP2

i }r−1
i=0 outputs 1 with probability

noticeably greater than γ and, thus, violates privacy.

4 Positive Results

In this section, we present our positive results. First, we give a generic transfor-
mation from a fully secure n-party protocol with non-solitary output to a fully
secure (n+1)-party protocol with solitary output; The latter protocol computes
the associated functionality that delivers output to an additional auxiliary party
that doesn’t provide input. In light of the positive results for fair two-party
computation, our transformation enables fully secure computation for (almost
all) Boolean functions with unequal domain size. For instance, it yields a secure
protocol for the following PSI variant that escapes our other criteria: From a
universe of size n, party P1 picks a set of size between 1 and k, for some arbi-
trary fixed k ≤ n − 2, party P2 picks a set size between 1 and k + 1 (i.e. one
party has more inputs to pick than the other), and Party Q receives value 1
if the sets intersect and 0 if not.6 Interestingly, this technique yields protocols
with super-constant (in fact, super-logarithmic) round complexity since, with
few exceptions, super-logarithmic number of rounds is necessary for fair compu-
tation. In Sect. 5, we show that super-constant round complexity is inherent for
fully secure MPC with solitary output.

Then, we present a generic protocol for functionalities that satisfy the
“forced output distribution” criterion. Intuitively, these are functionalities where
(almost) all parties can “force” the distribution of the output to be invariant of
the other parties’ choice of input. These functionalities should be contrasted with
the above fair ones, since they are utterly unfair viewed as non-solitary function-
alities (they imply coin-tossing). Interestingly, every functionality in this class
can be computed in a constant number of rounds.

We also present a generic protocol for functionalities that satisfy the “fully
revealing input” criterion. Intuitively, these are functionalities where at least
one party has a choice of input that reveals all other parties’ inputs. While this
family may appear somewhat pathological from a cryptographic point of view, it
contains several natural examples. In particular, it contains a PSI variant where
one party may choose the entire universe as input. Similarly to the previous case,
every functionality in this class can be computed in constant number of rounds.

Finally, for a functionality that escapes the above criteria, we design a fully
secure protocol that runs in superlogarithmic number of rounds. This protocol
is inspired by the GHKL protocol [23]. We emphasize that the feasibility of

6 Viewed as a two-party non-solitary functionality, the fact that it can be computed
with full security (fairness) follows from the criteria of [3].
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this functionality does not follow from the fairness criterion since, viewed as
a non-solitary functionality, it cannot be computed fairly. Furthermore, in the
next section, we show that superconstant round complexity is inherent for this
function.

4.1 Security via Fairness

Let f : X1 × . . . × Xn → Σ be an n-party functionality that delivers the same
output to all parties. Let Π be a fully secure protocol for f . Write m

(�,�′)
i ∈

{0, 1}μκ for the message sent by P� to P�′ at round i. Let Mκ = μκ · n denote
the total length of messages received by party P� in a single round (without loss
of generality μκ and Mκ do not depend on i, 
′ or 
). In this section, we show
how to transform protocol Π into a protocol Π ′ that computes the associated
solitary functionality that delivers the output to one of the parties, or to an
additional auxiliary party. We note that the transformation and analysis of the
two cases are the same, therefore we only focus on the latter transformation
(i.e. from n-party to n+1-party protocol, where the output receiving party does
not provide input). The rest of this sub-section is dedicated to the proof of the
following theorem.

Theorem 4.1. Let Π be a protocol for computing non-solitary functionality f
with full security. Then, there exist a protocol Π ′ that computes with full security
the associated (n + 1)-party solitary functionality that delivers the output to an
additional auxiliary party.

At a high level, to transform the n-party non-solitary protocol Π into an
(n + 1)-party solitary protocol Π ′, we have each party P� in Π ′ share the view
of the party P� in the original protocol Π between himself and the auxiliary
party Q. To do so, we begin by defining protocol’s Π message function NxtMsgΠ

that deterministically maps each party P�’s view until some round i (a view that
includes its identity, its input, its private coins and all incoming messages until
that round) to all messages that P� sends at the upcoming round.

Definition 4.1. Let NxtMsgΠ denote the next message function of r-round pro-
tocol Π. Formally, NxtMsgΠ maps viewP�

i 
→ (m(�,1)
i+1 , . . . , m

(�,n)
i+1 ) such that

1. viewP�
i ∈ {0, 1}i·Mκ corresponds to the view of party P� up to and includ-

ing round i (wlog, we assume that the value of i and the identity of P� are
contained in its view).

2. If i �= r, then m
(�,�′)
i+1 ∈ {0, 1}μκ corresponds to P�’s prescribed message to P�′

at round i + 1 according to Π. If i = r then m
(�,�′)
i+1 ∈ {0, 1}μκ corresponds to

P�’s prescribed output.
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In our protocol design, all messages will be additively-shared between party
P and a helper party Q. That is, a message m will be randomly split into m1, m2
such that m = m1 ⊕ m2 and party P will hold m1 and Q will hold m2. In the
following functionality ShrNxtMsgΠ (Fig. 3) we describe how the messages of the
protocol are created to deliver this sharing. Party P and Q hold viewP

i , P ’s view
up to and including round i, in shared form as vP , vQ and they receive the next
round messages of P also in shared form.

Fig. 3. Two-party functionality ShrNxtMsgΠ for parties P and Q.

We describe the protocol for computing a function with an auxiliary party
Q that receives the solitary output. The idea is that each party P� will invoke
with party Q the protocol for creating the messages that P� needs to send to
all the other parties in the upcoming round. This is done by utilizing the func-
tionality ShrNxtMsgΠ . The result is that P� and Q receive the set of messages
(m(�,1)

i+1 , . . . , m
(�,n)
i+1 ) in shared form. Then, P� send to each other party Pj its share

of the message m(�,j). The auxiliary party Q holds in a string viewQ�

i its share
of the view of the messages of party P� up to and including round i (a different
string for each P�). If (some) parties abort, then proceed under the specifica-
tions of the original protocol Π, while maintaining the invariant that each P�’s
view from the original protocol is shared between P� and Q. At the end of the
execution, Q together with one of the P�’s that hasn’t aborted reconstruct the
output (which is a deterministic function of their joint views).

The above protocol is described where the output is delivered to the auxiliary
party Q (not one of the P1 . . . Pn). However, as noted at the beginning of this
section, this party can be one of the n original parties and simply serves both
as himself and as party Q. Observe that, in this case, Q will simply see all the
messages that it sends and receives (as it holds both shares of the messages).

Proof of Theorem 4.1. We prove the claim by showing that protocol Π ′ from
Fig. 4 is fully secure in the ShrNxtMsgΠ -hybrid model with identifiable abort.
Then, the theorem follows from composition [8]. Let A be an adversary cor-
rupting up to n parties (of the n + 1 parties). Observe that, if party Q is not
among the corrupted parties, then A’s view can be trivially simulated since it
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Fig. 4. (n + 1)-party protocol for solitary f in the ShrNxtMsgΠ -hybrid model with
identifiable abort

is just a uniform random string, and it is not hard to see that he cannot affect
correctness. It remains to prove that the protocol is secure when Q is among the
corrupted parties. Let C denote the set of corrupt parties, assuming that Q ∈ C.
For adversary A attacking Π ′ corrupting parties in C, we construct an adversary
Ã attacking Π (on the same input distribution and auxiliary information) and
corrupting parties C̃ = C \ {Q} (there are at most n − 1 such parties). Since A’s
and Ã’s views are identically distributed (modulo a 2-out-of-2 secret sharing),
and since the latter can be simulated in the ideal model with full security, it
follows that the former can be simulated as well. Formally, let S̃ denote the
simulator for Ã and define simulator S for A as follows:
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1. S runs S̃ on the relevant inputs, security parameter and auxiliary information.
Write (vPi

)
Pi∈C̃ for S̃’s output corresponding to the joint simulated view of

the parties.
2. S samples (νPi

)
Pi∈C̃ uniformly at random from the relevant space and out-

puts (vPi
⊕ νPi

)
Pi∈C̃ (the simulated views of parties in C̃) and (νPi

)
Pi∈C̃ (the

simulated view of Q).

��

4.2 Functions with Forced Output Distribution

In this section, we present the “Forced Output Distribution” criterion. First, we
define the notion.

Definition 4.2. A party Pi �= Q admits a forced output distribution for f if
there exists a distribution Δi over Xi such that the distribution of the random
variable f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)|x̂i←Δi

is independent of the (n−1)-tuple
(x1, . . . , xi−1, xi+1, . . . , xn).

Intuitively, a party admits a forced output distribution if it can choose its
input in a way that “forces” the output, i.e. it makes the output distribution
independent of the other parties’ inputs. The theorem below states that if all-
but-one parties, not including Q, admit a forced output distribution, then the
functionality is computable with perfect full security in a constant number of
rounds in a hybrid model with ideal access with identifiable abort to functionality
ShrGnf (to be specified below). As a corollary, assuming OT, functions with a
forced output distribution admit fully secure protocol in the plain model.

Theorem 4.2. Assume that at least n − 1 of the parties in P \ {Q} admit a
forced output distribution for functionality f . Then, f is computable with perfect
full security in the ShrGnf -hybrid model with identifiable abort. Furthermore, the
computation runs in a constant number of rounds.

We now introduce functionality ShrGnf (Fig. 5) and we will prove our theorem
in the ShrGnf -hybrid model with identifiable abort. This functionality provides
the following. It shares the output of the function f between the parties that
invoke it, by obliviously choosing a random input for the parties that do not
provide input. That is, it provides uniform random shares to all-parties-but-one,
and that last party gets the xor of these shares with the output of the function.
We emphasize that this functionality may be invoked by a subset of the n parties,
and, as per the ideal model with identifiable abort, the invocation can be aborted
by any single party in that set (at the cost of revealing its identity).

Without loss of generality, if it exists, suppose that P1 is the party without
forced output distribution (the protocol and our analysis remains sound if all
parties have a forced output distribution). The protocol (see Fig. 6) proceeds as
follows: the parties invoke the trusted party for computing ShrGnf , and obtain
shares of the output. Then, in two distinct steps (1) P1 sends its share of the
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Fig. 5. n-party functionality ShrGnf .

output to Q and (2) all other parties send their shares to Q. In case of abort, there
are two scenarios; either P1 aborts alone, in which case the process starts again
without P1, or, if anyone else aborts at this iteration or the next, the computation
halts and Q outputs a value from the forced distribution. Intuitively, the protocol
maintains security because it is not useful to abort any of the parties; aborting
any party but P1 halts the execution, while aborting P1 does not reveal anything
about the output (since the honest party will not send its share before P1 sends
his).

Proof of Theorem 4.2. First note that distribution D in Fig. 6 is well defined
since it is unique. Let A denote an adversary corrupting a subset of parties. Like
in the previous proof, it is straightforward that if A does not corrupt Q then it
cannot affect correctness and its view can be trivially simulated. Let C be the
set of corrupted parties. Define simulator S that does the following: S invokes
the trusted party on the inputs of the corrupted parties and receives output
out form the trusted party. Then, S samples |C| random elements {σ′

C}C∈C and
hands them to the adversary.

– If P1 alone aborts, S samples |C| − 1 fresh random values {σ′′
C}C∈C\{P1}, and

hands them to the adversary.
– If any other party aborts (at any point in the simulation), S samples d′ ← D,

hands d to the adversary, and outputs whatever A outputs.
– If no other party aborts, S hands out to the adversary and outputs whatever

A outputs. ��
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Fig. 6. n-Party Protocol Π for f with Ideal Access to ShrGnf with Identifiable Abort

4.3 Functions with Fully Revealing Input

In this section, we present the “Fully Revealing Input” criterion. First, we define
the notion.

Definition 4.3. Let S � P. We say that the parties in S admit a fully revealing
input, if there exists xS ∈ ×

Pi∈S
Xi such that the following function is injective

fxS : xS 
→ f(xS , xS).

The theorem below states that if there exists a fixing of the inputs of P1
and Q (or any Pi and Q) that yields an injective function, then the overlying
functionality f is computable with full security in a constant number of rounds
in the ShrGnf -hybrid model. Similarly to the previous section, assuming OT, it
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follows as an immediate corollary that functions with fully revealing input admit
fully secure protocol in the plain model.

Theorem 4.3. Assume there exists i such that {Pi, Q} admit a fully reveal-
ing input. Then, functionality f is computable with perfect full security in the
ShrGnf -hybrid model with identifiable abort. Furthermore, the computation runs
in a constant number of rounds.

Without loss of generality, suppose that P1, Q admit a fully revealing input.
The protocol (Fig. 7) proceeds as follows: the parties invoke the trusted party
for computing ShrGnf , and obtain shares of the output. Then, in two distinct
steps (1) All-parties-but-P1 send their shares of the output to Q and (2) P1
sends its share to Q. In case of abort, the process is repeated until it succeeds.
Intuitively, the protocol maintains security because the only way to extract more
information from the protocol is to corrupt both P1 and Q. In that case however,
P1 and Q can provide input in the ideal model that reveals everything about the
inputs of the honest parties.

Proof of Theorem 4.3. Let A denote the adversary corrupting a subset of parties.
Like in the previous proof, it is straightforward that if A does not corrupt both Q
and P1 then it cannot affect correctness and its view can be trivially simulated.
If A corrupts both P1 and Q, then by instructing the simulator to send the
fully revealing input in the ideal model, the adversary’s view can be simulated
perfectly, no matter what is its course of action.7 ��

4.4 Outliers

In this section, we present protocol for a function that escapes the above criteria
but is nevertheless computable with full security. Due to space constraints, we
only give here a brief overview of the protocol. For the formal description and
security analysis, the reader is refered to the full version of the present paper [24].
Define functionality f that takes inputs x ∈ {0, 1, 2} from P1 and y ∈ {0, 1, 2}
from P2 and delivers f(x, y) to Q such that

f(x, y) =

⎧
⎪⎨

⎪⎩

1 if x = y ∈ {0, 1}
2 if x = y = 2
0 otherwise

In this section, we show that the functionality f is computable with full security
in ω(log(κ)) rounds. In what follows, we identify {0, 1, 2} with {x0, x1, x2} or
{y0, y1, y2} to make the distinction between the parties’ input-spaces explicit.

Our protocol is inspired by the GHKL protocol and proceeds as follows.
Formal descriptions and more detailed security analysis appear in the full version
7 We stress that honest-but-curious adversaries can be simulated without having
recourse to the fully revealing input, conforming to the standard definition. We
have omitted the analysis here, since it is straightforward.
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Fig. 7. n-Party Protocol Π for f in the ShrGnf -Hybrid Model with Identifiable Abort

of the present paper [24]. In the remainder of this section, we only give a high level
overview. Write x and y for the inputs used by the parties. In a share generation
phase, the parties obliviously generate two sequences of values (a0, . . . , ar) and
(b0, . . . , br) and an integer i∗ ∈ [r] such that every value ai and bi is equal to
f(x, y) for indices succeeding i∗, and, for indices preceding i∗, ai is computed
by obliviously choosing a fresh input from {y0, y1} for P2, and using input x
for P1 and, similarly, bi is computed by obliviously choosing a fresh input from
{x0, x1} for P1, and using input y for P2. The value of i∗ is chosen according to a
suitable distribution. The two sequences are then shared in a 3-out-of-3 additive
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(modulo 3) secret sharing among the parties. Then, in the share exchange phase,
in r iterations, P1 is instructed to send its share of bi to Q, and P2 is instructed
to send its share of ai to Q. If party P1 aborts at round i, then P2 sends its share
of bi−1 to Q, and, similarly, if P2 aborts at round i, then P1 sends its share of
ai to Q. Party Q is instructed to output the value it can reconstruct from the
shares.

We crucially observe that, prior to i∗, the obliviously chosen input for each
party is sampled from {0, 1}, and not {0, 1, 2}. This seemingly superficial tech-
nicality is what enables the protocol to be secure.

We conclude with the following theorem which immediately yields full secu-
rity for f , assuming a protocol for OT.

Theorem 4.4. Protocol Π computes f with statistical full security in the
ShrGn∗

f -hybrid model with identifiable abort.

5 Lower-Bound on Round-Complexity

In this section, we present a lower bound for the functionality f from the previous
section. Let f be the three-party solitary functionality from Sect. 4.4. In what
follows, let Π denote a protocol for f , let κ denote the security parameter, and
assume the round-complexity of Π is set to some value r that is independent
of κ. It follows as an immediate corollary of the theorem below that no such
protocol can be fully secure.

Theorem 5.1. Using the notation above, there exists i ∈ [r] such that at least
one of the following is true:

1. An adversary corrupting P2 and Q violates P1’s privacy by aborting P2 at
round i.

2. An adversary corrupting P1 and Q violates P2’s privacy by aborting P1 at
round i.

3. An adversary corrupting P1 violates correctness by aborting at round i.
4. An adversary corrupting P2 violates correctness by aborting at round i.

For the proof of the above, the reader is referred to the full version [24] of the
present paper.

Acknowledgments. We are grateful to Noam Mazor, Matan Orland and Jad Silbak
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