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Abstract. Van Goethem and Verbeek [12] recently showed how to
morph between two planar orthogonal drawings ΓI and ΓO of a connected
graph G while preserving planarity, orthogonality, and the complexity of
the drawing during the morph. Necessarily drawings ΓI and ΓO must be
equivalent, that is, there exists a homeomorphism of the plane that trans-
forms ΓI into ΓO. Van Goethem and Verbeek use O(n) linear morphs,
where n is the maximum complexity of the input drawings. However, if
the graph is disconnected their method requires O(n1.5) linear morphs.
In this paper we present a refined version of their approach that allows us
to also morph between two planar orthogonal drawings of a disconnected
graph with O(n) linear morphs while preserving planarity, orthogonality,
and linear complexity of the intermediate drawings.

Van Goethem and Verbeek measure the structural difference between
the two drawings in terms of the so-called spirality s = O(n) of ΓI relative
to ΓO and describe a morph from ΓI to ΓO using O(s) linear morphs. We
prove that s+1 linear morphs are always sufficient to morph between two
planar orthogonal drawings, even for disconnected graphs. The resulting
morphs are quite natural and visually pleasing.

1 Introduction

Continuous morphs of planar drawings have been studied for many years, start-
ing as early as 1944, when Cairns [7] showed that there exists a planarity-
preserving continuous morph between any two (compatible) triangulations that
have the same outer triangle. These results were extended by Thomassen [10]
in 1983, who gave a constructive proof of the fact that two compatible straight-
line drawings can be morphed into each other while maintaining planarity. The
resulting algorithm to compute such a morph takes exponential time (just as
Cairns’ result). Thomassen also considered the orthogonal setting and showed
how to morph between two rectilinear polygons with the same turn sequence.
For planar straight-line drawings the question was settled by Alamdari et al. [1],
following work by Angelini et al. [3]. They showed that O(n) uni-directional
linear morphs are sufficient to morph between any compatible pair of planar
straight-line drawings of a graph with n vertices while preserving planarity. The
corresponding morph can be computed in O(n3) time.
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In this paper we consider the orthogonal setting, that is, we study planarity-
preserving morphs between two planar orthogonal drawings ΓI and ΓO with
maximum complexity n, of a graph G. Here the complexity of an orthogonal
drawing is defined as the number of vertices and bends. All intermediate draw-
ings must remain orthogonal, as to not disrupt the mental map of the reader.
This immediately implies that the results of Alamdari et al. [1] do not apply,
since they do not preserve orthogonality. Biedl et al. [5] described the first results
in this setting, for so-called parallel drawings, where every edge has the same
orientation in both drawings. They showed how to morph between two parallel
drawings using O(n) linear morphs while maintaining parallelity and planarity.
More recently, Biedl et al. [4] showed how to morph between two planar orthogo-
nal drawings using O(n2) linear morphs, while preserving planarity, orthogonal-
ity, and linear complexity. Van Goethem and Verbeek [12] improved this bound
further to O(n) linear morphs for a connected graph G. This bound is tight,
based on the lower bound for straight-line graphs proven by Alamdari et al. [1].

If the graph G is disconnected, then Aloupis et al. [2] show how to connect G
in a way that is compatible with both ΓI and ΓO while increasing the complexity
of the drawings to at most O(n1.5). They also prove a matching lower bound if G
has at most n

4 connected components. This directly implies that Van Goethem
and Verbeek require O(n1.5) linear morphs for a disconnected graph G.

Paper Outline. We show how to refine the approach by Van Goethem and
Verbeek [12] to also morph between two planar orthogonal drawings of a discon-
nected graph G using O(n) linear morphs while preserving planarity, orthogo-
nality, and linear complexity. In Sect. 2 we describe the necessary background.
In particular, we discuss wires: equivalent sets of horizontal and vertical poly-
lines that capture the x- and y-order of the vertices in ΓI and ΓO. The spirality
of these wires guides the morph. In Sect. 3 we show how to find sets of wires
with linear spirality for equivalent orthogonal planar drawings ΓI and ΓO of a
disconnected planar graph G. Van Goethem and Verbeek are agnostic of the
connectivity of the graph once they create the wires. Hence, using the wires con-
structed in Sect. 3, we can directly apply their approach to disconnected graphs.

In the remainder of the paper we show how to “batch” intermediate morphs.
We argue solely based on sets of wires, hence the results apply to both connected
and disconnected graphs. In particular, in Sect. 4 we show how to combine all
intermediate morphs that act on segments of spirality s into one single linear
morph. Hence we need only s linear morphs to morph from ΓI to ΓO. However,
the rerouting and simplification operations introduced by van Goethem and Ver-
beek to lower the intermediate complexity are not compatible with batched linear
morphs and hence intermediate drawings have complexity of O(n3). In Sect. 5
we present refined versions of both operations which allow us to maintain linear
complexity through the s linear morphs. The initial setup for these operations
costs one additional morph, for a total of s + 1 linear morphs that preserve pla-
narity, orthogonality, and linear complexity. We implemented our algorithm and
believe that the resulting morphs are natural and visually pleasing1. We restrict
1 See https://youtu.be/n0ZaPtfg9TM for a short movie.
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our arguments to proof sketches, all omitted details can be found in the full
version [11].

2 Preliminaries

Orthogonal Drawings. A drawing Γ of a graph G = (V,E) is a mapping from
every vertex v ∈ V to a unique point Γ (v) in the Euclidean plane and from
each edge (u, v) to a simple curve in the plane starting at Γ (u) and ending at
Γ (v). A drawing is planar if no two curves intersect in an internal point, and no
vertices intersect a curve in an internal point. A drawing is orthogonal if each
edge is mapped to an orthogonal polyline consisting of horizontal and vertical
segments meeting at bends. In a straight-line drawing every edge is represented
by a single line-segment. Two planar drawings Γ and Γ ′ are equivalent if there
exists a homeomorphism of the plane that transforms Γ into Γ ′.

We consider morphs between two equivalent drawings of a graph G. To sim-
plify the presentation, we assume that both drawings are straight-line drawings
with n vertices. If this is not the case then we first unify Γ and Γ ′. We sub-
divide segments, creating additional virtual bends, to ensure that every edge is
represented by the same number of segments in Γ and Γ ′. Next, we replace all
bends with vertices. All edges of the resulting graph G∗ are now represented by
straight segments (horizontal or vertical) in both Γ and Γ ′.

A linear morph of two drawings Γ and Γ ′ can be described by a continuous
linear interpolation of all vertices and bends, which are connected by straight
segments. For each 0 ≤ t ≤ 1 there exists an intermediate drawing Γt where
each vertex v is drawn at Γt(v) = (1 − t)Γv + tΓ ′

v (Γ0 = Γ and Γ1 = Γ ′).
A linear morph maintains planarity (orthogonality, linear complexity, resp.), if
every intermediate drawing Γt is planar (orthogonal, of linear complexity, resp.).

Wires. Following van Goethem and Verbeek [12] we use orthogonal polylines
called wires as the main tool to determine the morph. Wires consist of horizontal
or vertical segments called links. We use two sets of wires to capture the hori-
zontal and vertical order of the vertices in ΓI and ΓO. The lr-wires W→ traverse
the drawings from left to right, and the tb-wires W↓ traverse the drawings from
top to bottom. Since the horizontal and vertical order of the vertices in ΓO are

Fig. 1. Two unified drawings ΓI and ΓO of G (black) plus equivalent wires (red/blue).
(Color figure online)
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guiding our morph, the wires W→ and W↓ are simply horizontal and vertical
lines in ΓO separating consecutive vertices in the x- and y-order (only if their x-
or y-coordinates are distinct). ΓO and ΓI are equivalent, hence there exist wires
in ΓI that are equivalent to the wires in ΓO: there is a one-to-one matching
between the wires of ΓO and ΓI such that matching wires partition the vertices
identically, and cross both the segments of the drawings and the links of the
other wires in the same order (see Fig. 1). Any such two wires in ΓI do not cross
if they are from the same set and cross exactly once otherwise.

Van Goethem and Verbeek use the spirality of wires as a measure for the
distance to ΓO (where all wires are straight lines of spirality zero). Spirality is a
well-established measure in the context of orthogonal drawings and is frequently
used for bend-minimization [6,8,9]. Specifically, let w ∈ W→ be a lr-wire, and
�1, . . . , �k be the links ordered along w. Let bi be the orientation of the bend
from �i to �i+1, where bi = 1 for a left turn, bi = −1 for a right turn, and bi = 0
otherwise. The spirality of a link �i is defined as s(�i) =

∑i−1
j=1 bi. A maximum-

spirality link is any link with the largest absolute spirality. The spirality of a
wire is the maximum absolute spirality of any link in the wire, the spirality of a
set of wires is the maximum spirality of any wire in the set.

The spirality of a drawing Γ is not well defined: it is always relative to another
drawing Γ ′ and the straight-line wires induced by Γ ′. Furthermore, there are
possibly multiple sets of matching wires in Γ for the straight-line wires in Γ ′.
Still, whenever the drawing Γ ′ and the matching set of wires in Γ are clear from
the context, then by abuse of notation we will speak of the spirality of Γ . Unless
stated otherwise, we always consider spirality relative to ΓO.

Slides. Biedl et al. [4] introduced slides as a particular type of linear morph
that operates on the segments of the drawing. Van Goethem and Verbeek [12]
extended this concept to wires. Slides on wires may be accompanied by the
insertion or deletion of bends in the drawing. In the following we exclusively
consider slides on wires. A zigzag consists of three consecutive links of a wire
and two bends β and γ that form a left turn followed by a right turn or vice
versa. Consider the horizontal zigzag with bends β and γ in Fig. 2(a). Let V be
the set of vertices and bends of both the drawing and the wires that are (1) above
or at the same height as β and strictly to the left of β, (2) that are strictly above
γ, and (3) β. The corresponding region is shaded in Fig. 2. A zigzag-eliminating

Fig. 2. A drawing (black) with vertices (open marks) and bends (closed marks). (a)
A zigzag-eliminating slide with center link βγ. (b) Introducing two additional bends
in a crossing segment ensures orthogonality. (c) A bend-introducing slide.
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slide is a linear morph that straightens a zigzag on a wire by moving all vertices
and bends in V up by the initial distance between β and γ.

By definition, wires do not contain any vertices or bends of the drawing or
other wires. However, the center link βγ might be crossed by a segment of the
drawing or a link of a wire in the other set (see Fig. 2(b) for a crossing with
a segment of the drawing). In this case we introduce two virtual bends in the
segment or the link on the crossing and symbolically offset one to the right
and one to the left. The left bend is thus included in V while the right bend
is not. We can prevent that multiple segments or links cross βγ using so-called
bend-introducing slides as discussed in [12] (see Fig. 2(c)).

3 Linear Morphs for Disconnected Graphs

Let ΓI and ΓO be two equivalent planar orthogonal drawings of a disconnected
graph G. For a connected graph there is a unique homotopy class in ΓI that
contains all possible wires that match a given wire w from ΓO. This statement
does not hold for disconnected graphs: there might be more than one homotopy
class in ΓI that matches w (see Fig. 3(a)). If we choose homotopy classes inde-
pendently for the wires in ΓI then their union might not be equivalent to the set
of wires in ΓO, for example, wires might cross more than once (see Fig. 3(c)).

Below we show that we can choose homotopy classes for the wires in ΓI

incrementally, first for the lr-wires and then for the tb-wires, while maintaining
the correct intersection pattern and hence equivalence with ΓO. For each of the
resulting equivalence classes we add the shortest wire to the set of wires. It
remains to argue that the resulting set of wires has spirality O(n) despite the
interdependence of the homotopy classes and the fact that the arrangement of
drawing and wires can have super-linear complexity (which invalidates the proofs
from [12]). Below we consider only W→, analogous results hold for W↓.

Lemma 1. For each right-oriented link �→ of a wire w ∈ W→ with positive
(negative) spirality s there exists a vertical line L and a subsequence of Ω(|s|)
links of w crossing L, such that the absolute spiralities of the links in sequence
are [0, 2, 4, . . . , |s|−2, |s|], and when ordered top-to-bottom (bottom-to-top) along
L form the sequence [2, 6, 10, . . . , |s| − 2, |s|, |s| − 4, . . . , 4, 0].

Fig. 3. (a) A (straight-line) wire w in ΓO (red) and two possible wires in ΓI from
different homotopy classes that both match w. (b) A graph with three connected
components. (c) Wires in ΓI that cross three times. (d) Set of wires equivalent to ΓO.
(Color figure online)
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Fig. 4. (a) Lemma 1 for a link �→ and sequence S = (�3, �5, �13, �15, �→). (b) The
i-core of a spiral for a link �i ∈ S (gray). (c) The i-layer of the spiral (gray). (d) A
layer cannot only contain wires as then we can shorten all wires.

Figure 4(a) illustrates Lemma 1. Let �→ be a right-oriented link on a wire w
and w.l.o.g. let s > 0 be the spirality of w. Further, let L be a vertical line through
�→ and S a subsequence from w with the properties guaranteed by Lemma 1.
Finally, let �i ∈ S be the unique link with spirality 0 ≤ i ≤ s in S. We define
the i-core for S (for 4 ≤ i ≤ s and i (mod 4) = 0) as the region enclosed by the
wire w from the intersection between �i−4 and L to the intersection between �i

and L and the straight line segment along L connecting them (see Fig. 4(b)). We
define the i-layer for S (for 4 ≤ i ≤ s − 4 and i (mod 4) = 0) as the difference
of the i-core and the (i + 4)-core (see Fig. 4(c)).

Lemma 2. An equivalent set of lr-wires with spirality O(n) exists.

Proof (Sketch). We prove by induction that we can add a new lr-wire with
spirality O(n). If a wire w has ω(n) layers, then we can argue via shortcuts (see
Fig. 4(d)) that w was not shortest with respect to previously inserted wires. ��
Lemma 3. An equivalent set of wires with spirality O(n) exists.

Proof (Sketch). By Lemma 2 we can insert all lr-wires with spirality O(n). By
Lemma 2 from [12] the spirality of intersecting links is the same. Apply Lemma 2
for the tb-wires in the regions between the intersections with lr-wires. ��
Theorem 1. Let ΓI and ΓO be two unified planar orthogonal drawings of a
(disconnected) graph G. We can morph ΓI into ΓO using Θ(n) linear morphs
while maintaining planarity and orthogonality.

Proof. By Lemma 3 an equivalent set of wires with spirality s = O(n) exists.
By Theorem 8 from [12] we can thus morph the drawings into each other using
O(s) = O(n) linear morphs. The lower bound of Ω(n) follows from [1]. ��

4 Combining Intermediate Linear Morphs

The proof of Theorem 1 implies a morph between two unified planar orthogonal
drawings ΓI and ΓO exists using O(s) linear morphs, where s is the spirality of
ΓI . In this section we show how to combine consecutive linear morphs into a total
number of only s linear morphs, while maintaining planarity and orthogonality.
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The morphs we describe can be encoded by a sequence of drawings, start-
ing with ΓI and ending with ΓO, such that every consecutive pair of drawings
can be linearly interpolated while maintaining planarity and orthogonality. For
notational convenience let Γi −−� Γj indicate that Γi occurs before Γj during the
morph and Γi =� Γj that Γi −−� Γj or Γi = Γj .

Let an iteration of the original morph consist of all linear slides that jointly
reduce spirality by one. Let the first drawing of iteration s be the first drawing
in the original morph with spirality s and the last drawing be the first drawing
with spirality s−1. Consecutive iterations overlap in exactly one drawing. These
drawings in the overlap of iterations are the intermediate steps of the final morph.
Within this section let ΓI =� Γa −−� Γb =� ΓO, where Γa is the first drawing with
spirality s and Γb is the first drawing with spirality s − 1.

4.1 Staircases

Consider two distinct vertices v and w of the drawing. Define an x-inversion
(y-inversion) of v and w between Γa and Γb when the sign (+,−,0) of v.x − w.x
(v.y − x.y) differs in Γa and Γb. We say two vertices are x-inverted (y-inverted),
or simply inverted. Two vertices v and w are separated in a drawing by a link �
when they are both in the vertical (horizontal) strip spanned by �, and v and w
are on opposite sides of �.

Lemma 4. Two vertices v and w can be inverted by a zigzag-removing slide
along link �, if and only if v and w are separated by �.

w

vvA downward staircase is a sequence of horizontal links where:
(1) the left-endpoints are x-monotone increasing and y-monotone
decreasing, (2) the projection on the x-axis is overlapping or
touching for a pair if and only if they are consecutive in the
sequence, and (3) all links have positive spirality. Two vertices v
and w are separated by a downward staircase if v is in the ver-
tical strip spanned by the first link of the staircase and above it and w is in
the vertical strip spanned by the last link and below it. Similar concepts can be
defined for upwards staircases and for vertical links.

Fig. 5. Regions surrounding �s in Γi−1

and the matching regions in Γi.
Fig. 6. Sets SL and SR in Γa and Γb.
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Lemma 5. Two vertices v and w that are x-inverted (y-inverted) first during
a morph from Γa to Γb, are separated by a horizontal (vertical) staircase of
maximum spirality links in Γa.

Proof (Sketch). Assume w.l.o.g. that only one inversion occurs and it occurs
from Γb−1 to Γb. By Lemma 4, v and w are separated by a link � in Γb−1. Link
� must have maximum absolute spirality as it was selected for the morph. We
now prove inductively that a staircase exists in all drawings from Γa to Γb−1 by
“moving backwards” through the morph. To this end we define four rectangular
regions A,B,C,D surrounding �s in Γi−1 (see Fig. 5). During the linear slide
from Γi−1 to Γi two new regions F and G are created, which cannot contain
vertices. Using these rectangular regions and a case distinction on the type of
linear slide, we can argue inductively that a staircase separating v and w must
also exist in Γi−1. ��

4.2 Inversions

We show that every pair of vertices is inverted along at most one axis during the
morph from Γa to Γb. We then prove that Γa has spirality one relative to Γb.

Lemma 6. Two vertices v and w can be inverted along only one axis during the
morph from Γa to Γb.

Lemma 7. Each vertical (horizontal) line in Γb not crossing a vertex, can be
matched to a y- (x-)monotone wire in Γa.

Proof (Sketch). Consider a vertical line L↓ in Γb not intersecting any vertex. Line
L↓ partitions the set of vertices and vertical edges in Γb into two subsets SL and
SR. Consider a horizontal line L→ in Γa and consider the maximal intervals
formed along it by elements from the same set SL or SR (see Fig. 6). Set SL

and SR form exactly two maximal intervals along L→. Thus a y-monotone line
exists correctly splitting SL and SR. We can show that this y-monotone line
must intersect horizontal edges in the correct order as well. ��
Lemma 8. Drawing Γa has spirality one relative to Γb.

4.3 Single Linear Morph

We now show that any two planar orthogonal drawings Γi and Γj , where Γi

has spirality one relative to Γj , can be morphed into each other using a single
linear morph while maintaining planarity. Two drawings are shape-equivalent if
for each edge the sequence of left and right turns is identical and the orientation
of the initial segment is identical in both drawings. We say two drawings are
degenerate shape-equivalent if edges may contain zero-length segments but an
assignment of orientations to the segments exists that is consistent with both
drawings. Two (degenerate) shape-equivalent drawings are per definition also
unified. We can make Γa degenerate shape-equivalent to Γb by adding zero-
length edges whenever maximum absolute spirality links in Γa cross an edge.
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Fig. 7. (a) Two points p and q on vertical segments of the drawing that are inverted
along both axes imply wires in ΓI that are not equivalent to ΓO. (b) Points p and q
on a horizontal and vertical segment. (c) Points p and q on horizontal segments.

We say two points p and q on the drawing are split by a wire when p and q lie
on different sides of the wire.

Lemma 9. Let ΓI and ΓO be two degenerate shape-equivalent drawings, where
ΓI has spirality one. There exists a single linear morph from ΓI to ΓO that
maintains planarity and orthogonality.

Proof (Sketch). The partition of the drawing by all wires defines cells: regions
of the plane not split by any wire. For each cell containing at least one bend
or vertex, we can linearly interpolate all vertices and bends in ΓI to the unique
vertex or bend location in ΓO. This directly defines a linear morph between ΓI

and ΓO. To argue planarity of this morph, we assume for contradiction that
there exist two points p and q on an edge or vertex of the drawing that coincide
during the morph (excluding ΓI and ΓO). Then p and q must be x- and y-
inverted in ΓO compared to ΓI and there must be two vertices r and s that
are x- and y-inverted and split by at least a tb-wire and a lr-wire. As the lr-
wire and the tb-wire are monotone they cross at least three times (see Fig. 7).
Contradiction. ��

Theorem 2. Let ΓI and ΓO be two unified planar orthogonal drawings of a
(disconnected) graph G, where ΓI has spirality s. We can morph ΓI into ΓO

using exactly s linear morphs while maintaining planarity and orthogonality.

5 Linear Complexity of Intermediate Drawings

Van Goethem and Verbeek [12] describe rerouting and a simplification operations
that reduce the complexity of intermediate drawings to O(n). These operations
are not compatible with the batched linear morphs we described in Sect. 4. Below
we show how to adapt these operations to the batched setting. These adaptations
come at the cost of a single additional linear morph.
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Fig. 8. (a) An ε-band adjacent to the edge. (b) Inserting an s-windmill. (c–d) Reroute
wires after linear slide without introducing new crossings.

5.1 Rerouting

To avoid that the linear morphs introduce too many bends in a single iteration
of the morph, we show how to route the wires such that only O(n) complexity is
added to the drawing in each iteration. The initial rerouting of the wires in ΓI

increases the maximum spirality by one, but it prevents any increase of spirality
during the morph. Thus, using Theorem 2, s + 1 morphs are sufficient to morph
two equivalent drawings into each other while maintaining planarity and keeping
complexity of the intermediate drawings to O(n2).

We reroute the wires in W↓ and W→ as follows. Consider an edge e that is
crossed by at least two wires in ΓI . By Lemma 9 from [12] all crossing links
have the same spirality. Assume w.l.o.g. that this spirality is positive, otherwise
mirror the rotations and replace right by left. Let ε be a small distance such that
the ε-band above e is empty except for the links crossing e and that there is more
than a 2ε distance between the right-most crossing link and the right-endpoint
of e (see Fig. 8(a)).

We insert an s-windmill of all crossing wires within the ε-band above e by
rerouting the wires as follows. First disconnect all crossing links within the ε-
band above e. Then reroute all wires in a parallel bundle to the right, beyond
the right-most wire wr crossing e. Now we spiral the bundle using right turns
until the spirality of the links reaches zero. Next we unwind the bundle again
within the spiral. Finally we reconnect the wires by routing back parallel to e
to maintain the original crossing points (see Fig. 8(b)). This rerouting can be
executed without introducing crossings between the wires. It does increase the
spirality of the drawing by one.

We now change each iteration as follows. Consider a horizontal edge e crossed
by k > 1 links of maximum absolute spirality s (assuming s > 0) at the start of
the iteration. Instead of performing a linear slide on all crossing links, we perform
a single linear slide only on the rightmost crossing link. This slide creates a new
vertical segment (see Fig. 8(c)). Thanks to the introduction of the s-windmill,
we can easily reroute the other crossing wires to intersect the new vertical seg-
ment instead of the horizontal segment without introducing other crossings (see
Fig. 8(d)). The newly created crossing links must have spirality s − 1 as all links
crossing the same segment have the same spirality (Lemma 9 from [12]). We can
reduce all remaining spirality s links without introducing additional complexity
in the drawing.
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Lemma 10. At the start of iteration i of the morph, all wires crossing an edge
e with links of spirality i form an i-windmill in an empty ε-band next to e.

Lemma 11. Let Γs be the first drawing of an iteration and Γ r
s−1 the rerouted

last drawing. The spirality of Γs relative to Γ r
s−1 is one.

Proof (Sketch). We can argue that rerouting wires does not eliminate staircases.
A link that is rerouted may have been part of a staircase, but the new links
replacing it do not break any staircase properties. As rerouting links maintains
staircases, Lemmata 5–8 still apply. ��

Drawing Γ r
s−1 compared to Γs contains two additional bends in each edge

crossed by maximum absolute spirality links in Γs. We can make Γs and Γ r
s−1

degenerate shape-equivalent by inserting an additional zero-length segment at
the right-most (left-most for negative spirality) crossing link for each edge crossed
by maximum absolute spirality links. By Lemmata 9 and 11 we can morph the
resulting Γs into Γ r

s−1 in a single linear morph while maintaining planarity.
As, independently of how many wires are crossing it, each edge only intro-

duces two new bends, complexity increases by O(n) during each iteration. Thus
the overall complexity is O(s ·n). We conclude that we can morph two drawings
ΓI and ΓO, where ΓI has spirality s, into each other using s + 1 linear morphs
while maintaining planarity and O(s · n) complexity of the drawing.

5.2 Simplification

By using rerouting we can ensure that the complexity of the drawing increases
by at most O(n) in every iteration, but its complexity may still grow to O(n2)
over O(n) iterations. In this section we show how to simplify the intermediate
drawings to ensure that the complexity after each iteration is O(n).

We again consider a single iteration starting with Γs and ending with Γs−1.
Using rerouting we can find an alternative final drawing Γ r

s−1 that also maintains
planarity. We now introduce a redraw step that further simplifies Γ r

s−1 into
a straight-line drawing Γ ′

s−1 such that a linear morph from Γs to Γ ′
s−1 still

maintains planarity. The redraw step works as follows.
For each vertex v in Γ r

s−1, consider a 6ε-sized square box surrounding v that
contains only v and a 3ε-part of each outgoing edge from v. If an incident edge
e is crossed by a maximum absolute spirality link in Γs, then we reroute e inside
the 6ε-box around v. Specifically, for an edge e leaving v rightwards, we reroute e
within the 6ε-box using the coordinates (v, v+(0,−ε), v+(2ε,−ε), v+(2ε, 0), v+
(3ε, 0)) (see Fig. 9(a)). Analogous rerouting can be done for edges leaving v in
other directions. For an edge crossed by a negative spirality link invert the left
and right turns.

Lemma 12. We can redraw all edges in Γs−1 that were crossed by a maximum-
spirality link in Γs within 6ε-boxes while maintaining planarity of the drawing.
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Fig. 9. (a) A 6ε-box surrounding a vertex v (dashed) with four redrawn edges. (b)
Original drawing, rerouted drawing, and straightening the drawing.

Proof (Sketch). We can establish a relation between the spiralities of two seg-
ments incident at the same vertex. Using this relation we can argue that, after
redrawing, no two edges leave a vertex in the same direction. As a result, there
are no planarity violations within the 6ε-boxes around vertices. ��
Lemma 13. If Γs is a straight-line drawing with spirality s > 0 then there exists
a straight-line drawing Γ ′

s−1 with spirality s − 1.

Proof (Sketch). Let Γ r
s−1 be the drawing obtained by applying rerouting to the

last drawing of iteration s. Consider an edge e crossed by maximum absolute
spirality links in Γs. Edge e has three segments in Γ r

s−1 due to the two introduced
bends. The first and last segment do not cross any wires. We can apply the redraw
step to e, resulting in three more segments at the start and end of e. Finally we
eliminate all additional segments of e by performing zigzag-eliminating slides on
these segments (see Fig. 9(b)). ��
Lemma 14. The spirality of Γ ′

s−1 relative to Γs is one.

Proof (Sketch). Let the main wire set be the set of wires used to compute the
morph including rerouting from Γs to Γ r

s−1. Consider a reference wire grid that
is a straight-line wire grid in Γs. Using Lemmata 7, 8, and 11 but swapping the
roles of Γa and Γb, we obtain the result that there is an equivalent monotone
set of wires in Γ r

s−1 matching the reference grid in Γs. Thus the spirality of Γs

relative to Γ r
s−1 is one.

When straightening Γ r
s−1 to Γ ′

s−1 only zigzag-removing slides are performed
on segments not crossed by a wire from the main wire set. As such a segment
was not crossed by a wire from the main wire set, the orientation of the segment
is unchanged in Γ r

s−1. Specifically, any link of a wire from the reference wire grid
that crosses such a segment must have spirality zero. When straightening Γ r

s−1

to Γ ′
s−1 the zigzag-removing slides may insert additional bends in these reference

wires, but the wires will remain monotone. ��
We can make Γs degenerate shape-equivalent to Γ ′

s−1 as follows. For each edge
e crossed by maximum absolute spirality links, we split e at the crossing with
the right-most (or left-most if the links have negative spirality) crossing link and
insert a zero-length segment. Furthermore, we add three zero-length segments
at the endpoint of each such edge e coincident with the respective endpoint.
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Theorem 3. Let ΓI and ΓO be two equivalent drawings of a (disconnected)
graph G, where ΓI has spirality s. We can morph ΓI into ΓO using s + 1 linear
morphs while maintaining planarity, orthogonality, and linear complexity of the
drawing during the morph.
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